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Abstract . T he unique continuation property of a second-order 
parabolic operator L with time-varying coefficients is studied. Given 
T > E > 0, we ask if there is a curve i:(t) En, t E (r:;, T) such that, if 
Lu = 0 in Q = n X (0, T) and u vanishes along i:( ·), then u = 0 in Q. 
A generalization of this problem, based on the notion of a set-valued 
map, and applications to approximate and exact null-controllability 
are also discussed. 
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1. Introduction 

Let n be a bounded, open, connected set in Rn with b.oundary an. In n we 
consider the following homogeneous Dirichlet problem for the parabolic equa
tion: 

au ~ f) av. ~ au ( ) - = L - (aij(x, t)-;:;-)- L bi(x, t)~- a x, tu 
fJt . . axi ux1· . uXi 

,,j=l . t=l 

in Q = (0, T) X n, · (l.la) 

v. b:;= 0 in 2: = an X (0, T), 

under the condition of uniform ellipticity, namely, 

n n 

f.1, L ~t~ L ai.i (x, t)~i~j '<l~i ER a .e. in Q, J.L > 0, (l.lb) 
i=l i,.i=l 

where aij aii, aij E L00 (Q), i,j = l, ... ,n. The following two questions 
constitutethe problems with which we deal in this paper. 

1 This work was supported in part by NSF Grant ECS -9312745. 
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PROBLEM 1.1 Let n ::; 3. Given T > c > 0, we ask whether there exists a 
curve (c, T) 3 t ----t x(t) E D such that every solution u E H6' 1 (Q) to (1.1) which 
vanishes along i:(-) vanishes in Q. 

PROBLEM 1.2 Given T > c > 0, we ask whether there exists a set-valued 
map (c, T) 3 t ----> S(t) c n, mes{S(t)} > 0 such that every solution u E 

C([O, T]; L 2 (S1)) n H6' 0 (Q) to (1.1) which satisfies the equality fs(t) udx = 0 on 
( c, T) vanishes in Q. 

In this paper we give a positive answer to both of these questions. Our proofs 
are based on the derivation of estimates (3 .1) and ( 4.2) (which are also of interest 
in themselves), followed by application of a suitable backward uniqueness result. 

REMARK 1.1 In the above and elsewhere in the paper, the standard notations for· 
the Sobolev spaces are used. In particular, H6' 0 (Q) ={<PI ljl, <Pxi E L 2 (Q), i = 
1, ... ,n,<jl lE= 0} and H6' 1(Q) ={<PI ljl, <Pxixi,<Pxil<Pt E L 2 (Q), i,j = 1, ... ,n, 
<fJ lE = 0}. 

The problem of unique continuation from an arbitrary open subset Q* of Q 
to its horizontal component {(x, t) E Q I :lx* : (x*, t) E Q*} for the second order 
parabolic operator is well known in the literature (see, e.g. , Saut and Scheurer, 
1987, and the bibliography therein). To our knowledge, the problem addressed 
in this paper is open. Motivation for its consideration comes from the following 
observations. 

It is well known that the unique continuation property is closely related 
to the issue of controllability, see, e.g., Lions (1988). It is quite common in 
applications (e.g., in mechanical engineering or environmental problems) that 
only pointwise sensors/actuators can act upon the system. In this regard, a 
curve x(·) ensuring (3.1) ((4.2) is its a "space-averaged" version) can be seen 
as that for the allocation of a scanning point sensor~ whose outputs are stable 
with respect to measurement errors from L00 (c, T). We refer to Lasiecka and 
Triggiani (1991), Lions (1992) (and to the bibliography therein) for the discus
sion focusing on static point controls for different types of partial differential 
equations. 

