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Abstract. Using ideas and constructions recently developed for
intrinsic modelling of shells, we discuss their extension to subman-
ifolds of codimension larger than one. Intrinsic modelling and dif-
ferential calculus makes it possible to do Optimal Design, Shape
Sensitivity Analysis and Control Theory of systems on submanifolds
in much the same way as in the N-dimensional Euclidean space. To
illustrate this point we compute the shape derivative of the compli-
ance for the Laplace-Beltrami and the membrane equations by the
Velocity Method. This method finds a surprising application in the
Multiplier Method which gives the hidden boundary smoothness,
and controllability results for second order hyperbolic systems. It
extends to the wave equation for the Laplace-Beltrami, the mem-
brane, and the shell operators where the form of the basic identity
would be more difficult to guess.
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1. Introduction

This paper builds up on recent results which link the geometrical and smooth-
ness properties of the boundary of a subset of IR™ with the corresponding pro-
perties of its oriented distance function in a neighbourhood of the boundary.
This has many interesting applications. It can be used to define intrinsic tangen-
tial derivatives which coincide with classical covariant derivatives (cf. Delfour
and Zolésio, 1995 and the references therein). Classical models of membranes
and shells can now be rewritten using intrinsic differential operators on the as-
sociated submanifold of IRY of codimension one. This technique is not limited
to the codimension one and readily extends to codimensions higher than one.
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The intrinsic formulations present definite advantages over the “parametrized
ones” when it comes to the Shape Sensitivity Analysis. They go hand in hand
with the Velocity Method (cf. Sokolowski and Zolésio, 1992) and theorems on
the differentiation of a Min or a Min Max with respect to a parameter (cf.
Delfour and Zolésio, 1988, 1991). We illustrate this point by computing the
shape derivative of the compliance associated with the Laplace-Beltrami and
the membrane equations. The same technique applies to various models of
shells but the complexity of the expression increases with the complexity of the
model.

Another unexpected but very interesting application of the Velocity Method
and the oriented distance function arises in the Multiplier Method for finite
time controllability of second order hyperbolic equations associated with an el-
liptic operator. More specifically the shape derivative of the elliptic part of
the energy term naturally yields the basic identity (cf. for instance the recent
book of Komornik, 1994, p. 20, Lemma 2.3) which is used to obtain the hidden
boundary smoothness and the basic isomorphism. The equivalence between the
smoothness properties of the boundary and the oriented distance function in a
neighbourhood of the boundary provides the extension of the outward normal
which is used as the “multiplier”. But of course the beauty of this is that it
extends to second order hyperbolic equations associated with elliptic operators
defined on submanifolds. We illustrate this point on the “wave equation” asso-
ciated with the Laplace-Beltrami and the membrane operator where the exact
form of the identity would be difficult to guess. It also extends to various models
of linear shells and further details will be provided in a subsequent paper.

2. Intrinsic differential equations on submanifolds
2.1. Tangential calculus on submanifolds

We have seen in Delfour and Zolésio (1995) how to construct tangential diffe-
rential operators on a C2-submanifold 92 of IRY of codimension one and how
they relate to classical covariant derivatives by composition with the projection
operator onto Q. In fact the same constructions extend to submanifolds of
codimension larger than one. Consider sets €2 such that

bo(z) >0 and m(0€)=0.
By construction

do(z) = b (z) = ba(z) = |ba(z)| = doa(z) = Q=0

and since b is differentiable almost everywhere and m (992) = 0
|Vba(z)| = |Vdaa(z)| = 1.

Moreover the projection onto 0f2 is still given by

1

1
poa(r) =T — QVb?z(-"?) =z -
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Therefore instead of assuming that by € C?(U,(012)) for some h > 0 and
Un(09) = {z € RY : |ba(z)| = daa(z) < h}

we assume that

d2q = b € C*(Ux(09))).

Then the tangential gradient of a function w on I' is defined as

Vrw def V(w o p)|r

Finally since m (02) = 0, |Vbq(z)| = |Vdaq(z)| = 1 a.e. and Federer’s decom-
position of the measure yields

. h 9
/ fdz = / dz/ dl, f, 09, ={z e R" : bo(z) = 2}
U, (89) J0 J QL

where 0, is still a submanifold of codimension N — 1. Then the intrinsic
tangential calculus is the same and coincides with covariant derivatives as was
shown in Delfour and Zolésio (1995).

