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Abstract. The problems of identification of unknown controls 
for systems described by hyperbolic equations and variational in
equalities are considered. For some classes of such systems iden
tification algorithms of identification for distributed and boundary 
controls are designed. The algorithms are stable with respect to 
informational noises and computational errors. Estimates of con
vergence rate are derived. The problem of approximation of point 
source intensities is discussed especially. 
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1. Introduction 

The problem of dynamical identification of controls in a hyperbolic system 
through inaccurate measurements of some state characteristics is considered. 
It is supposed that a system is described by a linear hyperbolic equation 

i(t) + Ax(t) + A 1x(t) = Bu(t) + f(t), t ET= [to, 19], (1) 

or a variational inequality 

(i(t) + Ax(t),±(t) - v) + cp(±(t))- cp(v) 
:s; (Bu(t) + f(t), x(t)- v) for a. a. t ET Yv E V. (2) 

The initial state x(t0 ) = x0 , ±(to) = x10 is given. Evolution of system state 
x(t) is determined by an unknown control u(-) belonging to a given functional 
set Ur C L2(T; U). Here (U, l · lu) is a uniformly convex real Banach space. At 
discrete time instants Ti ET, Ti < Ti+1 (sufficiently frequent) some characteris
tics of the history {Xt0 ,7 ;(-),±t0 ,7 ;(-)}, namely z(Ti) = C{xto,T;(·),±to,T;(·)} are 
measured inaccurately. A certain u(·) E Ur generating z(·) (u(-) = u(·; z(·))) 
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is to be calculated in "real time". The precise identification (reconstruction) of 
u(·) is, in general, impossible due to measurement noises. Therefore we suppose 
a certain approximation to u( ·) to be designed. The former is required· to be 
arbitrary close to the latter provided measurement errors and steps between Ti 

are sufficiently small. 
The problem belongs to the class of inverse problems of dynamics for control 

systems (reconstruction of a system input through output observations). For 
systems with distributed parameters the inverse problems, in a posteriori set
ting, have been studied in Lavrentyev et al. (1980), Banks and Kunisch (1982), 
Hoffmann and Spekels (1986), Kurzhanskii and Khapalov (1989), Barbu (1991). 
An approach to problems of the above type based on the ideas of the theory of 
positional control has been suggested in Kryazhimskii and Osipov (1983). Bas
ing on this approach algorithms of dynamical identification of distributed and 
boundary controls and coefficients of an elliptic operator have been suggested 
for linear hyperbolic equations and for equations with monotonous operator in 
Osipov and Korotkii (1991), Maksimov (1990). In the papers of Osipov (1991) 
and Maksimov (1990, 1993b) analogous problem (reconstruction of a distributed 
control) has been discussed for hyperbolic variational inequalities. All attempts 
to apply this approach for solving of problems of reconstruction of boundary con
trols and coefficients of an elliptic operator in hyperbolic variational inequalities 
were unsuccessful up to now. 

In the present paper the approach mentioned above has received further de
velopment. In Sect. 2 the problem of reconstruction of point sources intensity 
for the linear system (1) is treated. The solution algorithm which is stable with 
respect to informational and computational hindrances is constructed . Anal
ogous problem for parabolic systems has been discussed in Maksimov (1993a) 
and Kryazhimskii et al. (1995). In Sect. 3 algorithms of control identification 
based on dynamical modification of the discrepancy method are suggested. It 
is supposed that the system is described by the variational inequality (2). The 
cases when distributed (boundary) disturbances or unknown coefficients of an 
elliptic operator fulfill the role of controls are considered. 

Let (H, I·IH) be a real Hilbert space with inner product(·,·), and let (V, 11·11) 
be a separable and reflexive Banach space. We assume that V is densely and 
continuously embedded in H. Identify H with its dual and denote a duality 
between V and V* by ( ·, ·). Let 11h be a family of partitions of the interval 
T = [to , 'l9] with diameters 8(h): fj.h = {Ti ,h }~(J, Ti,h = Ti-l,h + 8, 8 = 8(h), 
To ,h =to, Tm,,h = '19(h > 0). 

2. Reconstruction of point sources intensity 
for linear systems 

Consider the system whose evolution is described by equation (1). Let A1 : 
V ~ V* be a linear continuous selfadjoint operator, A : V ~ V* be a linear 



Some dynamical inverse problems for hyperbolic systems 467 

continuous operator satisfying, with a certain c > 0, the condition 

(Ay, y) ::0: ciiY II 2 'Vy E V, 

u(t) be a n -dimensional value of time-varying input (a control) inducing the 
system motion, f(·) E L2(T; H) be a given disturbance, B : U = Rn __, V, 
Bu = I:;=l WjUj, Wj E V, Uj E R. We assume to = 0, x(t0 ) = x0 E V, 
Axo = 0, x(to) = x10 E H. 

