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Clustering is known to be demanding in terms of Space and 
Time complexity. In the difficult case of very large sample size 
(n > 10000), the choice of a particuiar algorithm is a compromise be­
tween optimality and time complexity. In this paper, we suggest the 
existence of an algorithm, based on hypercubic lattices on p-spaces 
proved to operate in 0 ( n) expected time, considered as the obvious 
lower bound of asymptotic complexity. Critical percolation theory 
was used for complexity demonstration. Experimental designs on 
simulated data were carried out with sample sizes from n = 103 to 
n = 108 , and suggested that this algorithm .is probably unique in 
combining exact output partition and minimum 0 ( n) complexity. 
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1. Introduction 

Clustering deals with the problem of grouping the elements of a sample into ho­
mogeneous and well separated clusters. Concerning all the proposed clustering 
algorithms, those converging to a partition with an optimal property, so-called 
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exact algorithms, are often characterized as demanding in terms of computing 
time and space allocation. Practically, their use is limited to small data sets 
(probably n < 1000). Recent developments decreased the computational com­
plexity of clustering algorithms, particularly in the important and particular 
class of the hierarchical agglomerative scheme. By considering a sample size 
n in p-space, the Brute Force algorithm for hierarchical uglomerative scheme 
is clearly O(n3 ) and can be easily reduced to O(n2 log(n)) Anderberg (1973). 
Under utilizat ion of certain ultrametrics , other particular techniques can re­
duce expected time complexity to O(n2 ): Murtagh (1984); Day (1984); Karchaf 
(1987). In particular, Single Linkage Clustering (SLC) method has interesting 
properties: it can be obtained through the Minimum Spanning Tree (MST) con­
struction with O(n2 ) complexity, Gower, Ross (1969). However, this complexity 
remains much too demanding when clustering very large data sets. The main 
effort being connected with the n(n- 1)/2 distance calculations, some authors 
suggested ways for alleviating evident useless distances through pre-processing 
of appropriate geometrical structures (Lattices, B-Sorts, K- d trees), and the 
best approaches were able to achieve O(n log(n)) expected time, Lehert (1985), 
and experimentally observed O(nloglog(n)) expected time, Rohlf (1978). 

In this paper, we focus on a particular problem of single linkage clustering, 
known as the clustering by Connected Components (CC) problem: Let E be a 
set of n points , d(X, Y) a distance for any pair (X, Y) E E 2 , and a threshold 
p, . Let G(E , F) be the undirected graph, with F a subset of E 2 such that 
d(X, Y) < p,. In other words, the Connected Components {ee1 , ... , eek} are 
the classes within E such that any two points X and Y belong to the same class if 
there is at least a path XY in F joining them. CC partition can be constructed 
on the MST basis, by deleting edges of length > p,. In this respect, CC is 
one of the single linkage resulting partitions, and it has optimality property: 
By calling split of a partition, the minimum distance associated with the pair 
(X, Y), such that X and Y are in two different classes, CC has maximum split 
among all partitions into the same number of classes. This clustering problem 
appears in various disciplines. For example, under well defined circumstances, 
the alien atoms show a marked preference for bonding with their own species 
and this produces precipitates, which can have beneficial or detrimental effects 
on mechanical properties. Their influence is particularly strong when they are 
associated in connected components cluster. Particularly, oxide precipitates are 
acting in the nickel matrix as barriers to dislocation movement and causing 
hardening. Such CC distribution of precipitates can also play a major role in 
crack properties of material propagation and brittle failure. 

The dendrogram provided by the MST enables n - 1 partitions: For large 
data sets, this dendrogram becomes unreadable. Now, in many applications, p. 

is fixed- see Levinthal (1966); Rosenfeld (1969), and for such cases, dendra­
gram construction is no longer needed. Moreover, finding of CC is easier than 
that of MST. The brute force algorithm for finding CC is clearly O(n2), and 
requires the computation of n 2 distances. A particular algorithm has already 
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been proposed, associated with square lattice structure, and has been proved 
O(n) expected time, with the limited use ofMax~Norm or Tchebychev distance , 
Lehert (1981). In what follows, we propose a new algorithm for CC construction 
of 0 ( n) complexity and using any dr Minkowsky distance. 