In the time-invariant framework (allowing one to use the techniques of har
monic analysis) and in one space dimension the estimates analogous to (3.1) 
were given, e.g., by Dolecki (1973). On the other hand, Miintz-Sza,sz type 
theorems also imply that even for the constant elliptic operator the e~timate 
proposition (3.1) does not hold for n > 1 if its left-hand side is static, that is , 
x(t) = x, t E (0, T). On the contrary, in the dynamic setting the estimate (3.1) 
was established for the heat equation in an arbitrary space dimension on the 
set of its continuous solutions in the recent paper by Khapalov (1994). This 
was achieved by using the time-invariancy of the Laplacian, combined with the 
separability of C(D)). An analogous result for the wave equation is given with 
respect to the energy norm in Khapalov (1995). Sharp correspondence between 
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the internal regularity of solutions of a second-order hyperbolic equation with 
time-varying coefficients and a type of a lumped expression in the left-hand side 
of the corresponding estimate of type (3.1)/(4.2) was discussed in Khapalov 
(1995). 

The paper is organized as follows. In the next section a number of assump
tions on (1.1) providing suitable regularity of its solutions are given. Sections 
3 and 4 deal, accordingly, with the derivation of estimates (3.1) and (4.2). In 
Section 5 the main uniqueness results are formulated. Their control theoretic 
consequences are discussed in Section 6. 

2. Preliminaries 

The following three sets of the assumptions on (1.1) are considered below: 

n 

11 L b;, aiiq,r,Q :=:; J.L, 
i=l 

1 n - +- = 1- K,, 
r 2q 

{ 

q E [
2

( n )'oo], rE [-
1
-,oo], 0 < K. < 1, 

1-K, 1-K, 
1 2 1 

qE[1,oo], rE[ 1 _"", 1 _ 2""], 0<""<2, 

JT J r 1 where ii zi iq,r,Q = iiziiLq,r(Q) :=; ( 0 ( n I z iq dx)Odt)r=; 

for n ?': 2, 

for n = 1, 

aai.i E L 1 (0 T· L 00 (0)) b Loo(Q) at ' , ' i, a E ' i,j , k= 1, ... ,n; 

uo E HJ(O) , i,j,k=1, ... ,n. 

(2.1a) 

(2.1b) 

(2.2) 

(2.3) 

Conditions (2.1) ensure the existence and uniqueness of a solution to (1.1) from 
the space C([O, T]; L2 (0)) n Hci '0 (Q) (see, e.g., Ladyzhenskaya, Solonnikov and 
Ural'ceva, 1968, pp. 160, 181), which satisfies the energy estimate: 

(2.4) 

Here c depends on T and the parameters in (1.1b), (2.1). Under the assumptions 
(2.3) this solution lies in H6' 1 (Q), see, e.g., Ladyzhenskaya, Solonnikov and 
Ural'ceva (1968), pp . 178, 180-181 (where other suitable conditions are also 
discussed). Assumptions (2.2) allow one to use the backward uniqueness result 
due to Bardos and Tartar (1973) for the homogeneous boundary problem (1.1), 
(2.1). 

The following generalized maximum principle (see, e.g., Ladyzhenskaya, Solon
nikov and Ural'ceva, 1968, pp. 181, 192-193) for the solutions of (1.1), (2.1) plays 
an important role in the further discussion: 



454 A. Y .KHAPALOV 

provided u(-, 0) E L00 (D), (2.5a) 

otherwise, for any c > 0, 

(2.5b) 

where c1 depends on T, c2 depends on c, T and the parameters in (1.1b), (2.1). 
Given c E (0, T), letS(-) be such that the set {(x, t) [ x E S(t), t E (c, T)} 

is measurable with respect to Lebesgue measure on Q and mes{S(t)} > 0 for 
almost all t E (c, T) . Then (2.4) and (2.5b) imply the following estimates: 

[[(mes{S(-)} )-1 / u(x, ·)dx[[L""(e:,T) ::; [[u[[L""((e:,T)x!1) 

S(·) 

::; ccz(T - c) 112 [[u(·, 0)[[£2(!1)· 

For n ::; 3, by the embedding theorems, HJ(D) c C(D) and 

Vz E H6(D), C3 > 0. 

