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1. Introduction

In this paper we are concerned with the existence and uniqueness of viscosity
solutions to the infinite dimensional Hamilton—Jacobi equation

M(z) + H(APT#z, Du(z)) + (Az + AP F(APHF), Du(z)) =0 (1)

where X is a real Hilbert space, A > 0 and H : X x X — IR is continuous.
Moreover, A : D(A) C X — X is a closed linear operator with a compact
and dense inclusion D(A) C X. Also, we assume A to be positive and self-
adjoint. We denotc by AP the fractional power of A and we assume £, > 0
and 8+ p < 1. Finally F': X — X is Lipschitz continuous.

In order to explain our interest in the above equation, let us consider the
problem of minimizing the functional

Taon) = [ eNLABO 0N 2> @)
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over all trajectory—control pairs (z,7), v : [0,00) — U, subject to the state
equation

{ z'(t) + Az(t) + F(A*x(t)) = APBy(t) )

Here U is a real Hilbert space, U C U is closed and bounded and B : U — D(AP)
is a bounded linear operator for some p > 0. For any control v and initial
state 2o we denote by z(-; o, ) the unique mild solution in L(0,T; D(A")) to
problem (3), see Proposition 2.1.

If we denote by u the value function of problem (3)—(2), that is

u(zp) = inf {J(mo, v) ' v:[0,400) = T mcasurable} ; (4)

then u is a candidate solution to the dynamic programming equation

du(z) + H(A z, AP Du(z)) + (Az + F(A z), Du(z)) = 0. (5)
where
H(z,p) = sup [~ < By,p > —L(z,7)]. (6)
veU

Now, the change of variable u(z) = v(A7Pz) transforms equation (5) into
equation (1). Therefore, u is uniquely determined once v has been characterized.
For this purpose we are interested in proving that equation (1) admits a unique
solution.

Hamilton—Jacobi equations in infinite dimensions were first studied by Barbu
and Da Prato (1982), in convex classes, and then by Crandall and Lions (1985,
1986) using the viscosity solution approach. Additional contributions to the
viscosity solution method were obtained by Soner (1988), Ishii (1992) and Tataru
(1992a, 1992b). On the other hand, the results proved in these papers apply to
equation (1) only in the case of f = =0.

An existence and uniqueness result for equation (5) with 4 = 0 and 8 €
(%, %) was obtained in Cannarsa, Gozzi and Soner (1993), adapting the viscosity
solution approach. In Cannarsa and Tessitore (to appear) we studied equation
(1) for p € (0,1) and p = 0.

In the present paper we extend the method of Cannarsa and Tessitore (to
appear) to the case 3, > 0 under the assumption 8+ p < 1.

It is well known that equation (3) is a possible abstract formulation for
modelling parabolic systems controlled at the boundary. In particular, taking

p= % and g € (3,3) the above equation can be used to study the Neumann
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boundary control problem
oz
51 (1 €) = Bea(t,€) + F(€,2(t,€), Vez(t,€))  in (0,00) x Q2

2(0,€) = wo(£) on {2 (7)

£2(1,6) = (1,9 on (0,00) x 90

where 2 C R" is open and bounded with smooth boundary.

Finally, we give a brief outline the paper. In §2 we state the main assump-
tions on the data and recall the basic material on boundary control problems. In
83 we define viscosity solutions and we derive a comparison result which implies
a uniqueness theorem. We note that this result is obtained for a more general
class of equations than (1). In §4 we show an existence and uniqueness result for
(1), proving that the value function v is a viscosity solution of such an equation.

2. Preliminaries

Let X and U be two real Hilbert spaces and let U C U be closed and bounded.

We set R =sup|y|. Let 2o € X and let v : [0,00) — U be a measurable
yeU

function. We are concerned with the controlled system

o' (t) + Az(t) + F(AFz(t)) = APBy(t) g
where

(i) A: D(A) C X — X is a closed linear operator such that A = A* and
< Az,z >> w|z|? for some w > 0 and all z € D(A);

(ii) the inclusion D(A) C X is dense and compact;

(i) F: X - X, |F(z) ~ F@)| < Kelo -], IF(@)| < Cr Vo,yeX; (9)
(iv) >0, p>0and B, =B+ p€(0,1);

(v) there exists p > 0, such that B € L(U, D(A?)).

for some constants Kp, Crp > 0.