2.2. Laplace-Beltrami equation
Assume that the domain T' is Lipschitzian in 0Q and let y € H(T) be the
solution of the variational problem: for all ¢ € H(T')
[ Iy Vrpar - [ fodr
Jr JT

= —Apy=—divp(Vry)=finT' y=0ondl. (1)
Let v be the unit exterior normal to the relative boundary oI of I' in 92 (that
is v-Vb=0).
2.3. Membrane and shell equations
2.3.1. Membrane equation

There are several models for membranes which typically involve the tangential
tensor er(u) of the displacement vector u of the membrane I'. In some cases
constraints are introduced such as the inextensibility — incompressibility of the
membrane which translates into the condition divpu = 0 (cf. Clariond, 1993,
Clariond and Zolésio, 1994). For our purpose we choose the simplest model
which is characterized by the tangential equation: to find u € H(I')N such
that for all v € H ()Y

./1;61“(11;)"€F(’U)dP='/Pf"UdF

= —CTi_\;F (er(u)) + Her(u)n=finI', u=0ondr, (2)

where n = Vbq is the outward unit normal to  on I'.
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2.3.2. Intrinsic shell equation

The intrinsic model described in Delfour and Zolésio (1995) is of the form

E(u, £) = €°(u, £) + e (u, ) 2* + €*(u, £) 22, (3)
where

26%u,£) = 2¢er(u) +£*n+n *L

2¢l(u,£) = 2er(£) — Dr(u) D*b — D?b *Dr(u) (4)

2€%(u,€) = [Dr(£) — Dr(u) D?b](—D?b) + (—D?b) [*Dr(£) — D?b* Dr(u)]

with the simple rheological law

o=2pE+Atrél, p>0,A>0.

It contains the basic elementary terms of the vectorial case which are present
in both linear and nonlinear models.

2.3.3. Naghdi’s linear model

The intrinsic reformulation of the variational Naghdi’s model is

5B [ 5 By 3 h? 1. 7
e (u,l—Vr(u-n))--e (v, —Vr(v-n)) +§6t(u,€) g1 (v,0)

1+V,1"
et d il +h’2d' ¢divp £y dr (5
g ivpudivpv 5 ivpédivp £ » d )
:/p~vdI‘+ N.-v—M - £Ldy,
JT Jor
where
def L .
e%u, B) = er(u) + 5 [ "n+n "B, (6)
1
gt (u, £) def er(f) + % [D%b Dru + * Dru D?b] — 2 (D202 *n 4 n *(D%b0)].

2.3.4. Asymptotic membrane equation model

The intrinsic version of the model of Ciarlet and Sanchez-Palencia (1993) is

/1; 4 1e®(u, —2¢er(u) n) - €°(v, —2¢er(v) n)

+)\4‘:L2All tre®(u, —2er(u) n) tre’ (v, —2er(v) n) dl = /F f-vdl. (7N

With the tangential operator ef (u) = €°(u, —2er(u) n), it further simplifies

dp A
/4,u€f3(u) - eh (v) + )\_/:2 trek (u) tref (v) dl = / f-vdl. (8)
Jr o r
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3. Application to shape sensitivity analysis

We compute the derivatives of the compliance for the Laplace-Beltrami and the
membrane equations via the Velocity method and theorems on the derivative of
a Min (cf. Delfour and Zolésio, 1998, 1991).

3.1. Basic shape tangential calculus

It is convenient to first summarize a number of basic identities which will be used
in subsequent computations. Given a sufficiently smooth vector field {V'(z)} on
IRY, define the following transformation, T,(V), of RV

L) = Via@), o0)=s, T.0)e) D) .

For a domain Q@ C IRY with a boundary 0 which is a C? submanifold of
codimension one, let p(z) and p,(z) be the respective projections of z onto

r & O and T, [ 00, = T,(0R). In particular T, op=1p, 0T, op and

d

S (Tzep)=V(z) o (Top)=V(z) opz o (T 0p) (10)
= (V(2) opz) o (T: o p)

d

7, P(Tz 0p) = D(V(2) 0 p) o (T: 0 p) D(T;: 0 p)- (11)

By restriction to I"

d

EDFTZ = Dr,V(z) o (T, 0p) DT, (12)

d

= EDFTz]z=O = DrV(0) Dp = DrV(0) Pag (= DrV(0) on Trp(z))

where Psq is the orthogonal projector onto the tangent plane Trp(z) to I' in
p(z). If M(DT,) is the matrix of cofactors of DT, the canonical density on I',
is given by

w, = det M(DT,) = det DT, ||* DT, *Vbgl|| (13)
dd% = din V(O) Wy, Wo = 1.
It can also be seen as the determinant of the transformation DrT,(z) between

the tangent spaces T 082 and T, (5)08,.