(2.6) 

(2.7) 

Hence, due to (2.5b) and (2.7), any solution of (1.1), (2.3) is an element of both 
£ 2 (0, T; C(D)) and L 00 (c:, T; C(D)) Vc E (0, T). Given measurable x(t), t E 

(c, T), it follows from (2.6) that: 

(2.8) 

provided u E H6'1 (Q). 

3. Dynamic pointwise a priori estimate 

The main result of this section is the following . 

THEOREM 3.1 Let; n ::; 3. Given T > c > 0, ther-e exists a measurable cv.r-ve 
x( ·) joT which the estimate 

[[v.(x(-), ·)[[L""(e:,T) ~ ''fi[u(-, T)[[£2(!1), I= i(i:( ·)) > 0 (3.1) 

holds for- any solution of {1.1), {2.3) fmm H6' 1 (Q). 

Proof. The scheme of the proof is as follows. Selecting a parameter v E (0, 1), 
we employ Galerkin's approach to specify certain countable v-net in the set of 
all the solutions of (1.1), (2.3) from H6•1 (Q). We look then for a suitable i:(-) 
as a spline-curve consisting of a countable number of pieces each of which is 
associated with a pre-assigned net-element for which (3.1) is fulfilled on the cor
responding part of (0, T). To do this, we apply a finite-dimensional optimization 



On unique continuation of solutions of the parabolic equation from a curve 455 

technique, which makes use of the maximum principle (2.5). The conclusion of 
Theorem 3.1 follows then by the density argument. 

Step 1: A curve for a single solution. Fix any c: E (0, T), v E (0, 1), {3 > 0 and 
a (nontrivial) solution u to (1.1), (2.3). Select in (c:, T) an arbitrary subinterval 
T. Let 

e = { (x, t) E n X T I u2 (x, t) :::: ess max u2 (x, t) - {3}. 
(x,t)EOxr 

By (2.5b), the set e can always be defined and mes{ e} > 0. 
Let F(t), t E r be the following set-valued map: r 3 t _, F(t) = {x I 

(x,t) E e}, where r = dom F(t) = {t ET I mes{xl(x,t) E e} > 0}. Since 
H6(D) C C(D), the sets F(t), t Er are closed for almost all t Er. Applying 
the theorem on measurable selection (see, e.g., Aubin and Frankowska, 1990) , 
yields the existence of a measurable x(t), t E r such that x(t) E F(t) a.e. on 
r. Combining this with (2.4), applied on [t, T], t E f (without loss of generality, 
with the same constant c), yields: 

Extend arbitrarily the x(-) found to the whole interval (0, T) assuming only that 
its values lie inn. By linearity, for {3 = (v/c(mes{D} )-112 llu(-, T)IIPcoJ) 2 the 
last estimate gives (3.1) on the set {u* =cm, a ER} with 1 = c-1 (mes{D} )-1/ 2 

(1 - v): 

llu*(x(-), ·) IILoo(e,T):::: c- 1 (mes {D})-112(1- v) llu*(·,T) IIP(O)· (3.2) 

Note that the 1 found does not depend on the choice of v, and that the 
description of the curve x(·) used in (3.2) is essential only on r. Hence, selecting 
an arbitrary sequence of non-overlapping intervals Tk C (c:, T), k = 1, . .. , one 
can extend (3.2) to any countable set of the solutions of (1.1), (2.3). 

