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Abstract. We describe some recent results on recovery of the 
principal coefficient of a second order partial differential equation of 
parabolic type, given one or all possible sets of the lateral Cauchy 
data of its solution. We outline ideas of proofs referring for details 
to other publications. The results are expected to be of importance 
in the inverse heat conduction and the inverse hydraulics problem. 
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1. Formulation of the inverse problem 

We are interested in finding the diffusion coefficient a of the following parabolic 
equation 

Ut- div(aVu) = f in Q = n X (0, T), (1.1) 

where D is a domain in Rn (a bounded one, a half-space or the whole space). 
We assume the zero initial conditions 

v, = 0 on [!X {0} , (1.2) 

the lateral boundary condition 

v. = g on on X (O,T) (1.3) 

and the boundedness condition on v. if D is unbounded. If a E L 00 
( Q) and is 

strictly positive, the known (Friedman, 1964; Ladyzenskaja et al., 1968) results 
guarantee uniqueness, existence and stability of a (generalized) solution v, to the 
direct problem (1.1)-(1.3) in a natural classical (Holder or Sobolev) functional 
space. Our object is the following: 
INVERSE PROBLEM Find the coefficient a from the additional lateral bov.ndar-y 

data 

aovv, = h on r X (0, T), r c on (1.4) 

OT fmm v. given ov.tside of a bo7J.nded domain Do if n = Rn ° 
1 The work of the second author was in part supported by the NSF grant DMS 9501410. 
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2. Single boundary measurements 

The single boundary measurements mean that we are given h in (1.4) for only 
one (or, maybe) few g. If the initial data are zero there is actually only one 
uniqueness result in the one-dimensional case. 

THEOREM 2.1 Let n = (0, 1) in R 1 . Let g(t) = t 112 and r = {0}. Then the 
d~ffv.sion coefficient a E C1 [0, 1] is v.niqv.ely deter-mined by the data (1.4) of the 
pambolic pTOblem (1.1)-(1..9). 

We will give an idea of a proof which is based on a reduction to a one­
dimensional inverse hyperbolic problem whose theory is rather elementary and 
relatively well understood. 

Consider the transform 
00 

u.(x, t) = (1rt) - 112 
./ exp( -82 /(4t))u.*(x, B)dB 
0 

where u,* solves the hyperbolic problem 

a~v.*- ax(a(x)axv.*) = 0 in Q* = n X (0, T*), 

u.* = aeu.* = 0 on n X {0}, 

u.* = g* on an X (0, T*). 

(2.1) 

(2.2) 

One can check that in our case g* (B) = .J?ie /2 if x = 0 and is zero if x = 1. 
Integrating (2.1) by parts and using fact that the function on the right-hand 
side satisfies the heat equation in t, () one can conclude that 

00 

atu.(x, t) = (7rt)- 112 (a9v,*(x, 0) + ./ exp( -82 /(4t))a~v.*(x, B)dB). 
0 

Hence if v.* solves (2.2), then the corresponding v. will solve the parabolic prob­
lem (1.1)- (1.3). 

The additional data 

on an X (0, T*) (2.3) 

(where T* is any (large) number) can be obtained by inverting the relation 
(2.1) where h is the Neumann data of the parabolic problem. It is clear that 
this inversion is unique, but not stable in the Hadamard sense. Originally, the 
parabolic problem is considered on the interval (0, T), but it can be solved with 
the same g on the interval (0, oo ). Since the coefficient of the parabolic equation 
is time independent and the boundary data are analytic, the solution u.(x, t) is 
analytic with respect to t E (0, oo), so it is uniquely determined by its values· 
on (0, T). This analytic continuation is a conditionally stable operation which 
is discussed in more detail in Isakov (1995). 
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Using standard arguments in one-dimensional inverse hyperbolic problems 
(Isakov, 1990) one can show uniqueness of a. 

Observe that all the instability in the inverse parabolic problem is isolated 
in the inversion of the transform (2.1), and the inverse hyperbolic problem is 
stable. However, it is strongly nonlinear. 

Similarly, one can treat the boundary data g generated via (2.1) by any 
function g* E Ck([O,oo)), growing at infinity not more rapidly than exp(CT) 
and whose k-th order derivative is not zero at the origin. 