E(Tzop):Vo(TZop):Voponzop

d
= SD(T, 0p) = D(V op,) o (T; o) D(Tx )

d
= ED(TZ 0p)lz=0=D(Vop)opDp = (DrV onT).
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Moreover (T, op,)o(T,op)=p
d

" ) d _
4 (T 0p2)o (T op) + D(IT 0p2) o (T 07) (T, 07) =0 (1)
d . ._
E(Tz Yop,)|zmo0op=—[DpV]op = (—PaqV onT) (15)
D(T; " op,) o (T, 0p) D(T; 0 p) = Dp (16)
d =
DT op.) o (To 0p)]lo=0
= —Dp,D(V op) op = (—PsaDrV on Trp(z)). (17)

Finally with b = bg and n = Vbg = Vb
,def d _ 0 Vb4 b i

= Epz’z:O = vbvop Vb + V(Vb Vop) =P IF = (’I’L V)n (18)

3.2. Laplace-Beltrami

It is the simplest example, but it contains all the elements and techniques for
more complex equations. Let w be a domain in I" such that its relative boundary
v in T' be sufficiently smooth. Let w, = T,(w) and 7, = T,(y). Consider the
compliance '

T = it Bl = o)

where ¥, in H}(w,) is the unique minimizing element of the energy functional

Bne) = [ 3

2|VF,<P|2 —fwdl,, = —Ar,y,=finw, y,=0o0ny, (19)
Wz

We can use a theorem on the derivative of a Min with respect to z by parametriz-
ing the elements of the function space Hj(w,) by those of H}(w) (cf. Delfour
and Zolésio, 1988, 1991)

> po Tyt : Hi(w) — Hi(ws).
Since po T, Y op, =T, ! op, we have
Vi, (0o Ty ) = V(po T ops)lw, = V(popo Tt ops)l,
and
V(popoTtop,) = *D(T  op,) V(pop) o T,  ops,.
Therefore introduce the following new functional for ¢ € H}(w)
B(e,p) & Blos, 0o T
= | 3V opoTtop )~ f(pop) ot ar (20)
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and after a change of variable

o 1 " _
Beo) = [ [DE op)VieonP - (o) (wop)] wedr. )
Then compute the “volume” and “boundary” expressions of the shape derivative
= def d = d .= 0 =
z = —F sy Yz)|z=0 = 57 E 3 z=0 = 5 ) ’
0. E(0) = —E(z,4z)l=0 = - "N (2 0)|z=0 = 5-E(0,y) (22)

since the minimizing element y is unique.
In order to compute the partial derivative of the two expressions (20) and
(21) of E(z,¢), we need the derivatives of the “transported” of p o p

def d -

Fe —(PpopoT o ==V(pop) V= ¢lu=-Vre-V (23)
def d =

&% —(popoTi op)limo=¢ op+V(pop)op-p. (24)

It can be shown that

@ =—V(pop)op-PsqVop+baV(Vbg-Vop) -V(pop)op
¥y =¢lo=-Vrp-V=-Vrp -
(Vr is the tangential component of V')
V® = -V(V(pop)op-Vop)+V(V(pop)op-Vbg Vop-Vbg)
+Vba V(Vbg - Vop) - V(pop)op+baV(V(Vbg -V op)-V(pop)op)
V|, =~Vr(Vre V) + Vbg Vr(Vba - V) - Vre
= Vrpe- V|, = Vre-Vry'.