2. Algorithm 

Let there beE, a set of n points Xi(xi 1 , ... Xip) in p-space, and without loss of 
generality, we consider any Xij > 0. We define a square lattice D( T) with mesh­
size T, as a partition of E into cells Cr, I designating integer n-tuple (i 1 , ... ip) 

, such that Cr = {Xs E Ellx(s,.i)/TJ = ij,.i = 1, ... ,p}, LqJ designating the 
smallest integer equal to or greater than q. 

We will first define the direct proximity and full proximity concepts: Let 
r be the set of nonempty cells C I, and by denoting a Minkowsky distance of 
order ,. by dr (dl = City Block distance, dz = Euclidean distance, and d00 = 
Tchebychev or Max-Norm Distance) , we define Direct Proximity DP(I) = {CJ E 

fld1(J,J) = 1} , and Full Proximity FP(I) = {CJ E fldoo(I,J):::; 1}. In the 
particular case of the plane (2-space), the direct proximity of a cell Cr is the 
set of non empty cells CJ sharing a common edge with Cr. Their maximum 
number can be 4 in the plane and 2p in p-space. The full proximity F P(I) is 
the set of cells having a least a common point with Cr: 9 at most can exist in 
the plane and 3P in p-space. The algorithm's rationale is based on the following 
elementary geometrical properties: 

PROPERTY 2.1 Under a Minkowsky dr distance in p-space, a predetermined 
threshold j.t and the aSSOCiated CC partition, a square lattice fl( T = p.(p - 1 + 
2r)-l fr) deter-mining a set of cells {C}, any point X belonging to a cell Cr and 
any other- point Y belonging to C J included in D P (I) belong to the same class 
of the CC par-tition. 

Proof: In the case where CJ belongs to DP(I), the maximum distance 
between two points X of C I and Y of C J is the length of the diagonal constructed 
on the hyper rectangle { C I U C J} . By fixing this length to /1·, all the points C I 
will be in the same CC-class. Now, in the plane and with the usual Euclidean 
distance, /1· and T are such that p2 = ,.z + (2T 2 ), and more generally in p-spaces 
with any Minkowsky distances , p.r = (p- 1)Tr + (2Tt. 

We now consider a square latticeD( T) and construct a partition P as follows: 
Let P 1 be initialized by any Cr. From property 1, not only all the points of C I are 
irt the same CC class, but also any point YE DP(I) is such that point X of Cr 
exists with dr ( x, y) < /1·, and therefore Y belongs to the same CC partition. In 
such a manner, all the points of D P (I) can be affected automatically to P 1 class, 
without any distance calculation, by merely investigating the 2p possible cells of 
D P (I). Any newly entered cell C J will cause systematic D P (J) annexion , until 
all the DP(J) have been investigated. P2 will be initialized by a nonempty cell 
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not yet annexed in P 1, and the same investigation is made, until all the cells 
have been annexed into one class. P partition (P1, ... Pk) can be defined by the 
undirected graph G(f, <I>), with <I>= {(CI, CJ)iCI E f, CJ E f, CJ E DP(I)}. 
Although P partition is close to the searched CC partition, there is still a 
difference: Any two points connected in F, will also be connected in CC, but 
one can find connected points in CC, not connected in P: indeed an hypersphere 
centered on a point X of C 1 contains space areas not in D P (I) , that can contain 
a point Y such that dr(X, Y) < Jl" Such pairs of points XY are erroneous links . 