A function x(-) = x(·;x0 ,x10 ,u(-)) is called a solution of (1) on T if 
a) x(·) E C(T; V),±(·) E {y(·) E L2(T; V): iJ(-) E L2(T; V*)}; 
b) for a. a. t ET the equality (1) is true, i.e. the equality 

(x(t) + Ax(t) + A1x(t), v) = (Bu(t) + f(t), v) 'V v E V 

holds. 
By the Theorem 1.2 (see Gajewski et al., 1974, p. 285) for any u(·) E 

L 2 (T; U) there exists a unique solution x(-) of (1). 
Discuss the following problem. Let C : H x H __, Rn be a linear continuous 

operator: 

C{x, y} = Px + Qy, Px = {(P.i,x)}j=1 , Qx = {(qj, x)}j=1 , 

Pj E H, qj E V, A*q.i = 0, j E [1 : n]. Let x(·) = x(·; u(-)) = x(-; x0 , x 10 , u(-)) 
be the solution of the system (1) depending on an unkrtown control u(-) E 

Ur = L2(T; U) . At time instants Ti E D. = {Ti}~0 the phase coordinates 
{ x ( Ti), ::i; ( Ti)} of the system ( 1) are measured approximately. The measurement 
results are values f:.i such that 

z(t) = C{x(t), ::i;(t)} 

(h is a bound for informational noise, I · In is a norm in Rn). The problem is 
to construct an algorithm restoring an unknown control u( ·) = u( ·; z( ·)) on the 
basis of inaccurate measurements of z(Ti) · 

Before describing the algorithm we indicate the set of inputs compatible with 
output z(-), i.e. the set 

U(z(-)) = {v(·) E Ur: z(t) = Cx(t;xo,x10,v(-)) 'V t ET}. 

For any k E [1 : n] and (5 ::0: 0, define the function wk(·; (5) to be the solution of 
the Cauchy problem 

w(t) - A*w(t) + A1w(t) = 0, w((J) = qk E V, w((J) = -pk EH (3) 

on J- oo, (5] and zero on ](5, oo[. Existence and uniqueness of the solution of 
the adjoint system (3) follow from Lions (1968), Chapter Ill. Let 

((h(t;(J))j = (wk(t;(J),wj), j E [1: n], 
gk(a,(J) = ak + (wk(O;(J),xo)- (wk(O;(J),:r10), a = {ak}k=l ERn, k E [1: n]. 
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THEOREM 1 An input u(·) is compatible with an observation result z(·) on T 
(u(·) E U(z(·))) if and only if 

<7 

.l((h(t,O'),u(t))Rndt = 9k(z(O'),O') for all 0' ET and k E [1: n ]. (4) 

0 

Proof of necessity. Let u( ·) be compatible with z( ·) and x( ·) = x( ·; x0 , x 10 , u( ·)). 
Then for all t E T 

'v' k E [1: n]. 

Take an arbitrary 0' ET and k E [1: n ]. Let w(·) = wk(·; 0'). It is easily seen 
that 

<7 

h == ./ {(:i(t), w(t))- (w(t),x(t))} dt = 
0 

= (x(O'),w(O'))- (x 10 ,w(O))- (w(O'),x(O')) + (w(O),x0 ) , 0' ET, 
<7 

J2 == ./ { (Ax(t), w(t)) + (A *w(t), x(t))} dt = (Ax( 0'), w( 0')) - (Ax0 , w(O)) . 

0 

Note that conditions Axo = 0 and A*qj = 0 imply J2 = 0. In virtue of selfad
joitness of the operator A1 we have 

<7 

./ { (A1x(t), w(t)) - (A1 w(t), x(t))} dt = 0. 

0 

Multiply scalarly (1) by w(t) and (3) by x(t) respectively, subtract (3) from (1) 
and integrate from 0 to 0'. We get 

<7 

h = ./(w(t), Bu(t)) dt. 
0 

The above equality may be rewritten as 

<7 

.l('Pk(t,O'),u(t))Rn dt = (qk,X(O')) + (pk,x(O')) + 
0 

+ (x0 ,w(O)) - (xw,w(O)) = z(k)(O') + (xo,w(O))- (xw,w(O)). 

This equality is equivalent to (4) . Proof of sufficiency is analogous. 
Let the following condition hold. 