At present there are no uniqueness results in the multidimensional case when 
the initial data are zero. 

3. Many boundary measurements: umqueness 

In this case his given for all regular g (say, in CJ(80, x (0, T))) which are zero 
outside r x (0, T), or in other words we are given the so-called lateral Dirichlet­
to-Neumann map A. In Theorems 3.1 and 3.2 we assume that f = 0 and that 0, 
is a bounded domain with the C 2-boundary. We emphasize that r can be any 
arbitrarily small (but open and nonempty) part of 80.. 

THEOREM 3.1 A uniq11,ely determines at-independent a E C1 (0). 

We will give only an idea of the proof which will be published elsewhere. 
As above, we can associate with the parabolic problem (1.1) - (1.3) the fol­

lowing hyperbolic one 

o~u*- div(a\lv.* ) = 0 on 0, x (0, T*) 

with the zero initial conditions at e = 0 and the lateral boundary Dirichlet 
condition 

* * 'U, = g on 80. x (0, T*). 

We claim that the lateral Dirichlet-to-Neumann map g --+ h for the parabolic 
equation uniquely determines the Dirichlet-to-Neumann map A* (with any finite 
T*) for the hyperbolic equation. Indeed, let g* be any function in 0 2 (80, x 
(O,T*) (which is zero outsider x (O,T*). We extend this function as zero if 
T* < e. Consider the parabolic problem (1.1) - (1.3) with the data g. Since g* 
is compactly supported, the definition (2.1) shows that g(x, t) is analytic with 
respect to t E (0, oo). The known properties of the parabolic problems with 
time-independent coefficients guarantee that the solution v.(x, t) and its first 
order derivatives are analytic with respect tot E (0, oo ), therefore the Neumann 
data h which are originally given on r x (0, T) are determined uniquely (by the 
analytic continuation) on r x (0, oo). Since the inversion of (2.1) is unique, h* is 
uniquely determined on r X (0, T*) for any finite T* 0 For a E C 2 (0) and r =an 
Theorem 3.1 can be derived from the results ofNachman (n = 2) (see Nachman, 
1995) and of Sylvester and Uhlmann (3 ::::; n) (see Sylvester and Uhlmann, 1987) 
on the inverse conductivity problem. 
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In the theory of inverse hyperbolic problems it has been already proved that 
A* given for large T* uniquely determines a. It was done by Belishev (1987) 
who first used methods of optimal control in inverse problems. In the mentioned 
paper he considered the case r =aD and a slightly different hyperbolic equation. 
Recently (AMS-SIAM Summer Conference in Seattle, 1995) he announced also 
uniqueness for local data (r is not the whole BD). 

In very important practical problems (inverse hydraulics) the coefficient a is 
discontinuous. To present the result for such coefficients we define the lateral 
boundary BxQ* of an open subset Q* of the layer Rn x (0, T) as the closure of 
8Q* n {0 < t < T}. We say that Q* is x-Lipschitz, if its lateral boundary is 
locally the graph of a Lipschitz function x.i = xj(x1, ... , x.i-1, x.i+1, ... , .Tn, t) . 

In the next theorem we assume that a0 is a given positive C2 (D)-function. 

THEOREM 3.2 Let n 2 2. Suppose that Q* is an open Lipschitz sv.bset of Q 
and BxQ* n BxQ is empty. Assume that 

the sets (Q \ Q*) n {t = T} are connected when 0 < T < T (3.1) 

Then A uniqv.ely deteTmines a= a0 + kx(Q*), k = k(x) E C 2 (D), k =f. 0 on 
OxQ*. 

Proof. We will outline the proof of this result referring for details to the 
forthcoming paper (Elayyan and Isakov, to appear). 

Assume that Q1 =f. Q2 . Then we can assume that there is a point (xo, to) E 
BxQ 1 \ Q2 which is contained also in Q3, where Q3 is the union (over BE (0, T)) 
of Q3e. Here Q3e is the connected component of D \ ( Q1e U Q2e) whose boundary 
contains r. Qje are defined as Qj n {t = B} . Taking g = 0 fort< t 0 and using 
the translation we can also assume that to = 0, xo = 0. Choose a ball B in 
Rn centered at the origin and a cylinder z = B X ( -7-, T) so that B c D, z is 
disjoint with Q2 and the lateral boundary of Ql in Z is a Lipschitz surface. By 
the Whi tney Extension Theorem there is a C2 ( Q 1 U Z)- function a3 coinciding 
with a 1 on Q1. Extend a3 onto Q \ (Ql U Z) as ao. 