We note that (i) and (i) imply that —A is the infinitesimal generator of
an analytic semigroup satisfying ||e~*4|| < e=“! for some w > 0 and all £ > 0.
Hence, fractional powers A%, o« € IR, are well defined, see c.g. Pazy (1983).
Morcover for every a € [0,1] there exists a constant M, > 0 such that

| A%y < %m, Vt>0,Vz € X. (10)
to

Let v € (0,1] and a € (0,7) . Then, a well known nterpolation inequality, see
c.g. Pazy (1983), states that for every o > 0 there exists Cz > 0 such that

|A%z| < 0|A7z| + Cylz|, Vz € D(AY) (11)
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and there exists C, > 0 such that

|A%Z| < Coy|AVz|5|z|*5, Vz € D(AY). (12)
In assumption (v) above, we have denoted by L(U, D(A”)) the Banach space of
all bounded linear operators B : U — D(AP), where D(AP) is equipped with

the graph norm. We have the following existence and uniqueness result on the
solution to problem (8).

PROPOSITION 2.1 Assume that (9) holds. Let v : [0,00) — U be a bounded
measurable control and fir T > 0. Then for any xo € X and for for any n
such that p < n < 1— B, there ezists a unique mild solution of (8), denoted by
z(+; zo,7), such that

x € L*(0,T; D(A")). (13)
Proof. We recall that z is a mild solution of (8) if

o(t) = etz — /Ot e~ t=DAR(Arz(s))ds + Aﬂ/o ~(t=)ABy(s)ds, (14)
for a. e. t > 0. Now we define the map ® on L'(0,T; D(A")) by

Bx(t) = e May — /0 e~ =DAp(Arz(s))ds + AP /0 e~ (DA By (s)ds

for any 0 <t < T. Let us prove that
®: L'(0,T; D(A")) — L*(0,T; D(A™)) .

Indeed, recalling (10), we have

T T
/ |A"®2(t)|dt < / |[ATe™ x| dt
J0 JO

T T
-|-/ dt+/
JO J O

T B
<M/ IO'dt+/ / (T_S"dsdf+Mﬁ,7/ / (fl_’);(f7+ﬂddt

< M,7|.1:o|T1—n + CFMnTl—n L Mﬁ,nRHBHTl—(ﬂ““"),

ot ot
A" / e~ C=)AR( Atz (s))ds Ante / e~ =94 Bry(s)ds| dt
JO

recalling that |y(s)| < R. Hence ®z € L*(0,T; D(A")).
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Next we prove that ® is a contraction if T' is sufficiently small. For any
z,z € L(0,T; D(A")) we have

T T[T 14k (2(s) — 2(9))]
./0 |[A"(®xz(s) — z(s))|ds < KFM,,/O ./0 &) dsdt

T T 1
:KM/ AR (z(s) — 2(s ds/——
F ”.o’ (z(s) — 2(s))] | =
< KFMnTl_n”:E — Z||L1(0’T;D(An)) < KFMnTl_n”.’L' — Z”Ll(O,T;D(A"))-

By the Contraction Map Theorem it follows that equation (20) has a unique
solution z € L(0,7; D(A")). The conclusion for general T' follows repeating
the previous argument. O
Now let us assume 6 € [0,1) and consider the problem of minimizing the
functional '

TG0 = / ~ e L(A%(t; 70, 7), (1))t (15)

over all measurable functions 7 : [0,00) — U (usually called controls). The
discount factor X in (15) is positive and L satisfies the following assumptions

(i) LeC(X xU), |L(z,7)| < CL, ¥(z,7) € X x U;
(ii) |L(z,7) — L(y,7)| < K|z —y|, ¥y €U, z,y € X; (16)
(iii) B :=B+0 € (0,1), 0> p,

for some Cr, > 0 and K, > 0. We define the value function of problem (15)—(8)
as

u(Zg) = inf {/ e M LAz (t; 2o, 7),7(t))dt | v : [0,400) = U measurable}
0

(17)
We transform (8) by the change of variable
y(t) = A7Px(t). (18)
More precisely, let yo € X and denote by y(-; 4o,7) the solution of
{ Y (t) + Ay(t) + AP F(APry(t)) = By(t) (19)
y(0)=yo € X

Again the above equation has to be understood in mild form
t t
y(t) = e Hyo — AP / e~ C=AR(APry(s))ds + / e~ =94 By(s)ds .  (20)
0 0