Step 2: Galerkin's basis. Let {w;}~1 C H6(D) be an arbitrary basis in 
HJ(D) which has been orthonormalized in L2 (D). (An example of such a basis 
is the eigenvalues of the homogeneous Dirichlet problem for the Laplacian.) 
Denote by Wk(D) the subspace of L2(D) spanned by {wi}~=l· Let 

<I>k = {4> I 114>11£2(0) = 1, 4> E Wk(D)}; 

6~ = (mes{D} )-1
/

2 min{llu(-, T)l l£2(0) I u(·, 0) E <I>k}; (3.3a) 

(3.3b) 

where c,c1 ,c3 are from (2.4), (2.5a) and (2.7). Note that, because of.a finite 
dimension of <I>k, the minimum in (3.3a) is achieved. Without loss of generality, 
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one can assume that it is positive. Otherwise, we would deal only with the max
imal subspace of Wk for which it is so (on its orthogonal supplement estimate 
(3.1) is trivial). 

REMARK 3.1 The value 8A, is positive if ( 1.1) possesses the backward uniqueness 
property, which is so, e.g., 1mder the assv,mptions (2.2). 

Take any positive parameter 8k such that 

(3.3c) 

Specify next (in an arbitrary way) in <l?k a finite C8k-net <J?~• = {cfJ1Jf:;;,_1 , c/Jk E 

<!?k (where Jk depends upon 8k) with respect to H 2 (0)-norm. This means 
that for any element cp E <I>k there exists a positive integer j. ::::; Jk such that 
llc/J- c/J{* IIH2(!1) :S: C8k :S: 8k. Hence, in view of (3.3b), (2.4), (2.5a) and (2.7): 

(3.4) 

where v. and v.{* are the solution of (1.1) in accordance with u(·, 0) = cp and 

11.1* (-, 0) = c/J{*. In other words, the set <J?~k (-) = { u{ (x, t), v{ (x, 0) = c/J{ (x )}f:;;,_1 

is a 8k-nct with respect to both C([O, T]; L 2 (0))- and L 00 (c, T; C(D))-norms in 
the set of all those solutions to (1.1) whose initial conditions lie in <!?k . 

REMARK 3.2 The reqv,irement {wk}k=l C H5(0) can be omitted, in which case 
one has to take in <!?k a net with respect to L 2 (0) -norm, making use of e,gtimate 
(2.5b) instead of (2.5a). 

Step S. Take any 8k satisfying (3.3c). Select in (c:, T) an arbitrary monotone 
sequence E = to < t1 < t2 < ... < tk < tk+l < ... , tk ----+ T as k ----+ oo and 
denote Tk = (tk-1, tk). Let tk-1 = t~ < t);, < ... < t~• = tk be any monotone 

. D t (t·i-l t·1) . - 1 J sequence m Tk. eno e Tkj = 'k , 'k , J - , . . . k· 
Making use of the argument of Step 1, namely, by setting (3 = 8~ in the corre

sponding estimate, one can conclude that for every Tkj there exists a measurable 
function Xk.i(t) E 0, t E Tkj such that 

(3 .5) 

We show now that the curve 

k = 1, .. . , j = 1, .. . ,Jk (3.6) 

satisfies the requirements of Theorem 3.1. 
Step 4: Ver4ication of (.'3.1) for Wk(O) . Take any solution u to (1.1), (2.3) 

such that u(-,0) E Wk(O). From (2.4), applied on [t,T], t E Tk.f, it follows that: 
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[[v.(-,T)[[P(n) :=; c sup [[u(·,t)[[P(n) :=; c(mes{D})112 [[u[[L=(r ·C(O))· (3 .7) 
tETk j kJ' 

Denote a= [[u( ·, 0)[[£2(!1)· Without loss of generality, we can assume that a=/= 0 
(otherwise, (3.1) is trivial). Select an element v:L• E <I>%k ( ·) such that inequalities 
(3.4) hold with a- 1v. substituted for v .. Then, combining (3.7) and the second 
estimate in (3.4) we get: 

From here and (3.5) we deduce: 

Applying again the second estimate in (3.4) to evaluate [[u{• (x(-), ·) [[L= (rk;), we 
obtain: 

(mes{D} )-1/2 [[v.(· , T)[[P(n) ::; c[[v.(x(·), ·)[[L=(rkj) + 3ac6k. (3.8) 