First we establish the so-called orthogonality relations 

/ k1 \lv.3 · \lv.; = / k2 \lv.3 · \lv.; (3.2) 

Ql Qz 

for any solution v.3 to the differential equation 

v.3 = 0 if t < 0 

and for any solution v.2 to the (adjoint) equation 

u; = 0 if T < t. 
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To explain why the relation (3.2) holds we subtract two equations (1.1) with 
a = a2 and a = a 1 to obtain the following equation for the difference u of their 
solutions u2 and u 1 

Since u 1 , v.2 have the same lateral Cauchy data on r x (0, T) , we derive from 
known uniqueness of the continuation results in parabolic equations (Isakov, 
1990) that u = 0 on Q4. Then " multiplying" the equation by u2 and "integrating 
by parts" (or, more precisely, using the definition of a weak solution) we obtain 
the relation (3.2) with v.1 instead of U3 because the integral on the left-hand side 
is zero. To obtain (3.2) for u3 we can use the Runge approximation theorem 
and to approximate a3 by a sequence of coefficients which are equal to a 1 in 
neighborhoods of Q1 . 

To obtain a contradiction with the initial assumption we take as u 3 and v.2 
the singular (fundamental) solutions K+ and K- to the forward and backward 
diffusion equations with the coefficients a3 and a2 with the poles placed outside 
of Q3 which converge to the origin. Using specia.l coordinates we can assume 
that 8xQ1 contains the points (0, t) : 0 < t < T and that the direction of the Xn­

axis coincides with the exterior normal to 8xQ1 at the origin. The fundamental 
solutions mentioned above have the following structure 

where the first terms are the so-called parametrices 

K{(x, t; y, T) = C(t - T)-n12a3 1 (y)exp( -lx- yj 2 j(a3(y)(t- T)), 

K1 (x, t : y, T) = C( T- t)-n12a3 1 (y)exp( -lx- yj 2 /(ao(y)( T- t)) 

and Kt, Kt are remainders, with weaker singularities (Friedman, 1964). 
Letting u3 = K+(; 0, 0), u; = K(; 0, T) in the relations (3.2) (which we can 

do first by taking poles at (y, 0), (y, T) with y = (0, ... , 0, -8) and then letting 
{j converge to zero), splitting the fundamental solutions into parametrices and 
less singular parts, and breaking the integration domain Ql into Ql n z and its 
complement we obtain 

(3.3) 

where 

h = ./ k1 'lxK{ · 'lxK1 

Q,nz 

h=- ./ kl'lxK+·'lxK-+.lk2'lxK+·'VxK-

Q, \Z Q2 
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and 

h = J k1(VxKi · VxKo + VxKit · VxK1 + VxKit · VxKo) · 
Q1nz 

The basic analytic step of the proof is to show that 

T-n/ 2 :::; Clhl, lhl :::; CT-n/2+lE-2exp(-E2 /(MT)), 

lhl :::; CT-n/2+3
/

2c 2 (1 - exp( -E2 j(MT)), 

where M depends only on an upper bound of a3, ao over Q. 
With this preparation the end of the proof follows very quickly. We let 

where (large) E is to be chosen later. From (3.3) and (3.4) we have 

(3.4) 

T-n/2 :::; C 2 (T-n/2+1c2exp( -E/M) + T-n/ 2+312 E-2(1- exp( -E/M) ). 

Using the relation between E and T and multiplying both parts of the last in­
equality by yn/2 we obtain 

1 :::; C 2 E- 1exp( -E/M) + C 2 E- 1
7

1
/

2 (1- exp( -E/M)). 

Choose E so large that E-1e-E/M:::; 1/(2C)2 , then the first term on the right­
hand side is smaller than 1/4. Then choose T so small that the last term is 
smaller than 1/4 as well. We arrive at a contradiction which shows that our 
original assumption was wrong, so Q1 = Q2. 