CONDITION 1 RankD(q) = n . 
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We describe the algorithm approximating an unknown control u(·) = u(·; z(·)). 
Introduce the control system 

{ 

w(ll(t) = D(q)vh(t), 

wC2l(t) = wC3l(t), wC3l(t) = 1 K(t, T)vh(T)dT, 

'lilk1l(t) + A*wk1)(t) + A1wk1l(t) = 0, t ET, 

where D(q) and K(s, t) are nxn-dimensional matrices of the forms: 

D(q) == {(wj, qk)}J,k=l' K(s, t) = {bk,j(s, t)}j,k=l' 

( ) { 
(wj, dd wk1)(s- t, 0)), if s > t 

bk . s, t = s 
'·
1 

0, in the opposite case. 

(5) 

Before the initial time of the process, the value of h E (0, 1) and a partition~ = 
~h = {Th,i}Z::0, m= mh are fixed. The algorithm is decomposed into mh- 1 
steps. At the ith step carried out during the time interval 8h,i = [Th,i, Th ,i+l), 
i ?:: 1, the following operations are carried out. At time Ti = Th,i we calculate 

Here we have 

g*h) = {gk(Ti)}k=l ERn, ~ = {(~i)k}k=l ERn , 

gk(Ti) = (~i)k + (wk1)(0,Ti),xo)- (wk1)(0,Ti),xw), k E [1: n]. 

Then we determine the control vh(t) = vh(t;~o,t(·)), 

h h { lvilnD-1 (q)si / lsiln, lsiln -f. 0 
v (t) = vi = 

0, lsiln = 0, t E 8h,i, 
(6) 

Si= g*(Ti)- g*(O)- W(l)h)- w( 2 )(Ti) 

and transform the state w(Ti) = {w(llh), wC2lh), wC3l(Ti)} E R 3n of the 
model (5) into wh+1 ). The procedure stops at time{). 

THEOREM 2 If hj8(h) ~ 0, 8(h) ~ 0 as h ~ 0, then vh(-;~(-)) ~ u(·;z(·)) 
weakly in L2 (T; Rn). 

Proof. By virtue of Theorem 1 the following equality is true 

U(z(-)) = {v(·) E L2(T;Rn): e(t;v(·),z(·)) = 0 'r/t ET} , (7) 
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where 
t t 

c:(t; v(-), z(·)) = ./{:
8

g(z(s), s)-'-- D(q)v(s)- ./ K(s, T)v(T) dT} ds , 
0 0 

g(z(s), s) = {gk(z(s), s)}~=l · 

d 
Further we shall write g(s) instead of -d g(z(s)s) and g(s) instead of g(z(s ), s) 

8 . 

for the sake of simplicity. Let Condition 1 be fulfilled. Then it follows from (7) 
that the set U(z( ·)) contains one element, i. e. U(z(-)) = {u(· ; z(·))}. Let us 
estimate the evolution of 

We have 

c:(THI) = c:(T;) + 2r~J.Li + IJ.L;I 2 . 

Here 

r; = g( Ti) - g(O) - W(l) ( T;) - w(2) ( T;), 

f.Li = g( Ti+l) - g(T;) - 62 {2K( Ti+l, Ti) + K( T;, T;)}vf -
i 

- 82 L K(Ti+l, Tj - l)vJ_ 1 - 8D(q)vf. 
j=l 

It can easily be shown that the following inequalities hold: 

i 

h i ::::: cl+ C28L lvJ- 11, i::::: 1, 
J+l 

(8) 

(9) 

(10) 

Here, constants Cj, j E [1 : 3] do not depend on i, 8. Hence, taking into account 
the definition of vf (see (6)) we deduce from (8) 

c:(Ti+l) :::; c:(Ti) + 4hiJ.L; I + C4(1 + lr;l)82 lvfl + IJ.Li l2 + Csh(lril +h) . (ll) 

Note that 
i-1 

di = 8ilvf_112 :::; ai + C68 L dj , 
j=l j=l 

Consequently, 

mh - 1 

L 8lvJ- 112 = lvh(·)li,(T;U)::::: c7 < +oo. 
j=l 

(12) 
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Thus, by (9) - (12) we have 

c(Ti+1):::; c(T;) + Cs(h/8 + 8), i E [0 : mh - 1]. 

Therefore the following estimation is true 

471 

c(t;vh(·),z(-)):::;>..(h,o)->0 as h-->0, 8-->0, h/8-->0. (13) 

Validity of the theorem follows from (12), (13). Theorem 2 is proved. D 

3. Control identification for variational inequalities 

Now for the hyperbolic variational inequality (2) we construct a dynamical pro
cedure for identification of a control u(·). We assume that cp : · H --> R = 

R+ U{ +oo} is a convex, lower semicontinuous, proper function, R+ ={rE R: 
r ?: 0}, PC U is a convex, bounded and closed set, Ur = {u(·) E £ 2 (T; U) : 
u(t) E P for a. a. t ET}, xo E V, x10 E H. 