For a correct CC construct ion, it is required to detect these erroneous links 
by examining the neighbourhood of each point X, and assessing existence of 
a point Y E a different class of P, such that dr(X, Y) < Jl" At this stage, 
it is no longer possible to avoid distance calculations, but in order to limit 
them, another square lattice nested or embedded on the original lattice will be 
successfully needed, as shown by the following property: 

PROPERTY 2.2 A new embedded square lattice D(T = lJi./T]T J) prod1tcing the 
set of non empty ce lls {E} is such that for any point X C E1, the f1tll proximity 
F P(I) of a cell C1 contains the r-ball Br(X, Jl.) ={YE Eidr(X, Y) < Jl.}. D(T) 
based on the initial lattice allows to limit the distance calwlations for finding 
the erTOnemts links in a the smallest possible space area: Space investigation faT 
each point is limited to the maximum 3P cells of D( T) constit1Lting FP (I). 

As a consequence, the CC algorithm has two stages: First, it builds a P 
partition, by simple direct proximity annexation, and second, there follows de­
tection and suppression of erroneous links. A basic Pidgin Algol code is now 
derived: 

Step 1. Finding of P partition on the graph G (r, <I>): 
a) Pre-processing: Constructing square latticeD( T) defining the { C} cell set; 

k = 0; 
b) Determination of P partition 

For any cell not annexed to P 
do 

end 

k = k + 1; 

Pk ={Cl}, where C1 designates a non annexed cell - for any C 1 - Pk 

to investigate, 

do 

end 

Step 2. Finding erroneous links and final CC class search 
a) Pre-processing: .Transformation embedded D(T = lJl./T]T J) producing {E} 

set. 
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b) For any class Pk of P, 
do 

end 

For any X E Er, within Pk 
do 

end 

For every Y C F P(I), c Ptil -=1- k, 
do 

if dr(X, Y) < p., Pz annexed to Pk 

end 

3.. Complexity 

509 

Let us prove the expected time complexity of the algorithm, under a general 
hypothesis of n points in p-space, and a fixed dr distance of Minkowsky (0 < T :::::; 

oo). Step 1 constructs the original square lattice D( T): By using an appropriate 
hashing structure calculated on the keys I of the cells Cr, this requires O(n) 
calculations Lehert ( 1991). Since direct access is provided to the cells, and 
DP(I) contains 2p cell accesses O(p), total computational time for step 1 and 
for N nonempty cells (N < n) is 

T(step 1) = O(n) + 2Np0(p) < O(n) + 2pO(np):::::; O(np2
) (1) 

Step 2 investigates full proximi ties FP (I) for each point X in the D( T) 
embedded lattice. At this stage, we need to define the discrete lattice (NP, 8) , 
whose nodes are constituted by the integer p-tuples I(il ... ip) of NP and 8 = 
{(I, J)II and J E NP and d1(I, J) = 1}. Let us consider a subset M of NP, 
randomly selected from NP so that we can consider spatial constant density ,\ 
and 8' is the subset of 8 such that the extremities I and J are both in M. 
The random graph (r, 8') includes a number of connected components which 
increases with density ..\. In this context, we notice the following property: 

PROPERTY 3.1 In a discrete lattice defined on p-space, with uniform density, 
the expected number of connected nodes becomes infinite, once density is higher 
than a value 1r , known as the critical percolation· threshold being only a function 
of the kind of lattice and the space dimensionality. 

This general property was demonstrated in R 2 et R 3 in Hammersley (1961); 
Reh (1979) , and generalized to p-spaces Santalo (1976). A general analytic 
expression of 1r is intractable and can only be approached by simulations, Ham­
mersley (1961). 

A direct application of this property consists in observing that in an defined 
area of p-space, small enough to consider a uniform density ,\, the undirected 
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graph (r, n') is such that r is the subgroup {J} of NP corresponding to the 
nonempty cells Cj. Let us now consider a bipartition of p-space into the low 
density area, where the density of nodes C1 is lower than 1r, and the high density 
area, where node density is larger than 1r. 