If the unknown domains are equal it is relatively easy to show that k1 = k2 

by modifying slightly the argument in Isakov (1989). D 

4. Numerical results 

The considered inverse problem is strongly nonlinear (with respect to ( u, a) 
that both are to be determined) and ill-posed , so it must be quite difficult (if 
at all possible) to obtain its numerical solution. As the first step we decided to 
linearize the inverse problem and to test it numerically. 

First we observe that our original inverse problem with several lateral bound­
ary measurements for the equation (1.1) with f = 0 in a bounded domain can 
be reduced to a problem in the whole space with f( x, t) = o(x- x*)o(t). 

Indeed, let uq, be the (bounded at infinity) solution to the Cauchy problem 
(1.1), (1.2) with a= 1 + 1/J, supp !jJ is in a bounded domain D0 , and with f equal 
to the delta-function. Then, u0 is a known function (the fundamental solution 
to the Cauchy problem for the heat equation), and the difference w = uq, - uo 
solves the following Cauchy problem 

Wt- D..w = div(ljJVuq,) in Rn X (O,T), w = 0 fort= 0. 
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Since supp <P is in D0 , the function w satisfies the homogeneous heat equation 
outside D0 . Let D1 be any bounded domain with smooth boundary containing 
closure of Do. Outside D1 the function w can be represented as the simple layer 
potential 

t 

w(x, t) = Sp(x, t) = ./ ./ p(y, T)f(x- y, t - T)dS(y)dT, 

o en1 

where r is the well-known fundamental solution to the Cauchy problem for the 
heat equation. 

Now, let A be the lateral Dirichlet-to-Neumann operator for the equation 
(1.1) corresponding to the domain D1 . Denoting by w- the function w outside 
Dl X (0, T) WC obtain 

8vw- = 8vuq,- 8vuo = A(uo + w)- 8vuo =ASp+ (A- 8v)uo. 

The well-known jump relations for the normal derivatives of simple layer poten­
tials (Ladyzenskaya et al., 1968) give 

Ovw-(x, t) = -T1 p(:r;, t) + W p(x, t) , 

where W is the normal derivative of the simple layer on 8D1 . From these two 
relations we have the following integral equation for p 

(I+ (-T1 I- W + AS))p = Uo, 

where I is the identity operator and Uo = ( Ov- A)v.o. It is proved in Elayyan and 
Isakov (1995) that the operator -2- 1I- W +AS is a contraction in L00 (8D1 x 
(0, T)) if T is small , so for p we have an integral equation which can be solved in 
a stable and efficient way. Summing up, given any point x* outside the closure 
of D1 WC can efficiently find p, W and 'Uq, outside D1. 

Now we will study the equation (1.1) with f = 8(x- x*), D = Rn assuming 
that a = 1 + <P does not depend on t, supp<j> C Do (a bounded domain), and 
either II<PIIoo(D0 ) is small or <P = kx(D2 ) , where k has the bounded C 1-norm and 
vol D2 is small. The solution u of the problem (1.1),(1.2) (the Cauchy Problem 
for the parabolic equation) is u(x, t; x*). Linearizing the original problem around 
a = 1 we arrive at the following equations 

Vt- b..v = div(<j>'Vuo) ( 4.1) 

with the zero initial condition. Here uo is the solution to the unperturbed 
(heat) equation with the delta-function as the source term. The solution of the 
equation (4.1) with the zero initial data is v(x,t;x*). Now, motivated by the 
inverse backscattering, we let :r = x* and fix T to reduce the overdeterminancy 
of our inverse problem by posing the following: 

LINEARIZED INVERSE PROBLEM Find <j> E L 2(Do) given the solv,tion v(x, T; x) 
of the linear-ized eqv,ation (4.1}, wher-e X E D* 
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Using the well-known representation of a solution to the Cauchy problem for 
the heat equation via potentials we arrive at the integral equation 

A<P(x) = <I>(x) , X E fl*, (4.2) 

where A<P(x) = J k(x- y)<f!(y)dy and 
no 

1;'HEOREM 4.1 A solution <PE L2(00) to the equation (4.2) is unique. 