Consider two cases. In the first case we suppose B E L(U; H), f(-) E 

W(T; H) = {x(-) E L2(T; H) : ±(-) E L2(T; H)} and an unknown real control 
u(-) = v,(-; x(·)) E Ur is such that 

x(-) = x(-;xo,x1o,v.(·)) E W1(T;V*) = {y(-) E C(T;V): 

y(-) E Loo(T;V)nC(T;H), jj(-) E L2(T;H)}, (14) 

where L(U; H) is a space of linear continuous operators acting from U to H. 
The inclusion (14) takes place (see, for example, Tiba (1985)) if t--> Bu(t) = 

Bu(t; x(·) E L2 (T; V) and the following condition is fulfilled. 

CONDITION 2 V = H6(0.), H = £2(0.), cp(y) = I j(y(ry))dry, if y E V, 'f) --> 
n 

j(y(ry)) E £ 1 (0.), cp(y) = +oo, in the opposite case, j: R--> R is a convex, lower 
semicontinv.ov.s, proper function, f (-) E W (T; V), B = I {identity operator), 
U = H, xo E V, .6.Lx1o EH, XIo(rJ) E dom(8j) for a. a. 'f) E 0.. 

Here .6.L is Laplace operator, oj is subdifferential of j. 
In the second case BE L(U; V*), cp: V--> Rand the system is described by 

the variational inequality 

(x(t) + A1i(t) + A:z:(t), i(t)- v) + cp(i(t))- cp(v)::::: 
:::; (Bv.(t), i(t)- v) + (f(t) , i(t)- v) for a. a. t ET Vv E V. (15) 

Here A1 : V --> V* is a linear continuous and coercivity operator. The 
solution of the system (15) is the function x(-) E {y(·) E L2(T; V) : i;(-), jj(·) E 
L2(T; V)}. 

The sufficient conditions for existence and uniqueness of solutions of (15) 
with indicated smoothness have been obtained, for example, in Duvant and 
Lions (1972), eh. Ill, § 6. 
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Let us focus on the first case. Consider the following problem: Let x(-) = 
x(·;u(·)) = x(-;xo,xw, u(·)) E W1(T;V*) be the solution of the system (2) 
depending on an unknown control u(-) E Ur. At time instants Ti E ~ = { Ti}~0 
the phase coordinates {z(Ti) = x(Ti),x(Ti)} of the system (2) are measured 

approximately. The measurements results are values ~i = { dl), ~~2)} E V x H 
with the properties 

(16) 

The problem is to construct an algorithm restoring an unknown control u( ·) = 
u(-; x(·)) on the basis of inaccurate measurements of xh). 

REMARK 1 With Condition 2, the inclusion t -t Bu(t) = Bu(t; x(·)) E L2(T; V) 
means the following. A real (unknown) control u(·) = u(·; x(·)) possesses two 
properties: u(t) E PC H for a. a. t ET and t -t u(t) E L2(T; V). It generates 
the output x(·) 7= :z:(-; u(·)) (the solution of the system (2)). This output is 
measured inaccurately. A control u( ·) is to be reconstructed. 

Let U(x(-)) be the set of all controls v(-) E Ur, generating x(·): 

U(x(-)) = {v(·) E Ur: x(t) = x(t;xo,xw,v(-)) Vt ET}. 

Let S(v) = {z E D(cp) : llz- vll :::; 1}, and let cp(·, ·) be a function such that 
cp(h, 8) -t 0 ash -t 0+, 8 -t 0+, h/8 -t 0+, 

Ti+l 

cp(h, 8) ~ fx(c 18112 + 2chj8) +sup{/ l x(T) i~dT : i E [0 : m- 1]}, 

We denote sup{lc/J(±(T)) - cp('l/J)I : 'ljJ E D(cp), i±(T) - '1/J IH :::; c, T E T} by 
fx(c) and the element of the set U(x(·)), whose L2(T; U)-norm is minimal, 
by u*(·;x(-)). The numbers c and c1 are such that lziH:::; cilzll Vz E V, 
lx(·; v,(,)) IL

2
(T;H) :::; c1. Introduce the convex bounded sets 

U~·6 (v,w,p,,v)={uEP: sup {-Fi,o(w,v,p,,v;z-(p,-v)/8)+ 
zES((JL-V)/6) 

+ (Bu, z- (p,- v)/8) + cp((p, - v)/8)- cp(z)} :::; v(k, h, 8)}, 

where 

Fi,o(w, v, p,, v; z) = ((w- v)8- 1
- !h), z) + (A(p, + v)/2, z), 

v(k, h, 8) = k(h8- 2 + 8112 + cp(h, 8)}. 

