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1. Introduction 

It is known that the traditional optimal control theory (first of all, the theory of 
necessary conditions) supposes existence of optimal controls in a class of usual 
(i.e. Lebesgue measurable) or relaxed in the sense of Young (1969), Filippov 
(1959), Gamkrelidze (1962), Warga (1971) and Fattorini (1991). It is known also 
that realization of the existence conditions requires sufficiently severe assump­
tions, see Filippov (1959), Gamkrelidze (1962), Warga (1971), Fattorini (1991), 
for the initial data of optimal control problems connected, for example, with 
various compactness properties of the sets of solutions of controlled distributed 
systems. We assert that many theoretical "difficulties" may be surmounted to a 
great extent if we consider a minimizing sequence (m.s.) as a "main element" of 
the theory instead of optimal control (usual or relaxed). Such transition permits 
to develop useful suboptimal control theory. Above all here we keep in mind 
necessary and sufficient conditions for elements of m.s., regularity and normal­
ity, differential properties of value functions, sensitivity, Kuhn-Tucker vectors, 
nonsrnooth problems, numerical methods, etc. We can interpret the transition 
to m.s. in a certain sense as a "maximal" extension of the initial optimal control 
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problem. It corresponds well to Hilbert's dictum (Young, (1969), p.123) that 
Every problem of the calculus of variations has a solution, provided the word 
"solution" is suitably v,nderstood. Here we consider a m.s. as a solution of the 
optimal control problem. At the same time, we show that the theory, based on 
this concept, generalizes the traditional one and gives a new useful information 
about the optimal control problem. Such situation corresponds to the transition 
from usual optimal controls to relaxed controls in the sense of Young (1969), 
Filippov (1959), Gamkrelidze (1962), Warga (1971), Fattorini (1991). 

In this paper we consider some new results of suboptimal control theory, 
sec for example Plotnikov and Sumin (1982), Sumin (1987, 1990, 1995, 1996a, 
1996b). These results are connected with necessary and sufficient conditions for 
elements of m.s., with value functions and with conditions of regularity, as well 
as normality and abnormality. Some of these results generalize corresponding re­
sults of Clarke (1983) expressed in terms of usual optimal controls for controlled 
ordinary differential systems. According to Sumin (1987,1990,1995,1996a,1996b) 
we consider as m.s. the so-called minimizing approximate solutions in the sense 
of Warga (1971). Firstly, precisely this use of the minimizing approximate 
solutions gives us the possibility to write down the results in terms of the ex­
tended (relaxed), Young (1969), Filippov (1959), Gamkrelidze (1962), Warga 
(1971), Fattorini (1991), optimization problem if the problem admits such an 
extension. Secondly, the application of m.s. in the mentioned sense permits to 
develop many of the results of Clarke (1983) for investigation of differential pro­
perties of corresponding value functions of optimization problems as functions 
of their parameters (Sumin 1990,1995,1996a,1996b). Finally, the minimizing 
approximate solutions permit also to establish more close connection of optimal 
control theory with numerical methods (Sumin (1990,1996b)), since the concept 
of suboptimality is the central one in numerical methods of optimization. 

In the paper we consider a concrete optimal control problem for a linear 
controlled parabolic equation. But all results remain true for essentially more 
general optimal control problems for various equations of mathematical physics 
with boundary controls, fixed and free time, and various constraints. Full proofs 
of the results can be found in Sumin (1996a,1996b). The paper contains illus­
trative examples. Other results connected with the suboptimal control theory 
can be found e.g., in Fattorini (1990), Fattorini and Frankowska (1990). 

2. Optimal control problem statement 

Consider the controlled first boundary-value problem for a linear parabolic equa­
tion in divergence form 

f) 
Zt- -;:;-ai,.i(.-r, t)zxi + bi(x, t, u(x, t))zx, + a(x, t, v.(x, t))z + f(x, t, u(x, t)) = 0, 

V Xi 

z(x, 0) = v(x), x E D; z(x, t) = 0, (x, t) E Sr. (2.1) 
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The controls u : Qr ----> Rm' V : n ----> R1 are elements of the sets wl ~ 
{u E Loo(Qr): u(x,t) E U for a.e. (x,t) E Qr}, W2 := {v E Loo(D): v(x) E 
V for a.e. x E D}, respectively, U C Rm, V C R 1 are compacts, W = {w = 
(v.,v): wE wl X W2}, n is a bounded domain in Rn. 