Since, by our choice of 6k (see (3.3a)-(3.3c)), 

combining the latter and (3.8), we arrive at the required estimate (3.1) on 
Wk(D): 

[[u(-, T)[[P(n) ::; (mes{D} )112 
1 
~ v [[u(x(·), ·)[[L=(c:,T)· (3.9) 

Step 5. Since the system {wi}~1 is fundamental in HJ(D) , the set of the 
solutions to (1.1) starting from U~=1 Wk(D) is dense in the set of all the solutions 
to (1.1), (2.3) with respect to both C([O,T];L2 (D))- and L00 (t:,T;C(D))-norms 
(and , hence, to [[u(x(-, ·)[[L=(c:,TJ), see (2.4), (2.5) (and (2.8)). The conclusion 
of Theorem 3.1 with 1 as in (3.9) now follows by density. D 

4. N onsmooth case 

Let us recall that u E C([O,T];L2 (D)) and, hence, for any t E [O ,T] the set of 
Lebesgue points of the function v.(x, t), namely, 

D(u(-, t)) = {x En I lim I (mes{Sh(x)} )-1 
;· u(s, t)ds- u(x, t) I= 0} , 

h~o . 
Sh(x) 

where Sh(x) = {~ERn[[[~- x [[ R" ::; h}, has a full measure in D: 
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mes{O\O(u(-, t))} = 0 Vt E [0, T]. ( 4.1) 

We shall say that the map F(t) from [0, T] into the set of all the measur
able subsets of 0 is continuous with respect to Lebesgue measure at t = t* if 
mes{F(t*).6F(t* + s)}----+ 0 ass----+ 0, where .6 denotes the symmetric difference: 
A.6B = (A\B) U(B\A). (For various definitions of the continuity of set-valued 
maps see, e.g., Aubin and Frankowska (1990) and the bibliography therein.) 

·THEOREM 4.1 Given T > c; > 0, there exists a set-valued mapS(·), continuous 
with r-espect to Lebesgv.e measure on (c:, T) and whose valv.es are of positive 
measur-e, for which the estimate 

ll (mes{S(·)} )- 1 J u(x, ·)dxiiL=(c:,T) :2 'Y II u(-, T) ll£2(!1), 

S(·) 

'Y = 'Y(S(-)) > 0 

holds for- any solution to {1.1), {2.1) fmm C([O, T]; L2 (0)) n H6'0 (Q). 

(4.2) 

Proof. We treat the estimate (4.2) as a generalization of (3.1) to the case of 
discontinuous solutions. The latter is important in applications. The following 
argument follows that described in Section 3 in Steps 1-5 with a few modifica
tions as given .b.elow. 

Step 1. Fix any c; E (0, T), v E (0, 1), {3 > 0. Take any solution u to (1.1), 
(2.1) and interval T c (c:, T). Specify next the set e of positive measure as given 
in Step 1 of Section 3. In view of ( 4.1), there exists a triplet { (x*, t*) E e, h* > 0} 
such that: 

J 
sh. (x*) c 0. 

u(x, t*)dx) 2 :2 ess max u 2 (x, t)- {3, 
(x,t)El1XT 

Since all thesolutions of (1.1), (2.1) are continuous in time in L 2 (0)-norm, an 
arbitrary continuous set-valued map S(t), t E [0, T] (whose values are of positive 
measure) such that S(t*) = Sh·(x*) provides the following estimate (compare 
with the corresponding estimate in Section 3): 

llu( ·, T) IIE2(n) :::; c2 l l ull~(r;L2(!1)) 

:::; c2mes {O}( II(mes{S(t)} )-1 J u(x, t)dxiiE=(r) + {3). 

S(t) 

Step 2. Let {wi}~ 1 he an arbitrary orthonormalized basis in L2 (0). We 
preserve the previous notations for Wk(O). The argument of this step follows 
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the corresponding one of Section 3 with the only exceptions that we select a 
C8k-net in <Pk with respect to L2 (0)-norm and that we replace (3.4) by the 
following inequalities: 

ll·u- u{*llc([O,T);£2(0)) + llu- u{*IIH~·o(Q) :S 8k, 

llu- v,{* IIL=((e:,T)xrl) :S 8k. 