Assume that the following condition is fulfilled. 
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CoNDITION 3 The function cp(·) is continuous on D(cp). There exists a number 
N ~ 1 such that for any v E D(cp), >. E [0, 1] the inequality cp(>.v) ::; >.N cp(v) 
holds. 

To calculate (approximately) u(-) = u*(·; x( ·)) we apply dynamical modifica
tion of the discrepancy method. Let us describe the algorithm, i. e. the sequence 
of actions forming an approximation to u*(-) = u*(·; x(·)). First, a family D..h 
of partitions of the interval T with diameters 8(h), 8(h) ---> 0, hj82(h)---> 0 as 
h ---> 0, is chosen. Before the initial time of the process, values h, k and the 
partition /::;. = D..h are fixed. The work of the algorithm starting at time t0 is 
decomposed into mh - 1 steps. At the ith step carried out during the time in
terval 8i = 8h,i = [Th ,i,Th,i+l) , the control vh(t) = vh(t;~t0 ,t(·)) = vf, t E 8h,i, 
i ~ 1, 

vh = { argmin{lulu: u E u:·8 (pi(~))}, 
' 0, in the opposite case, 

(17) 

Pi(O = {~~-=td2l,~~~:td 1 l}, is calculated. The procedure stops at time rJ . Let 
v(t) =vS = argmin{ lulu : u E P}, t E 8h,D· 

THEOREM 3 There exists a number k* > 0 such that for every k E [k*, +oo) 

(18) 

Proof of the theorem is performed by analogy with proof of corresponding state
ments in the papers by Osipov and Kryazhimskii (1983) and Osipov et al. (1991). 
It is based on the lemmas we will formulate here. First, int~oduce the sets 

u~,k(~(-)) = {v.(·) E Ur I u(t) = Ui for a. a. t E [Ti-l , Ti), 

i E [1 : m], Ui E u;,i8 (Pi(~))}, 

u:,t(v,w,;.t,v) = {u E p: sup {-((w- v)jo- f(Ti), Z- (J.L- v)jo) 
zES((J.L - v)/8) 

- (A(;.t + v)/2, z- (J.L- v)/8) + (Bu, z- (J.L- v)/8) 

+ tp((J.L- v)/8)- tp(z)} ::; v(k, h, 8)}, i E [1 :m], 
'Ti+l 

u 6. (X(-)) = { u (-) E uT I ./ ( B u ( t)' V - X ( t)) dt ::; 'lj; h' Ti+ 1 ' V' X (.)) 
'Ti 

'Vv E V, i E [0: m- 1]}. 

Here ~(-) E :=:h(x(·)), Ti = Th,i, m= mh, 3h(x( ·)) is the set ofpiecewise constant 

functions ~(t) = {~Cll(t),~C2l(t)} E V x H, t ET, ~(ll(t) = ~?), ~(2l(t) = d2
) , 

t E [Ti, TiH) , satisfying (16), 
Ti+l 

'lj;(Ti, Ti+l, v, x(·)) = ./ {(i:(t)- j(t), V- x(t)) + (Ax(t), V- x(t))· + tp(v) 

'T; 
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-cp(x(t))} dt. 

Ti+l 

LEMMA 1 Let v(·) E UE.(x(·)), v*(t) = 8-1 f v(t) dt for a. a. t E h, Ti+1), 
r; 

i E [0 : m - 1]. Then there exists a valv.e k* > 0 sv.ch that the inclv.sion 

v*(-) E u~,k(~(·)) V k:;::: k* (19) 

holds uniformly with respect to all hE (0, 1), 8 E (0,'!9- t 0 ) and~(·) E 2h(x( ·)). 

Proof. Let z E D(cp), ~(-) E 2h(x(·)), ~(t) = {~}1 l,~}2l} as t E [Ti,Ti+1), 

Xi= (~}~1- ~~ 1))/8, 

1f;*(Ti, Ti+1, z, ~(·)) = (d~1 - d
2
l - 8f(Ti), z- Xi)+ 

+ 8{ (A(d~1 + d
1
l)/2, z - Xi)+ cp(z) - cp(xi)}, 

1±(-)ILoo(T;V) :::; c2 < +oo. 