The object of our studies is the following minimization problem 

(P) Io(n) ----> inf, 1"'1 (n) :::; 0, 1"2 (n) = 0, 1r E V, K2 = K- K1, 

where: f"· 1 (7r) = (h(n), ... ,J"1 (7r)), I"2 (7r) = (I~< 1 +l(n), ... ,J"(n)), 

I;(n) = / G;(x, z[w](x, T), b, v(x)) dx, 
.fo 

V = { 7r = ( v., v, b) : 7r E wl X w2 X B} is a set of triples of controls, B 
is a convex compact in R 1

, V= w X B, w = {w = (v.,v) : w E wl X 

W2}, z[w] EV~'0 (Qr) is the weak solution in the sense of Ladyzhenskaya, 
Solonnikov and Ural'tseva (1967), Ch.III, of the first boundary-value problem 
(2.1) corresponding to the pair w E W. 

Assume that the following conditions on the initial data of problem (P) are 
fulfilled: 

(i) the functions Gk, 8Gk/8z, 8Gk/8bs : n X R 1 
X B X R 1 ----> RI, k = 

0, 1, . .. ,K, s = 1, ... ,l, a;,j: Qr----> R 1
, b;,a,f: Qr x Rm----> R 1,i,j = 

1, ... , n, are Lebesgue measurable in (::z:, t, z, b, u, v) and continuous in 
(z,IJ,u,v) for a.e. (x,t); 

(ii) the coefficients of the boundary-value problem (2.1) satisfy the inequalities 
vl~l 2 :::; a;,.i (x, t)~i~.i :::; ,ul~l 2 'V(x, t) E Qr, v, ,u > 0, 

lb;(x, t, u)i:::; Ko(x, t), ia(x , t, v.)i:::; K1(x, t), if(x, t, u)i:::; K2(x, t) 

'V(x, t) E Qr, v. E U, 
where Ko E L2q,2r(Qr), K1,K2 E Lq,r(Qr) and the pair of numbers (q,r) 
satisfies certain conditions (7.1), (7.2) in Ladyzhenskaya, Solonnikov and 
Ural'tseva (1967), Ch.III; 

(iii) the integrands Gk, k = 0, 1, ... , K, satisfy the inequalities 
IGk(x, z, b, v)i, I8Gk(x, z, b, v)jozi, I8Gk( x, z, b, v)/8bsl :::; N(M) 

V(x,z,b,v) En X Sii X B X V, 
where S'M = {x E Rn : lxl < M}, N(·) is a positive nondecreasing 
function of M > 0. 

REMARK 2.1 In view of the conditions (i)- (iii) and Theor-em 4.2 in Ladyzhen­
skaya, Solonnikov and Uml'tseva {1967), Ch.III, the primal problem (2.1) has 

a v.niqv.e sol·u.tion z[w] EV~ '0 (Qr) for any pair- w = (v.,v) E W. For the same 
r-eason, the ad.foint pr-oblem 

8 
-'Tit - ox (ai,.i(.-r, t)'r/x; + !Jj(x, t, u(x, t))ry) + a(x, t, v.(x, t))ry = 0, 

.1 

ry(x, T) = -d;[n](x) , x E D; ry(x, t) = 0, (x, t) E Sr, 1r = (w, b)= (v., v, b) (2.2) 
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has a unique solution 7]i[7r] EV~'0 (Qr) for any triple 1r = (w,b) = (v.,v,b) E 
D, i = 0, 1, ... , K., where 

di[1r](x) = aGi(x, z[w](x, T), b, v(x))/az. 

Moreover, by Theorems 7.1, 10.1 in Ladyzhenskaya, Solonnikov and Ural 'tseva 
(1967), Ch.III, the solutions z[w], 1')i[7r] are bounded in Loo(Qr) v.niformly with 
respect to 1r E D and z[w], 1')i[7r] E Ha,af 2(Qr) for some a> 0. 