From (21) we get the “volume” expression of the derivative

8, E(0,¢) = /

w

%[diV[‘VI—-Qé‘FV] Vp(p'Vr(p—~f(pdinV—Vf-V<de,
(25)

where 2erV = DrV + *DrV. The derivative of (20) is a little more complicated:
8z15“(d,90) = L {%IVWF = fw} V-vdy

— [ re- Ve (Vep-V) = eV

+/w {H BIVPW - fso] + V(%IVFW op—fpop)- Vb} V -ndl

e= / {%Wﬂﬂlz—fw} V'V—er'V(VFW'V)dV
¥
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+/(Ar</9+f) (Vpe-V)dr

+/w{H [%]vwﬁ_m] —Vf-mp} V - ndr. (26)

For ¢ = y, y = 0 and Vry = (0y/0v)v on 7 and we get the “boundary”
expression

2

= [ZL% .
dJ(w,V)—/y 2‘&/ V-vdy
+/ {H Blvrylz—fy] —Vf~nu} V -ndrl. (27)

and from (25) we get the “volume” expression
"1
dan V)= / 2

Jw

divp VI —2erV] Vry - Vry—Vf - Vy— fydive Vdl. (28)

The formulae are similar to the ones for the Laplacian and they coincide when
the mean curvature H is zero. For more details including the shape and material
derivatives of the state, the reader is referred to Desaint (1995), and Desaint
and Zolésio (1995).

3.3. Membranes and shells

We concentrate on the membrane which is the prototype for the vectorial case.
The shell is the same except that the complexity of the model is more important.

Assume that w and + are as in the previous section and consider the membrane
problem (2)

Ju € HE(w)N, such that Vo € Hg(w)", /

w

EI‘(U)"EI"(’U)dF=/. f-vdl' (29)

= —(E/r’ (er(w))+ Her(u)n=finw, u=0on~+. (30)

As for the Laplace-Beltrami operator consider the associated compliance. The
solution u of (29) is the minimizing element of the energy functional

of [ 1 .
E(w,v) et /w §||51'"U”2 — f-vdll, E(w,u)= ueII%I(I::)N E(w,v). (31)

With a parametrization. of the form v o T, ! of the elements of H}(w,)" by
elements v € H}(w)", the energy functional on w, becomes

B(e0) & B, vors) = [

(5

1
§nsp(voT;1)||2—f-vngldr, (32)

E(z,u,) = UEII'I%i(I;)N E(z,v). (33)




Design and control of differential equations on submanifolds 505

On w, we have
Dr,(voT;')=D(vopoT; op,)=D(wop)o(T;  op,)D(T;  op,) (34)

and we obtain the following two expressions for F(z,v)
1 §
=/ slewopo T op)|* = f-(vopoT;h)dl (35)

1 _

~ [ 3ID@op) DI 0p) o (T2 o)

+*D(T; op,) o (T 0p) *D(vop)|*w,

—(foTyop)-(vop)w,dl. (36)
As for the Laplace-Beltrami operator, the shape derivative of the compliance is
given by

~def d - d . ~ 0 -

0,E(0) = —E(z,u;)|,=0 = E;weII%I&)NE(z’w)'zzo = —é—Z-E(O,u). (37)

The derivatives of the extension of w o p are similar to the ones of the scalar
case.

d
w’ dgf -d—;(u) opoTz_1)|Z=0 =-D(wop)V = w'|,=-DrwV
w’ d=(?fi(wopoT;1 0Pz)|z=0 = D(wop)p +w op

dz
=-—D(wop)[V -V Vbqg Vbq] + bg D(w o p) V(Vbg -V o p)
W'|lw = —DrwVr = —DrwV
(Vr is the tangential component of V')
DW' = —=D(D(wop)V op)+ D(V - Vbg D(wop) Vbg)
+bo D(D(w o p) V(Vbg - V o p)) + (D(w o p) V(Vbg - V o p)) *Vbq)
DW'|, = —Dr(DrwV) + Drw Vr(V - n) *n.

The derivative of (36) gives the easy “volume” expression

8,E(0) = /w

% [divr V erv — Dprv DrV —* DpV *Dro] - - epv
—f-vdivpV =DfV -vdl. o (39)

As for the “boundary” expression the derivative of (35) first yields
- » 11

8, FE(0) = / {§||6va|2 - f-'u} V-vdy
. Sy

+/{H B ||6rv||2—f-v] ‘v B— newn%p—f-uop} n} V ondr
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’ 1
+/ EDV ¢+ » '2'(DV/ +* DV,) —f-v'dF

= L{%Hefvllz—f-v} Vv
+[{n [— lecoll? = 7 0] = Do} v omar

+ [ erv--ep(=DrvV)+er(v)n-DroVp(V -n) — f - (—Dro V) dl'

)
-/

{ lerv]? — -U:| V.v—ervv-DrovV +ep(v)n- Dr(v)v(V -n)dy

+./w {H [ lero||? — v] — Dfnev—divp [*Dp(v)sr(v)n]} V .ndl

+ /w [divr b — B a4 f} . DrwV dr. (39)
Then we set v = u and since u = 0 on 7
Dru=Druv*v = *Druv= (Druv-v)v (40)
ler@)I? (V -») = ex(w)v - Dew) V

=z UDrw) V2 + [De(w)v-vf2] Vv (41)
Jex (u >u||2 3 [1Dr(w) v +3|De(w) v - v (42)
= |Dr(u) V!2 + IDP( yv-vf?