(4.3) 

REMARK 4.1 The choice of 8k for the system (1.1), (2.1) requires, in general, 
a mod~fication of the constant C in (8.3b). One can set, e.g.: 

wheTe c,c2 are de.fined in (2.4), (2.5b). 

Step 8. Analogously to the lines (3.5), (3.6), one can obtain, making use 
of Steps 1-2 of this section, a sequence of triplets {xk.i,t{,hkj}, k = 1, ... , 
j = 1, ... , Jk such that a suitable map can be selected to be continuous on 
(0, T), while: 

k = 1, ... ' j = 1, ... , Jk. (4.4) 

Steps 4-5, follow the lines (3.6)-(3.9) by using the space L 00 (0 x Tkj) instead 
of L 00 (Tkj; C(D)). It is readily seen that the above constructions ensure the 
estimate ( 4.2) with the same constant 1 as in (3 .9). This ends the proof of 
Theorem 4.1. D 

REMARK 4.2 The arguments of Theorems 8.1 and 4.1 can be summarized in an 
algorithmic proceduTe joT the constTuction of x(-) and S(-) satisfying (3.1) and 

(4.2). 

5. Unique continuation 

Combining Theorems 3.1 and 4.1 and Theorem II.1 by Bardos and Tartar (1973) , 
p\ 13 on the backward uniqueness of problem (1.1) under assumption (2.2), we 
ol!>tain the following result. 

THEOREM 5.1 (UNIQUE CONTINUATION) Let (2.2) hold. Then undeT the as
sumptions of TheoTems 3.1 and 4.1 (see (2.3) and (2.1)) the cv.rves and set
valued maps constTucted along the aTguments of Theorems 3.1 and 4.1 solve 
Problems 1.1 and 1.2. 
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6. Approximate controllability 

Let B(·) be a linear operator defined on a linear manifold V~ £ 2 (0, T) by one 
of the following formulae: 

B(T- t)v(t) = v(t)l5(x- :i;(T- t)), x(t) E 0 a.e. m [0, T], (6.1) 

where l5(x) is Dirac's function, or 

{ 
1 ifxES(T-t), 

B(T- t)v(t) = v(t) x o: if x rf. S(T _ t), S(t) c D a.e. in [0, T] . (6.2) 

Consider the system: 

arp n a arp n a 
-;:;- = L ~(ai.i(x, T- t)~) + L ~(bi(x, T- t)rp) 
ut . . ux, ux1 . ux, 

t,,J=l t=l 

-a(x, T- t)rp + B(T- t)v(t) in Q, (6.3) 

rp = 0 in I;, 

where v E V is a control function. 
We are now concerned with the global approximate controllability properties 

of the dynamics of (6.3). Assume that (6.3) admits a unique solution from the 
space C([O, T]; H), where His a Hilbert space. We ask under what conditions 
on B, V the range of the solution mapping for (6.3) at timeT: 

ci>(T) : V 3 V -t rp(-, T) E H , 

namely, the set R( ci> ( T)) = { rp(-, T) I rp satisfies ( 6. 3) for some v E V} is dense in 
H? If it is so, (6.3) is said to be approximately controllable in H at timeT. It is 
well known that the approximate controllability property is a direct consequence 
of the corresponding uniqueness result, which yields the following. 

Given c E (0, T), let 

V= {v E L 2 (0,T) I v(t) = 0 a.e. in (T- s, T)}. (6.4) 

THEOREM 6.1 Given T > c > 0, let S(t), t E (0, T) be an arbitmry set-val11.ed 
map which satisfies Theorem. 4,.1. Then system. (6.2}-(6.4,), (2.2) is approxi
mately controllable in L2 (D) at timeT. 