3. Necessary and sufficient conditions 
for minimizing sequences 

Let us define 

(3E =in£ Io(7r), E 2 0, 
v• 

where DE= {1r E D: Ji(1r)::::; E,i = 1, ... ,K.1; IIi(1r)l::::; E,i = K.1+1, ... ,K.}, (3E = 
+oo, if DE = 0. Obviously, (3E1 2 (3E2 for E1 ::::; E2. Consequently, there exists the 
finite or infinite limit (the value of problem (P)) 

lim (3E = f3+o = (3 ::::; f3o. 
E ..... +o 

Just as in Sumin (1987, 1990, 1995, 1996a), we are interested in deriving 
necessary and sufficient conditions for elements of m.s. of triples 1ri E D, i = 

1, 2, . . . , for problem (P) such that 

(3.1) 

REMARK 3 .1 The concept of m.s. in the sense of (8.1) joT pToblem (P) co­
incides with the well-known concept of minimizing appmximate solv.tion in the 
sense of Warga {1971), Ch.II. 

Introduce the notations: 
n 

H(x, t, z,p, u, ~) = -1')(2.:: bi(x, t, u)pi + a(x, t, u)z + f(x, t, u)), 
i=l 

H k (X' z' b' V' 1]) = 1]V - G k ( .7:' z' b' V) ' k = 0' 1' .. . ' K,' 

~ = (z,p1, ... ,Pn), ~[w](x, t) = (z[w](.T, t), Zx 1 [w](x, t), ... , zxJw](x, t)). 

The following theorem gives necessary conditions for elements of m .s. in the 
sense of (3.1). We omit the proof of this theorem due to the lack of space. The 
details may be found in Sumin (1996a). 

THEOREM 3.1 Let 1ri E D,i = 1,2, ... , be a m .s. in the sense of (8.1) for 
pmblem. (P ). Then theTe exist a sequence of numbers 

"/ ::::: 0, i = 1, 2, ... ' 'Yi --t 0, i--t oo, (3.2) 
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and a sequence of vectors f.Li E R"'+l, 

IMil = 1, f.L~ 2: 0, k = 0, 1, ... , Kl, f.L~Ik(1ri) 2: -"-/, k = 1, ... , ~~"·1, (3.3) 

S?J.Ch that 

f max t f.L~(H(x, t, ~[wi](x, t), v, 7'}k[7ri](x, t))-
}Qr vEU k=O 

H(x,t,~[wi](x,t),ui(x,t),T}k[7ri](x,t)))dxdt::::; "/, 

f max tf.L~(Hk(x,z[wi](x,T),bi,v,1'}k[1ri](x,O))-
}n, vEV k=O 

Hk (x, z[wi] (x, T), bi, vi(x), 7'}k[7ri] (x, 0))) dx ::::; "·/, 

max t f.L~( f 'VbGk(x, z[wi](x, T), bi, vi(x)) d:r, bi-b)::::; 1\ 
bEB k=O Jn. 

(3.4) 

(3.5) 

(3.6) 

where 7'}k[7ri], k = 0, 1, . . . , ~~:, are the solutions of the adjoint problem (2.2) for 
7r = 7ri. 

REMARK 3.2 If the cost functional in pmblem (P) has the form 

c/J(Io(7r)) + 1/J(b), cjJ E C1 (R1
), ?jJ E C1(R1

), 

then we must Teplace the value f-lb in (3.4),(3.5) by c/J'(Io(7ri))f.Lb and rewrite 
(3. 6) in the foTm 

max{f.Lb (V?jJ(bi) + cjy' (Io( 1ri)) f \7 bGo(x, z[wi] (x, T), bi, vi(x)) dx, bi - b)+ 
bEB Jn. 

t f-li ( f \7 bGk(x, z[wi](x, T), bi, vi(x)) dx, bi -b)} ::::; ·l. 
k=l Jn 

Further, we define the so-called E-functions of Weierstrass-Plotnikov (see 
for example Plotnikov (1972), Sumin (1985,1987,1996a), Novozhenov, Sumin V. 
and Sumin M. (1986)) to formulate sufficient conditions for elements of m.s. in 
the sense of (3.1): Ea: : Qr X R 1 X Rn X R 1 X Rn X Rm X Rm --> R 1 , EcJ 
n x R 1 x R 1 x R1 x R1 x R 1 x R 1 , j = o, 1, ... , K., 