= ller(@) VI + § IDe(w) v - v + S1Dn(u) P (43)

In the vectorial case there are several ways to rearrange the above terms. This
will be used in Section 6 to get the hidden boundary smoothness of the respective
intrinsic vectors and quantity Dr(u) v, *Dr(u) v, and Dr(u) v-v. Coming back
to the “boundary” expression

dJ(w; V) = / [|Dr(w)v|* + |Dr(uw)v-v)] V-v
—i—%Vp(u ‘n) - Dp(uw)v (V -n)dy

+ [ {8 |G lecul? - 7] = Dfnou— dive Do) extyn } v onar.
(44)

As for the “volume” expression from (38)
"1
dJ(w; V) = / 3 [divp V eru — Dru DrV —* DrV *Dru] - -eru
Jw
—f-udivpV — DfV - udl (45)
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4. Hidden boundary smoothness via shape derivatives

In this section we show how the Velocity Method can be used to obtain the fun-
damental identity (cf. for instance Komornik, 1994, p. 20, Lemma, 2.3 and its
references) which is the key to obtain the hidden boundary smoothness, observ-
ability and controllability of the wave equation by the Multiplier Method. This
technique naturally extends to the tangential wave equation and to equations of
linear vibrations of membranes and shells. More details can be found in Delfour
and Zolésio (1995-5).

4.1. Boundary smoothness of the solution of the Laplace equation
revisited

Consider an open bounded Lipschitzian domain Q of RN and V € WH*°(N(Q))V
for some bounded neighbourhood N (€2) of Q. Let T, = T,,(V') be the transforma-
tion associated with the velocity field V asin (9). Given ¢ € H({2) consider the
L?(§2,)-norm of the gradient of its “transported” ¢ o T;"1(V) onto Q, = T5(Q)

E.(V,p) = / V(g0 T (V) da. (46)

2

After a change of variable this functional can be expressed as an integral over )
E.(V,9) = [ 'DEZHV) Vol? det(T. (1)) da. (47)
Q

Now the technique consists in computing the Shape derivative

5,0) € L BV, 0)lmo - (8)
from the two expressions (46) and (47) of E,(V, ). By equating the resulting
“boundary” and “volume” expressions we get the basic identity used in the
Multiplier Method where V' is the vector of multipliers. Since this identity
will then be used to “extract” the hidden smoothness of the solution on the
boundary, we shall refer to E(V, ) as the “Extractor”. It can be modified to
suit the problem at hand and will usually coincide with the quadratic term of the
natural static energy of the problem. The following theorem yields an elliptic
boundary smoothness and also an hyperbolic boundary smoothness which will
be discussed in the next section.

THEOREM 4.1 Given V € W1 (N(Q))Y, and ¢ € H*(Q), we have

B(V,¢) = /Q [div (V) T — 2(V)] Ve - Vepda, (49)
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where 2¢(V) = DV + *DV. Moreover if Vgo -V € HY(Q) or Ap € L3(Q), we
have

E(V, o) =/BQ|V50|2V-nd'y—~2/QV<,0-V(V<,0-V)dx

=/ |V<p|2V-n—2a—‘pV<p-Vdfy+2/A(pV(p-Vd:r. (50)
FEl9) on Q

If OS2 is CVL, there exists a neighbourhood U(95Y) of OS) where

bo € W (U(09)),

and if, in addition, Vo - Vbg € HY(Q N U(0N)), then there exists a constant
¢ > 0 such that

|1Vl < e Vel + Ve Vallin@nun) (51)

In particular this is true when Ap € L?(1).

Proof. By standard techniques from Sokolowski and Zolésio (1992) for shape
derivatives and from Delfour and Zolésio (1994) for the fact that
bo € W2 (U(89Q)). O

COROLLARY 4.1 (i) For ¢ € H}(Q), Vo -V € HY(Q) or Ap € L?(Q), and
09 of class C1!