Proof. First of all observe that B(T- ·)v(-) E L 2 (Q). Hence, system (6.2)
(6.4), (2.2) admits a unique solution from C([O, T]; L 2 (D)) n H~'0 (Q) (see, e.g., 
Ladyzhenskaya, Solonnikov and Ural'ceva (1968), p. 160). Take any solution 
11. of the system (1.1), ((2.1)) (2.2). In view of the latter assumption it lies in 
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H 1 ( Q) (sec Ladyzhenskaya, Solonnikov and Ural'ceva (1968), pp. 178, 180-181 
for details) . From (6.3) it follows that: 

T 

j. ;·;· ou.. u.. (x, T)cp(x, T)dx- ot cpdxdt = 

n o n 
T 

j. ; ·c ~ c )au.. ocp ~ au.. - L aij x, T - t -- - L - bi (x, T - t)cp 
. . OXi OXj . OXi 

0 !l t,J=l . t=l 

T 

- a(x, T- t)u..cp)dxdt +.f.! u..B(T- t)v(t)dxdt , 

0 !l 

where v.*(x, t) = v.(.r,, T- t) . From here and (1.1) we deduce: 

T 

(6 .5) 

.f.! v.(x, t)B(t)v(T- t)d.r,dt =.I v.(x, O)cp(x, T)dx, (6.6) 

£ !l !l 

which is valid for any u.(-, 0) E L2 (D) and for any solution cp of system (6.2)-(6.4), 
(2.2) (or, that is the same, for any v E V). By the classical duality argument, 
applying the uniqueness result of Theorem 5.1 to (6.6) yields the assertion of 
Theorem 6.1. 0 

THEOREM 6.2 Let n:::; 3. Given T > E: > 0, let .i(t), t E (0, T) be an arbitmry 
curve satisfying Theorem 3. 1. Then system (6.:3), {6.1), (6.4), (2 .2), (2.3) is 
approximately controllable in H-1 (D) dv.al of H{j(D) at timeT. 

Proof. The generalized solution of the system (6.3), (6.1), (6.4), (2.2), (2.3) 
can be defined by transposition (see Lions, 1971, p. 202) as a unique element of 
C([O, T]; H-1 (D)) n L2 ( Q), which, in particular, satisfies the following identity: 

T T -.!.I cp 
0;~· dxdt + [cp(-, T), u..(·, T)] = .!.I (t 0~i (ai.i (x, T- t) ~:: )cp 

0 !l 0 !l t,J=l 

Vu. E {u. l u* E H 2
•
1 (Q) , u..(x, t) = u(x, T- t), v, is a solution of (1.1), (2.3)}, 

where[·,·] denotes the duality pairing between HJ(D) and H-1 (D). (Here L2 (~) 
is identified with its dual space, so one can write HJ(D) c L 2 (D) C H - 1 (D).) 
Hence, by (1.1), 
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T 

[lP(·, T), u(·, 0)] = j u(x(t), t)v(T- t)dt, 

which is valid for all v E V, u(·,O) E HJ(D), where u is the solution of (1.1), 
(2.2), (2.3). The conclusion of Theorem 6.2 now follows by applying the unique
ness result of Theorem 5.1. D 

REMARK 6.1 Based on suitable treatment of regularity, the estimates (3.1) and 
(4.2}, by the direct duality method, also point ov.t at the exact null-controllability 
(to the zero-state} of the systems (6.3}, (6.1}, (6.4}, (2.2}, (2.3} and (6.2}-(6.4), 
(2.2} (where, to employ the estimate (4.2}, the control operator in (6.2} has 
to be complemented by a multiplier mes- 1 

{ S(T - t)}) with contTols from the 
space dual of L 00 (0, T) in accordingly H-1 (D) and L2 (D), see, e.g., the Televant 
constTuctions in Khapalov, 1995, where the same control space was used in the 
context of the controlled wave equation. 
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