Proof. We will give an almost complete proof of this theorem. Since the integral 
equation is linear, to prove uniqueness it suffices to consider <I> = 0 on rl* and 
to show that <P = 0. Assume that <P is not zero. 

Applying the Fourier transform to the both parts of ( 4.2) and using the 
fact that the Fourier transform of the convolution is the product of the Fourier 
transforms we will have 

(4.3) 

As can be seen from its integral representation, the function <I> is analytic outside 
0 0 . Since it is zero on the open set rl* , it is zero outside some compact set by 
uniqueness of the analytic continuation. Using also our conditions we conclude 
that both <I> and <P have compact supports, hence by the Paley-Wiener theorem 
their Fourier transforms are entire analytic functions of order 1. So they are 
defined for all complex vectors ( and 

(4.4) 

On the other hand, using the explicit formulae for the Fourier transform of 
quadratic functions one can show that 

T , 1· e e k(~) = Cn (28(1- T)~ · ~- n)exp( -~ · ~8(1- T))dB 
0 

Substituting~= ( = iR1,0 , where ~0 is a non-zero real vector, and R ;:::: 1, using 
the fact that the two terms in the integrand have the same sign and dropping 
the first term we obtain 

T T/2 

ik(()l ;::=: Cnn / exp(I(I 2B(1- ~))dB;::=: Cnn / exp(I(I 23T/16)d8, 

0 T~ 
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where we shrank the integration interval in the first integral and have used that 
on the smaller interval 3T /16 :S: 8(1 - B /T). Summing up we conclude that for 
the chosen ( there is a positive E such that 

(4.5) 

Now we are ready to complete the proof of Theorem 4.1. If cp =/=- 0 then 
J(~o) =/=- 0 for some nonzero ~0 ERn and therefore the entire function cp0 (z) = 
cp(z~o) of one complex variable is of order 1 and not identically zero. By the 
Littlewood theorem there are a constant C and a sequence rj convergent to +oo 
such that min lif;o(z) l > e-Crj where the minimum is taken over lzl = rj. From 
(4.3), (4.4) and (4.5) it follows now that 

lk(()l :S: Ce20
ri, 1(1 = rjl~o l 

which contradicts ( 4.4). 
The contradiction shows that the initial assumption was wrong and that 

cp = 0. The proof of Theorem 4.1 is complete. D 

We anticipate logarithmic (conditional) stability of solution of the integral 
equation (4.2) which is not proven yet. It is quite clear, however, that thi~ 

equation represents a severely ill-posed problem which must be regularized to 
be solved numerically. Observe that the operator A is a convolution operator, 
but since the function <I> is not defined on the whole Rn, the equation ( 4.2) is 
not a convolution equation, so the Fourier transform will not be of much help. 

In our numerical investigations (Elayyan and Isakov, 1995) which gave sur­
prisingly good results, we replaced the equation (4.2) by its standard regulari­
zation 

(a+ A* A)if;a = A*<I>, 

where A* is the operator adjoint to A acting from L2 (D0 ) into L2 (D*) . We dis­
cretized the integrals by the trapezoid method to obtain functions of a discrete 
argument defined on the rectangular uniform N or N x N grid, and solved the 
resulting system of linear equations by the conjugate gradient method on our 
IBM mainframe. 

We have considered the one-dimensional case: Do= (0,2),D* = (3,5). We 
choseN= 30, a= 10-6 , T = 4 and recovered the function cp(x) = sin(nx/2) 
with high precision which slightly deteriorated when we added a random noise 
of 0.01 (in maximum norms) to the data of our problem. We had to generate the 
data numerically because it was impossible to calculate them analytically. We 
did it using a different method that the one used to solve the inverse problem 
to create an additional noise. 

An important test was a two-dimensional one, where we took Do= (0, 2) x 
(0, 2), D* = (3, 5) x (0, 2). We put a = 10- 14 and recovered the function cp 
from the previous example even better. T he same value of the parameters was 
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used to find the discontinuous function cp defined as 1 on (0, 1) x (0, 2) and as 
0 otherwise. Now the discontinuity surface was not recovered sharply, but its 
location was easy to be distinguished. 
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