"'( t 2 2 1 ' 1 2 1) - -( t 2 2 2) -( t 1 1 2) D[L.'Z:, .,z, p,z,p,v., u =a x,,z,p,u -a:r,.,z,p,u-

(\7pa(x,t,z 1 ,pl,u1 ),p2
- p1

)- 'Vza(x,t,z1 ,p1 ,u1 )(z2
- z 1

) , 

n 

a(x, t, z,p, u) = L bi(x, t, v.)pi + a(x, t, v.)z + f(x, t, v.), 
i=1 

· E ( 2 1 b2 b1 2 1) _ G ( 2 b2 2) G ( 1 b1 2) Gj X, Z , Z , , , V , V = j X, Z , , V - j X, Z , , V -

'VzGi(x,z\b1 ,v1 )(z2
- z1

)- (\7bGj(x,z\b\v 1 ),b
2

- b1
). 
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Denote also: 

Ea;[1r2, 1r1
] (x, t) = Ea;(x, t, ~[w2 ] (x, t), ~[w 1 ] (x, t), v.2(x, t), u1 (x, t)), 

Eci h·2
, 1r1](x) = Eci (x, z[w2](x, T), z[w1](x, T), b2

, b1
, v2 (x), v1 (x)). 

M.I. SUMIN 

In order to prove sufficient conditions for elements of m.s. we consider the 
following two auxiliary lemmas. The proof of the first lemma is omitted, since 
it may be found for example in Novozhenov, Sumin V. and Sumin M. (1986). 

LEMMA 3.1 Let us consider the first boundary-valv.e problem for the following 
linear parabolic equation 

a 
Zt- ~ai,j(x, t)zxi + bi(x, t)zx; + a(x, t)z + f(x, t) = 0, 

UXi 

z(x, 0) = '1/J(x), x E D; z(x, t) = 0, (x, t) E Sr, 

where coefficients ai,j, bi, a, f, 'ljJ satisfy the following assumptions: 

vl~l 2 
::::; ai,j (x, t)~i~j ::::; ttl~l 2 V(x, t) E Qr, v, p, > 0, 

biEL2q,2r(Qr), a,fELq,r(Qr), 'lj;EL2(D), i,j=1,2, ... ,n. 

(3.7) 

Here the pair of numbers (q, r) is the same as in the assumption (ii) of Section 

2. If a function z EV~'0 ( Qr) is a weak solution of the problem (3. 1}, then for 
any functions c E Lq,r(Qr), dE L2(D) we have 

j. c(x, t)z(x, t) dxdt- / d(x)z(x, T) d.cc 
QT lo 

= / f(x, t)rJ(x, t) dxdt- / 'ljJ(x)rJ(x, 0) dx, 
.JQT lo 

where the function 17 EV~'0 
( Qr) is a weak sobtion of the ad,joint problem 

a 
-rJt- ~(ai,j(x, t)rJx; + bj(x, t)rJ) + a(x, t)rJ + c(x.t) = 0, 

ux· .1 

17(x, T) = d(x), x E D; rJ(.cc, t) = 0, (x, t) E Sr. 

LEMMA 3.2 The increment 6.Ii = Ii(1r2) - Ii(1r1 ), i = 0, 1, .. . , K., 1r1, 1r2 
E D, 

is equal to 

/),.Ji =.loT (~6.ubi(v?(x,t),u1 (x,t))zx;[w 1 ](x,t)+ 
6.ua(v?(x, t),v.1 (x, t))z[w1](x, t) + 6.uf(v.2 (x, t), v.1 (x, t)))rJi[7r1](x, t) dxdt­

/ (v2 (x)- v1 (x))rJi[7r1](x, 0) dx + / (Gi(x, z[w1](x, 1'), b1
, v 2 (x)) lo .fo 

-Gi(x , z[w1](x,T), b\ v1 (x))) dx+ 
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()~ \hG;(x, z[w1](x, T), b1
, v1 (x)) dx, b2

- b1
) 

+ / Ea[7r2 ,7r1](x,t)ryi[7r1](x,t)dxdt+ / Ec;[1r2 ,1r1 ](x)dx, 
}qT ln (3.8) 

Proof. Since z[1ri], i = 1, 2, are the solutions of the boundary-value problem 
(2.1), it is easy to see that the increment D..z = z[1r2]-z[1r1] satisfies the following 
boundary-value problem 

D..zt- ,
0 

a;,J(x, t)D..zxj + b;(x, t, u1 (x, t))D..zx; + a(x, t, u1 (x, t))D..z 
uX; 

+ Ea[1r2
, 1r1

] ( x, t) + D..ubi ( u2 
( x, t), 11.