1. Within the low density area (>.. < 1r ), investigation around each point X 
needs 3P cell accesses, with each access requiring 0 (p) effort. Within each 
cell, the maximum number of distance calculations between any point 
Y of the cell and X is bounded by 1r (finite, only dependent on p and 
independent of the data) . By designating the computional time for step 2 
in low density area by T(step 2)1>.. < 1r), we have: 

T(step 2)1>.. < 1r) < 7r(3P(1 + 1rO(p)) ~ O(np3P) (2) 

2. Within the high density area (>.. > 1r), let us consider the graph (r, 8'). 
Since it constitutes a discrete square lattice in p-space and the density 
is higher than the critical percolation value 1r, the expected number of 
connected cells is infinite, in other words, step 1 has already connected 
them without distances calculations. Finding erroneous links in step 2, 
should also involve a low I'\umber of distance calculations. By considering 
a linear linked list joining all the points of cell C I, before all, all the points 
belonging to the cells annexed in the same class of P will be excluded for 
distance calculations. In conclusion, computational complexity for step 2 
in high density areas T(step 2)1>.. > 1r) is limited to 3P cell accesses, and a 
negligible expected number of distance calculations: 

T(step 2)1>.. > 1r) = n · 3PO(p) (3) 

From partial results (1, 2, 3), we derive 0 (np) expected time complexity, 
and as a consequence O(n) linear expected complexity for a definite di­
mension p. 

4. Experiments 

Computer times were measured on artificial data sets whose values were ob­
tained from mixtures of gaussian distributions themselves characterized by ran­
domly generated parameters. The CC algorithm was implemented in two ver­
sions (version CC1 in Microsoft C++ 6.0 under DOS, version CC2 under F77 /386 
Fortran under DOS extender). In order to obtain results that would be hard­
ware independent, the performance of the CC algorithm has been compared 
to BF-MST algorithm of Bentley and Friedman (1978), considered as probably 
the fastest for MST construction. Results are expressed as ratios between com­
putational times (tMsr/tcc) measured by the CC algorithm to those obtain 
by application of the Cower and Ross (1969) MST algorithm used as r:eference 
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method: 

BF-MST CC1 CC2 
p=2 n = 103 33 290 315 

n = 105 2807 39385 48960 
n = 106 5.32. 105 9.32. 105 

n = 107 4.23. 106 7.89. 106 

p=3 n = 103 16 134 199 
n = 105 167 1345 1978 

p = 5 n = 103 8 89 157 
n = 105 189 867 1336 

As an example, first line of this tables shows that BF-MST, CC1 and CC2 
versions are 33, 290 and 315 times faster than the basic Gower-Ross Algorithm, 
respectively. These results confirm the linear behaviour of the algorithm with 
n for each value of p. The gains tMsr/tcc decrease with p and are especially 
important for large data sets. For p exceeding 5, n must be greater than 105 

to preserve an appreciable gain: the exponentially increasing number of cells 
accesses compensates the distance calculations economy and annihilates the 
benefits of the algorithm. The better performances of CC2, compared with CC1 
is probably coming from better virtual memory allocation of the F77 compiler, 
and generally better optimized object code of Fortran for vector management, 
compared with C. 

5. Conclusions 

This paper described a clustering algorithm that combines an important prop­
erty characteristic for the single linkage hierarchical scheme, and a time com­
plexity that should probably be the lower bound complexity since clustering of 
n points requires at least reading them. As far as we know, no other algorithm 
has been proposed that combines such a low complexity while preserving opti­
mality property. Another advantage of this algorithm is its possibility to work 
in paginated environment: pages are simply the cells. By doing so we do not 
need to store the data matrix in central memory. It means that this algorithm 
can analyse data sets with sizes only limited by the hard disk capacity. In order 
to compare the practical performances of the algorithm, experimentations have 
been realized by simulation in p-spaces (p < 6). Their results confirm the 0 ( n) 
expected time and the influence of the critical percolation value 1r. Now, the 
same simulations clearly exhibited the limits of the algorithm, in pointing out 
dramatically reduced performances when dimensionality p increases. As a con­
sequence, although theoretically claiming a simultaneity between optimality and 
minimum complexity, which is an interesting result, this algorithm's interest is 
obviously limited to very large data sets (n > 10000) in low dimensionalities 
(p < 5). 
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