The existence and uniqueness of the solution to (20) is guarantee by the following
result, see Cannarsa and Tessitore (to appear).
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PROPOSITION 2.2 Assume that (9) holds. Let « : [0,00) — U be a bounded
measurable control and fix T > 0. Then for any yo € X there exists a unique
solution

y € C([0,T]; X) N L*(0, T; D(AP+)). (21)
Moreover, if yo € D(A?), then

y € C([0,T); D(A%)) N L*(0, T; D(A)) N WY2(0, T; X). (22)
Finally, if yo € D(A), then

y € C([0,T]; D(A)). (23)

By inserting the change of variable (18) in the cost functional (15), we obtain
a new optimal control problem whose value function v is given by

v(yo) = inf [ e ML(APy(t;y0,7),7(t))dE. (24)
Y(t)eU Jo
It is easy to realize that value functions v and u are related by the formula

u(z) = v(APx) , Vz € X. (25)

In particular, w is uniquely determined once v has been characterized. Therefore,
we will study problem (19)—(24) instead of (8)—(17).

We will show that if 8 = p, then v is the unique solution of the following
Hamilton—Jacobi-Bellman equation

Mv(z) + H(AP*z, Dv(z)) + (Az + A~PF(AP+z), Du(z)) = 0 (26)
where
H(z,p) = sup [~ < By,p > —L(z,7)]. (27)
YEU

Clearly, one needs a suitable notion of weak solution of problem (26), since v is
not everywhere differentiable and the coefficients of the equation are discontin-
uous. In the sequel, we use viscosity solutions to overcome these difficulties.

3. Definition of viscosity solution and comparison result
In this Section we study the Hamilton—-Jacobi equation
Mu(z) + H(APz, Du(z)) + (Az + APF(APrz), Du(z)) = 0. (28)

We assume that (9) holds and that H : X x X — IR is a function, not necessarily
given by (27), satisfying

|H (z,p) — H(y,q)| < Kz (|z -yl + |p — g]) for some Kp > 0. (29)
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Let w,¢ : D(A?) — R be given. For any 6 > 0 we define Mg (w, ) to be
the set of all points = € D(A?) such that

O akyp? (30)

w(e) — pla) - 2| A¥al? > wly) — ply) ~ 5|

for all y € D(A%). Similarly, we denote by M (w,¢) the set of all points
z € D(A?) such that

O L 6, 1
w(z) - (o) + 5142l <w(y) - o) + 51Ty (31)
for all y € D(A?).

DEFINITION 3.1 We say that a bounded continuous function w : X — R is a
viscosity subsolution of (28) if w is sequentially weakly upper semicontinuous,
and, for every p € C1(D(A?)) and § > 0,

(i) Mf (w,p) C D(A);
(it) Mw(z) + H(APz, Dp(z) + 6Az) + (Az + A=PF(APrz), Do(z))
+6|Az|? + 6 (Az, AP F(APrz)) <0 ,Vz € My (w,0). (32)
We say that w is a viscosity supersolution of (28) if w is sequentially weakly
lower semicontinuous, and, for every ¢ € CY(D(A?)) and § > 0,
(i) Mg (w,¢) C D(A);
(ii) Mw(z) + H(APz, Dp(z) — §Az) + (Az + A=PF(APrz), Dop(z))
—6|Az|? — § (Az, AP F(APr2)) > 0 ,Vz € My (w, ). (33)
We say that w is a viscosity solution of (28) if it is both a viscosity subsolution
and a supersolution of (28).

Now we give a comparison result between viscosity subsolutions and super-
solutions of (28).

THEOREM 3.1 Assume that (9) and (29) hold true, and define ap, € (0,1) as

_4Pu—3 :
O/':B}L - 2ﬂu ) £ (34)

Let v and v be a viscosity subsolution and supersolution of the Hamilton—Jacobi
equation (28) respectively. If u and v are Hélder continuous of exponent o >
ag,, then

u(z) < v(z), Vo € X. (35)

Proof. For simplicity we take A = 1 and we consider 8, € (%, 1). It B5. € (0, %],
the proof can be easily derived, adapting the same technique we use in the sequel.
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For & and § positive, we define a function ¢ : D(A7) x D(A%) — R as

1 6
$(x,y) = u() —v(y) - o= < A¥(x—y),x—y > ~Z[<Ax x>+ < Ay,y>]. (36)
Notice that ¢ is weakly upper-semicontinuous. Let (z¢ s, ¥e,5) € D(A%)xD(A?)
be such that

¢(z6,67ye,5) = lmax ¢($,y) ]
D(A%)xD(A?)