Due to equality A= A* and (21) we have 

Ti+l 

I / (Ax(t), z- x(t)) dt- 8(A(xi+1 + Xi)/2, z- (xi+1- Xi)/8)1 

r; 

(20) 

(21) 

(22) 

Using inclusions :i:(·), f(-) E W 1•2(T; H) and continuity of embedding V into 
H, one can easily deduce inequality 

Ti+l 

I / (:i(t)- f(t), z- x(t)) dt- (:i:i+1- Xi- 8f(Ti), z- (xi+1- xi)/8)1 

r; 

Ti+l 

:::; k18{8 + / l :i(t)l~ dt + 81/2llz- (.Ti+1- Xi)/811}, 

r; 

It follows from (16) that the inequalities 

lcp(:i:(t)) - cp(xi) l:::; fx(c181/ 2 + 2ch/8), (24) 

l(d~1 - d 2l - 8f(Ti), z- Xi)- (xi+1- xi - 8f(Ti), z- (xi+l- xi)/8)1 

:::; k2ld~l- d
2
)- 6f(Ti)IHh/8 + 2hlz- (xi+1- Xi)/8 IH 

Ti+l 

:::; k3M-1{h + 8 + / l :i(t) l~ dt} + 2hlz- (xi+1- Xi)/8 IH 
r; 

Ti+l 

:::; k4 h{o- 1 (h + 8 + / l x(t) l~ dt) + llz - (xi+1- Xi)/811}, (25) 
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81 (A(~~~1 + ~~ 1 )) /2, z -X;) - (A(xi+l + x;) /2, z - (xi+l - x;) / 8) I 
.S ksh{1 + 8llz- (xi+l- x;)/811} (26) 

hold for t E 8;. Taking into account (22) - (26) we have 

1'1f!h, Ti+l> z, x(·)) - 1,/;* ( T;, T;+l, z, ~(·))I .S k5{h + 82 + h 2 /8 + 
Ti+l 

(8 + h/8) /lx(t)IJt. dt} + 8fx(cl8112 +2ch/8) 

T; 

(27) 

Besides, 
Ti+l -Ti+l 

j'lx(t)IJt.dt.Scf, 1/ {(Bv(t),x(t))- (Bv(t),x;)}dtl 
T; T; 

.S k8 8{8112 + h/8} \fv(·) E Ur, i E [0: m -1]. (28) 

From (27), (28) we conclude that there exists a value k. > 0 such that the 
inequality 

Ti + l 

8- 1 (B ./ v(t) dt, z- X;) .S 8- 11j;*(T;, T;+l, z, ~(·)) + v(k, h, 8) 
T; 

l;fk ~ k., z E S(x;) 

is true. (The constant k. is written out explicitly.) This implies (19). Lemma 1 
is proved. D 

LEMMA 2 Let h1 -----> 0, 8j -----> 0, hj8j2 
-----> 0 as j -----> oo, 6._7 = !:,.hi' v-j(-) E 

U~~,k(~_1 (-)), ~j(-) E '3hi (x(-)), v..7(-)-----> uo(-) weakly in L2(T, U) . Then v.0 (·) E 

U(x(·)). 

Proof. Let v.0(·) t/:. U(x(·)). There exist v. E V, t1, t2 ET, t 1 < t2 and a.. > 0 
such that 

t2 l (Buo(t), v. - x(t)) dt > 7j;(t1 , t 2 , v., x(-)) + a. •. 

Let j 1 be such that for j ~ j1 

8i .s (t2- tl)/3, 
t* t"' 

(29) 

(30) 

sup{/I(Bv.(t), v.- x(t))l dt, /{l(x(t)- f(t),v.- .i(t))l + (Ax(t), v.- x(t)) 

t... t ... 

+ cp(v.)- cp(x(t))} dt: t., t* ET, o::; t*- t • .S 8j, 

11.(-) E Ur} .S a./16. (31) 



r 
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Let Ti ,(.j ) = max{Ti(j) E f1j : Ti(j) :S t2} and Ti*(j) = min{Ti(j) E f1j : Ti(j) :2:: 
tl}, Ti = Ti(j) = Thj,i(j)· Due to (29)- (31) we have i.(j) > i*(j) and for j > j 1 

Ti , (j) 

./ (Bv.o(t), v.- x(t)) dt :2:: 'lj;(Ti*(j), Ti,(j)' v.,x(·)) + 3a.j4. (32) 

Ti*(j) 

By the definition of v.j(-), v.j(t) = v.Y) = 8j1v.ij for a. a. t E 8hj,i(j) = [Ti , Ti+1), 
we get 

(Bv.ij, v- x~j)) :::; 1f;* ( Ti , Ti+1 , v, ~j (· )) + 8jvj V v E S(x~Jl) 
(v.i = v(k, hi, 8i)). (33) 