2
/ P V -ndy
aQ

on
= / [div (V) I — 26(V)] Vo - Vo + 2V - V(Vp - V) da (52)
Q

= / _[div (V) I — 26(V)] V- Vo + 2 Ap (Voo - V) da.
Q
If Ap - 6bg € HX(QANU(0N)), there exists a constant ¢ > 0 such that

ap|?
152, <c IVl + 19e - Toallnanony)] - (53)
L2(892)

(i) For ¢ € H'(Q) such that Op/0n =0 and V- 6bg € H*(QNU(89Q)), the
boundary term in (51) becomes and
[ el < [Ielts + 19 ol @noen] (54

In particular, for ¢ € HY(Q) such that Ap € L*(Q) and dp/0n =0, and
o of class C1!

/8 Veelay < [Vl + 180l?]. (55)

Recall that Op/0n is defined as the element of H ~3(T") verifying;:

A 9]
Vu e HY(Q), <8—(:,u>= /V(p-V;H—Agoudm.
Q
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4.2. Multiplier method for the wave equation

Now consider a time dependent function ¢(t) and use identities (49)-(50) to
recover the central identity in the Multiplier Method.

THEOREM 4.2 Let V € WL (N(Q))N in some neighbourhood N(S2) of 2 and
T >0.
(i) Let p € C(0,7; HY(Q)) N C*(0,7; L%(Q)) such that
o —Dp € L*(Q), Q@=0x]0,7[, T =00x]0,7][. (56)
Then

/22—"’Vso-v+((sot>2—|V¢12>V~ndz
E ﬂl

=/ Y2divV — [div (V) I —2¢e(V)] Ve - Vo
JQ
+2 (A(P_(Ptt) V(dea:d,t

+2 [ pur) Vlr) -V = @u(0) V(0) - Vi (57)
Q
(ii) If, in addition, OS) is C¥' and ¢ € C(0,7; H}(RY)), there exist ¢ > 0 and
a neighbourhood U(0SY) of 02 such that
B 2
on

- <c [ll(pt|l2c'(0,T;L2(Q)) + ||V<PHZC(0,T;L2(Q)) + [Ap — ‘Ptt”%"’(Q)] :
L2 (s

(58)

This is the first step of the Multiplier Method. The other steps remain un-
changed.

5. Wave equation for the Laplace-Beltrami operator

We use the same notation, definitions and assumptions as in sections 3.1 and 3.2.
Consider the wave equation for the Laplace-Beltrami operator on the global
cylindrical evolution domain Qo = I'x |0, 7[. Further assume that w is a smooth
open subset in I' with sufficiently smooth relative boundary 7 in I'. Define
Q = wx]0,7[C Qo and its lateral boundary ¥ = yx]0,7[. The field V is again
an element of W1H*°(N(Q))¥ for some bounded neighbourhood N () of Q.

5.1. Boundary smoothness for the Laplace-Beltrami operator

From this point on we proceed as in the previous section. Define the “tangential
extractor”

0
E(V,¢) = 56V, )lsmo,

W)= [ o Telpe TP, e B, (59)
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In view of section 3.2 this is twice the quadratic part of the energy functional

E(z,¢) in (21) and we can use our previous computations by setting f = 0 in
(25) and (26) and multiplying by 2.

THEOREM 5.1 Given V € WL (N(Q))Y and ¢ € H'(w), we have

B0V ) = /w (dive (V) I - 2en(V)] Vg - Vrgdl, (60)
where 2er(V) = DrV + *DrV. Moreover if ¢ € H%(w),
EWV,p) = /|Vr<p|21}-ud7+/H|Vp<p[2v-n—2vpcp-vp(vw-V)dr
by Juw

- LIVF¢|2V-V—2Vr<p-V(Vr<P-V)d7
+/H|Vpgo|2V-n+2Ap<pr(p-VdF.
If, in addition, o € H*(w) N HY(w), then

|8
/

i
ov
e / (dive (V) I — 26r(V)] Vi - Vg + 2Vrg - Vi(Vrg - V)

2
V.-vdy

—H |Vr¢]?V -ndl
= / e (VI — 2 (VY] Virw - Ve B | TePV -n
+2Ar (Vrp - V)dl SIS ' (61)

5.2. Tangential wave equation

THEOREM 5.2 Let V€ WL°(N(Q))N in some neighbourhood N(Q) of Q and
7 > 0 be a real number. Let ¢ € C(0,7; H (w)) N C*(0,7; L*(w)) such that