First of all we prove that
A% (26— e,0)| < Cre™= (37)
where C; > 0 and « is the Holder exponent of u and v. Since

¢($s,6,xa,6) ¥ ¢(ye,§1 ye,é) < 2¢(-'L's,6yys,6) )

from the Holder continuity of u and v we derive
1 1 2 [
;lA“ (Te,s = Ye,6)° < Clze,s — Ye 6l (38)

for some positive constant C. Therefore (37) holds.
Now let us consider

i < 6
0(x) = v(Ye,5) + % <AL — Yo i), T — Ye,6 > +§ < AYes,Ye,5 >

1 1 1)
P(y) = u(we,s) — % < A% (25— ), Tes — Y > g = Az 5,Te5 >

Notice that (,0,1[) € Cl(D(A%)). Also, 7.5 € M} (u,p) and y. s € My (v,9) by
construction. Since u is a viscosity subsolution, using ¢ as a test function, we
have

A% (-’Es,ﬁ - ys,ﬁ)
€

w(ze,s) + H (Aﬁ"msyg, + 6A:1:5,5> + (5|Aar:€,5|2

A% (T 5 — ye
+6 (A5, AP F(APrze5)) + <A$s,a + APF(APra, ), M> <0

(39)

Since v is a viscosity supersolution, using 1 as a test function, we have

Ab (2.5 —
'U(:l/s,é) + H <Aﬁ9ya,67 _(%%ﬁ =4 6Aye,6> == 6[Aye,6|2

Al Lgi0 T YE
—6{Aye 5, APF(APry, 5)) + <Aye,5 + APF(APry, ), Li_y_a)> >0

(40)
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Subtracting (40) from (39), we obtain

1
'U'(xeﬁ) - U(ys,é) +6 [|A$6,6|2 + |Ays,6[2} I g‘A% (ms,é — ye,6)|2

A% (Tes — Ve
o ( o ii__y_ﬁ » A%ﬁ)

1
—-H (Aﬁsma,ﬁa = (me,i_ ye,é) + 6A$€,6>
—6§ [(Aze 5, APF(APrac6)) + (Ayes, AP [F(APrye 5))]

A% Leg b T Ye
+ <A‘ﬁ [F(APrye,5) — F(APrae )] (rc+y§)> : 1)

Recalling assumption (29) on H and assumption (9) on F', the above inequality
yields
1, .3
W(e5) = V(Yes) + 6 [ ATl + | Ayeal’] + 1A (Te s — ye )
< Kn6[|Aze o] + |Aye o] + K| AP (we,6 — Ye, )]
| A2 (225 — e )|

+8Cr|| A ||| Aze 5| + | Aye,5]) + Kr| AP (2e,6 = Ye,s) - - (42)
Now we estimate the right hand side of (42). We derive
)
K6 [|Azes| + |Aye 5] < 3 [|Aze6]” + |Ayesl’] + C25, (43)

where Cy is a positive constant.

For the second term of (42) we have two cases. If By € (§,2) then exploiting
inequality (12) we obtain

3 Ak (ze 5 — 4
Kol A9z — o) < Kirl AR (005 — pes)| < A2 Z28 Vel peae (g

If By € (%, 1) then recalling the interpolation inequality (12), we get
_3; 42 »
K| A% (205 — Ye,5)| < CsA(Te6 — Ye,6)| "> A% (ze,5 — ye)|* 7, (45)

for some Cs > 0. Morcover recall the following well known inequality

P
ab < ZaP + —i—qbq (46)
P g
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4B—3
1 1 2
for every a,b € RT, p > 1, ;-1— a =1 and ¢ > 0. Choosing ¢ = (%)
2
and p = 1By 3 in (46) and applying it to (45) we derive
Gy
Cs|A(ze,s — .7/6,6)1‘%9_3"4% (Te,s — ?/6,5)|4_4ﬁ9
_ 8=80 (47)
6 C 3 =
< $5MA@es — ves) P + g [ AR (s — 100 T
§5—4Be
where Cy is some positive constant. On the other hand, again applying (46)
4—40,
sl 1\ 548
with p = Z_ 422 and 0 = <ZE> ’ , we find
Cy F] iiiﬂﬁ L g  Cset4Pe
480 - veo)|” < A s —ves) P+ s (48)
== 0