L t ' - 1 - 'f S( (j)) d ' - 11 Ul 11 - (j) + ( e /\i - , vi - v., 1 v. E Xi , an /\i - v. - Xi , Vi - Xi v. -

x~j))/llv.- xfilll ~otherwise. Note that with v. fj. S(x~j)) the relation Vi E 

D(cp), llvi- x~j)ll = 1 is true. Using Condition 1, convexity and nonnegativity 
of 'P we have 

Consequently 

(34) 

Taking into account (20), inequalities l~g) -.i(Ti)IH:::; hi and inclusions 'U.j(-) E 

u~:,k((i(-)), we conclude that 

lx~.il- x(t)IH :S 2chj/8i + c18~ 12 fortE 8hj,i(j)' 
Ti*(j) 'Ti*(j) 

l.i = ./ (Bv .. i(t), v.- ±(t)) dt:::; ./ (Bv.j(t), v.- x~Jl) dt + fl,j, 

M.i = k0 (h.i/8.i + 8Y
2
). 

Therefore it follows from (33), (34) that 

i.(j)-1 i.(j)-1 

li:S L Ai(Bv.ij,Vi-X~j))+fJ,j:S L Ai{'lj;*(Ti,Ti+1,vi,~.i(·))+8.iv.i}+M.i· 
i=i*(j) i=i* (j) 

Due to (34), (27) we deduce 

l.i:::; 1f;(Ti*(.i),Ti.(.j),v*,x(·)) + h(hj,8j), 

h(hj, 8.i) = c1hj8j2 + c28]f
2 + CJ'f!x(hj, 8j)· 

(35) 

(36) 
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Ti* (j) 

/ (B(uo(t)- Uj(t)), V*- x(t)) dt 

t2 

:::; l(B(uo(t)- Uj(t)), V*- x(t)) dt + a*/8:::; a*/4. (37) 

tl 

Therefore for j ;::: j 2 it follows from (36), (37) that 

Ti,.,(j) 

/ (Buo(t), V* - x(t)) dt :::; 7/J( Ti•(j), Ti .(j), V*, x(·)) + a*/2. (38) 

Ti*(j) 

However, (38) contradicts (32). Lemma 2 is proved. 0 

Introduce the following 

CONDITION 4 Function oj is single-valued and Lipschitz. 

We assume that conditions 2 and 4 are fulfilled . Let elements ~i satisfy (16), 
a family !:1h with diameters 8(h) be such that 8(h) -... 0, M-1 (h) -... 0 ash-... 0. 
Theorem 3 is also valid, if we assume in (17) 

U~'6 (Pi(~)) = {v, E P: l8-1(d2l- ~}:!1 ) + A~} 1 l 

+ A2d2
)- j(Ti)- Bulv•:::; k(81

/
2 + M-1

)}, 

where A2 : H -... H is an operator of the form (A2x)('T]) = oj(x('T])) for a. a. 
'T] E D. In this case proof of Theorem 3 differs by some technical details. 

Let under Conditions 2, 4 the set of admissible controls Ur be of the form: 

Ur = { v(-) E L 2 (T; V) : v(t) E P, lv(t)IH :::; a for a. a. t ET}, a<+=. 

At time instants TiE /:1 the history of the motion Xr;_ 1 ,.r;(·) is measured appro
ximately, i. e. a piecewise constant function ~r; _ 1 ,r; ( ·) being an approximation 
to Xr;_ 1 ,,.; (-) is calculated: 

'T; 

l~i- x(Ti) IH:::; h, I/ A(x(t) -'!f;(t))dtiH:::; h. (39) 

t 
Here 'lj;(t) = x0 + J ~(T)dT, ~i = ~h), ~(·) E 2(x(·), h), 2(x(·), h) is the set 

0 

of all piecewise constant functions ~ ( ·) : T -... HJ (D) n H 2 (D) such that the 
inequalities (39) hold (the set of all possible measurement results for x(·)). 
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Let Xr be the bundle of all solutions of the variational inequality (2), i. e. 
Xr = {x( ·; :z:o, x10, v(·)) : v(-) E Ur }, and let u(-; x(·)) be a control generating 
the motion x(·) E Xr . Denote 

sup{ ivh(-; ~(·))-' v,(-; x (· )) iL(T;H) : x(-) E Xr, ~(-) E 3 (x(-), h)} 

by v(h). We assume in (17) 

Ti 

u; •8 (p;(~)) = { u E P: !8- 1 (~;- ~i- 1) + 8-1 
./ A'lj;(t)dt + A2~i - f(T;)- uiH 

Then the following theorem is true. 

THEOREM 4 Let int P =f. 0. Then there exist valv,es k* > 0 and h* E (0, 1) s1;,ch 
that for ever-y k ;::=: k* and h E (0, h*) it holds 

Cl(M- 1 + 81/2)2::::; v(h)::::; C2(M-1 + 81/2). 