0w — Arp € I(Q), Q=wx]0,7[, T=4x]0,7[. = (62)
Then ‘

[ 255 VeV + () = VroP)V vz
s Ov

= / @2 divp V — [divp (V) I — 2er(V)] Vre - Vre
Q

+2 (A[‘(P — @tt)Vpgo -Vdl'dt
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+/ H(|Vrp|? — 2) V -ndldt
Q

2 / o(7) Veo(r) -V — 01(0) Viip(0) - V7 dT

and for p € C(0,7; H}(w)) the left-hand side of the above identity reduces to

/|3<,0/8V|2V-1/d2, 8go/8ud§prgo-V.
51

In order to conclude as for the wave equation it must be shown that for a given
smoothness of the relative boundary « (for instance C11), there exists a vector
field V' with support in a neighbourhood of 7 such that V -v =1 on 4. In sec-
tion 4.1. we chose V = Vbgq 1) for some 1 € D(U(T")) for a neighbourhood U(T")
of I where bg € C11(U(T)) = W2°(U(T)). An adaptation of this technique is
available in Defour and Zolésio (1995-5).

6. Wave equations for membranes and shells

Consider now the tangential vector case. For simplicity we limit our analysis to
membranes. The technique readily carries over to various linear and nonlinear
models of membranes and shells with an unavoidable increase in the number of
terms.

6.1. Boundary smoothness for the membrane

I', w, v and V are as in the previous section. Define the “vectorial tangential
extractor”

P _
EVu) = 5-E(Vulimo E(Vyu) = / ) ller, (wo TS 1 (V) |2 dT,

u € Hi(w)V. (63)

In view of section 3.3. this is equal to twice the quadratic term in expression
(32) of the energy functional £(z,u) with f = 0. So we can use expressions (35)
and (36) and the respective “volume” (38) and “boundary” (39) expressions of
their derivatives along with the identities (41) and (43) to compute the term on
~ for u € H} (w)N N H2(w)N.

THEOREM 6.1 Given V € WL (N(Q))N and u € HY(w)N, we have

E(V, 'U,) = / [diVF 1% Eru — DF’U, D[‘V —* DI‘V *DFU] *rETU dr'. (64)
Jw

Moreover if u € H2(w)N, E(V,u) is equal to

/ lecul2 V - vdy
Rl 4
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+ / H |]£pu||2V -n—2eru - -ep(DruV) + 2erun - DruVep(V - n)dl
= / lerul|?V - v —2eruv - DruV 4+ 2epun - Druv (V - n) dy
.
+/ 2 |:d_1\:r‘ (erw) — Herun| - DpuV dl
—|—/ H |leru||?V - n — 2divr [*Druerun] V - ndl.
Ifu € H*(w)N N H(w)N, then
[ 3 {Nert i+ G 1De v + SiDev v vt
= / [divp V eru — Dru DrV —* DV *Dru) - - epudl’
— / H |lerul|>V -n —2eru - -ep(DruV) + 2erun - DruVe(V - n) dT
= — / [dive V erw — Dru DpV —* DpV *Dra) - - epudl
+/ H |leru||®V -n+ 2epun - DruVp(V - n)

+2 [&EF (erw) — Herun| - DruV dl.

6.2. The wave equation for the membrane

THEOREM 6.2 Let V. € WHL(N(Q))V in some neighbourhood N(Q) of Q and
7> 0 be a real number. Let u € C(0,7; H(w))N N CH(0,7; L*(w))N such that

_

uy — divp (eru) + Herun € L2(Q), Q=wx]0,7[, ¥ =x]0,7[. (65)
Then

/ 2epup - DpuV + (el — JepulP) V - wdE
JX
= /Q lug|2 divp V — [divp V epu — Dpu DpV —* DV *Dra) - - epudl dt
4 /Q H (llerull® = [wl?)V -+ 2epun - DpuVp(V - n)
42 [Ep (ert) — Herun — ug | - DruV dl' dt

+2 / us(r) Dou(r) V — ui(0) Dru(0) V dT

w
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and for u € C(0,7; H} (w))" the left-hand side reduces to

/z: % {Her(u) v|® + % |Dr(u)v - v|* + %lDI‘(U’) VIZ} V-vdk.

Again, to conclude on the hidden boundary smoothness, we need the technique
developed in Delfour and Zolésio (1995-5).
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