for Cs5 > 0. From estimates (47) and (48), inequality (45) can be rewritten as

) 1
Ku|AP (2,5 — ye,5)| < 3 [[Azc 61 + | Aye,s/°] + 4_€|A%(-'Ee,6 — Ye,s)|?
0664_4:39
e (49)
On the other hand we get
§
6C’F'”A~'B|[[|Ams,6l + IAye,ﬁu < g [IAma,6|2 T |Ays,§|2] + C+6, (50)
for C7 > 0. Finally, from estimate (37), it follows that
AY (g, 5 — Cs|APw(ze 5 —
KFlAﬂu (ms"s _ y6,6)| l 2 (1‘15;5 -1/575)| S SI “(’I]‘-‘fii y€,5)[ : (51)
£2—«a

where Cs > 0. Applying the interpolation inequality (12) and inequality (46)
to (51) as we did in (45) we find

4 8—80,,
CS|A/6“(-7; 8 Y ,6)| o 2 C’QIAZ ('L‘ 5 =Y »5)| 5—40,
1E_a £ = ‘1E|A("E5,6 - y5,5)| =+ 4,3u_36 25;20‘ ,
gi=a §8—4B,, ¢ (@—)(5—15,)

for some positive constant Cy. Again, using (46) in the last term of the above
inequality we rewrite (51) as

IA%_ﬁ(-TE,(S = ye,6)|
€

KF'lAﬁ" (ms,é = y:—:,&)l

1) 1, .3 Cioet4Pe
< 1glA@es — Ye,5)|° + 1At (zes — Yes)I* + — > (52)
& §40u—3¢c7—a
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with Cjo positive constant. Substituting estimates (43), (44) or (49), (50) and
(52) in inequality (42) we get

1) 1
(@) = v(Ye,s) + 5 [[Az. s* + |Aye,sI°] + z—glA% (Tes — Ye,0)|°

0554_4’89 Choe”

S 0115 + 64ﬂ9_3 (54'31"_3 ) (53)

2 -2«
where C1; > 0 and y =4 — 44, — e is positive as a > ag,. Therefore, if

z € D(A?) we have
uw(z) —v(z) = ¢(z,2) + 6 < Az, z >< ¢(Te,5,Ye,5) + 0 < Az, >

0564_-4{39 Choe”

< u(mE,ﬁ) - U(ys,é) +6< Am,.’l) >< 0115 I 54Bo—3 4 546, —3 +6< A.’E,.’L‘ > .

Letting e — 0 and then § — 0 we conclude that
u(z) < v(z), Vz € D(A?).

Since D(A?) is dense in X, we have u(z) < v(z) for every z € X. O

4. Properties of the value function and existence result

In this Section we assume
p=_0. (54)

Using exactly the same arguments as in Cannarsa and Tessitore (to appear) one
can show that the value function v of problem (19)—(24) is the unique viscosity
solution of

Mo(z) + H(APrz, Du(z)) + (Az + APF(APrz), Du(z)) =0 (55)

where H(z,p) = sup [— < By,p > —L(z,7)].
~elU
The precise statements are given below and proofs are omitted.

PROPOSITION 4.1 Assume (9), (16) and (54). Then the value function v de-
fined in (24) is Hélder continuous in X with any exponent a € (0,1] satisfying
0;7< KLF Moreover for any p € [0,1 — f3,) there exists a constant Cqp > 0 such
that

[v(z) — v(y)| < CaplA™?(x — y)|* forall z,y € X. (56)

THEOREM 4.1 Assume that (9), (16) and (54) hold true. Then the value func-
tion v is a viscosity solution of (26) in the sense of Definition 3.1.

Combining Theorem 4.1 with Theorem 3.1 we obtain the following existence
and uniqueness result for the Hamilton-Jacobi equation (55).
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COROLLARY 4.1 Assume that (9), (16) and (54) hold true. Let Ar = min {1, Ki}
F
and fiz

3 3-Ar
Bu € <Z’ m) : (57)
Then the value function v defined in (24) is the unique viscosity solution of

the Hamilton-Jacobi equation (55) satisfying a Hélder condition with ezponent
a € (ap,,1), where ap, is defined in (34).
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