Here the constants C1 and C2 are found explicitly. 
Proof of Theorem 4 is performed by analogy with proof of Theorem 2.2 

from Maksimov (1994). It is based on the ideas from Osipov and Kryazhimskii 
(1995). 

Consider the second case. We assume cp : V ---> R. At time instants T; 

the coordinates .i( T;) of the system (15) are measured approximately, i. e. the 
elements ~i E V close to i:( T;) in the following sense 

(40) 

are found. Let cp1 ( ·, ·) be a function with the properties: cp1 (h, 8) ---> 0 as h ---> 0+, 
8---> 0+, 

Ti + l 

rP1 (h, 8) ;::=: vx(8) + f£1l (h) +sup{ ./ llx( T) ll 2dT : i E [0 : m- 1]}, 

T; 

vxO be the modulo of continuity of the function t---> cp(i:(t)), t ET, J£1
\c) = 

sup{ icp(i:(T))- cp('lj;) i : '1/J E D(cp), ll i:(T) - 'if;ll::::; c, T ET}. Introduce the convex 
bounded and closed sets: 

i- 1 
+(A(xo + 8 L ~.i ), ~i- 1 - z) + cp(~i-1) - cp(z)} ::::; k(M-1 + 81/2 + cp1 (h, 8))}, 

.7 = 1 
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where 

Fi~~\u, w, v, z) = ((w- v)b- 1
- j(Ti), z) + (A1v- Bv., z). 

In this case the algorithm of approximation to v.(-) = v.*(·; x(·)) E U(:r(-)) C:: 
Ur is analogous to the one described above. Let b(h) ---. 0, M- 1 (h) ---. 0 as 
h---. 0+. If in (17) we replace sets u;•6(pi(()) by sets v:·6 ((t0 ,.,J)), then the 
following theorem is true. 

THEOREM 5 Let Condition 3 be fulfilled. Then the convergence {18) takes place. 

Proof of Theorem 5 is similar to proof of Theorem 3. Instead of the inequality 
(27) we use in the process the following inequality 

11/;(Ti, Ti+l, z, x(·))- 1/;~(Ti, Ti+l, z, ((-))1 
Ti+l 

:=:;b{tAb)+l<p(:i:i)-<p((i)l}+klb{8+ ./ II±(T)II2dT} 
7'; 

Ti+l 

+ k28llv- xill ./ {lj(T)lH + II±(T)II} + k3h(1 + llv- (ill), 
7'; 

where 

p.(8) = sup{ l<p(:i:(t2))- <p(:i:(tl)) l : t1,t2 ET, lt2 - t1l:::; 8}, 
1/;~(Ti, Ti+l, z,((-)) = ((i+l- (i- 8f(Ti), z - (i) + b(A(i, z- (i) 

+8{<p(z)- <p((i)}, 

( (-) E 3~ ( x ( ·)), 3~ ( x ( ·)) is the set of piece wise constant functions ( ( t) E V, 
t ET, ((t) = (i, t Eh, Ti+l), satisfying (40). 

Suppose that in (15) B = B(:i:) (orB= B(x)), V = Hf(D), H = L 2(D.), 
D. c Rn is a bounded region with a smooth border, U = L 2 (D;Rnxn), a family 
B(y)u: U---. V* (\:/yE V) of operators is of the form 

(B(y)v.,z) = t ./ V.k,z(rJ)Yryk(rJ)zryJrt)drJ \:/y,z E V, u = {(v.k,z(rJ))k,l=l}, 
k,l=l 0 

PC U is a convex bounded (in L00 (D.;Rnxn)) and closed set. Theorem 3 is 

also true, if in definition Fg) we replace B by B(v). 

REMARK 2 The given case corresponds to the following problem. There is 
some dynamical system described by the variational inequality (15). Several 
leading coefficients of elliptic operator (they respond to item A1±) are known. 
The remaining coefficients (u(t) = {(v.k,z(t,rJ))k,l=l}) are to be defined by use of 
approximate measurements of elements :i:(Ti). Namely, it is required to calculate 
some coefficients v.(t) = {(v.k,z(t,rJ))k,l=l} E P for a. a. t E T such that the 
relation (15) is true provided Bv.(t) = B(x(t))v.(t) for a. a. t ET. 
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REMARK 3 Let B = B(x) in the inequality (15). Theorem 3 is also true if in 
i-1 

definition Fg)(v., ~i,~i-1,~i-1-z) we replace (Bv., z) by (B(xo+8 L (i),~i- 1 -
.i=1 

z) 
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