1 
( x, t) )z,:;[1r1

] ( x, t) 

+6.ua(v.2 (x, t), u 1 (x, t))z[1r1](x, t) + D..uf(v.Z(x, t), u 1x, t) = 0 

D..z(x , 0) = v2(x)- v1(x), X En; D..z(x, t) = 0, (x, t) E Sr. (3.9) 

On the other hand 

I;( 1r2
) - I; ( 1r1

) = in V zGi (x, z[1r1
] (x, T), bl, v1 (x) )D..z(x, T) dx+ 

( / \i'bG;(x,z[w 1](x,T),b1 ,v1(x))dx,b2 -b1 )+ / Ec;[1r2 ,1r1](x)dx+ 
ln ./n 
/ (G;(x, z[1r1](x, T), bl, v2 (x))- G;(~, z[1r1](x, T), b1

, v1 (x))) dx . 
./n 

In view of (3.9) we can apply Lemma 3.1 to rearrange the first term on the 
right-hand side of the last equality. As a result, we get (3.8). D 

THEOREM 3.2 A seqnence 1ri E D, i = 1, 2, ... , is a m.s. in the sense of {3.1) 
for- problem {P ), if for- some sequence of numbers {3.2) we have 1ri E 'D"Y; and 
there exists a sequence of vectors Jl.i E R"'+l, i = 1, 2, ... , 

where C, 1 > 0 are some positive constants, such that . 

I< 

L J.Lt(h(7r)- h(1ri)) ~ _,i V1r E v"Y'. (3.11) 
k=O 

Moreover, the following expressions hold for the left-hand side of {3.11) and for 
the increment h(1r)- h(1ri): 

K. 

2.: J.Lt(h(7r)- h(7ri)) = 

k=O 
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K. K. 

{LJ.L1Hk[7r,7ri]} + {LJ.Li£k[7r,7ri]} = {H[1r,1ri]} + {£[7r,7ri]}, (3.12) 
k=O 

h(7r) -h(7ri) = { { (H(x,t,~[wi](x,t),ui(x,t),ryk[Hij(x,t))­
jQT 

H(x, t, ~[wi] (x, t), u(x, t), 7Jk [1ri] (x, t))) dxdt + 

_fn (Hk(x, z[wi ](x, T), bi, vi(x), 7Jk[7ri](x, 0))­

Hk (x, z[wi] (x, T), bi, v(x), 7Jk [1ri] (x, 0))) dx + 

(In '\hGk(x, z[wi](x, T), bi, vi(x)) dx, b- bi)} + 

{ { Ea-[7r,1ri](x,t)ryk[7ri](x,t)dxdt+ { Eck[1r,11'i](x)dx} 
.JQT ln 

= {Hk[1r,1ri]} + {£k[1r,1ri]}. (3.13) 

Proof. In view of (3.10),(3.11) we can write 

f-Lb(Jo(7r) - Io(7ri)) ~ 
1<1 K. 

- Lf-li(h(7r)- 1k(1ri))- I: f-li(h(7r)- h(7ri))- "l ~ 
k=l 

K. 

-2·i L 11-Lil- "Yi = ai V7r E v-·/_ 
k= l 

Obviously, by (3.10) and by the inclusion 1ri E V"~; we have: ai --* 0, i --* oo. 
From here and (3.10} we conclude that the first assertion of the lemma is correct. 
Equalities (3.12),(3.13) follow from equality (3.8) of Lemma 3.2. D 

REMARK 3.3 By virtue of (.'3.12), inequality {3.11) holds if the following in­
equalities are fulfilled: 

H[1r, 1ri] ~ -"'(i,. £[1r, 1ri] ~ 0 V1r E V"~i. 

It is easy to see that the first of these inequalities is directly 'connected with the 
conditions of suboptimality of Theorem 3.1. We distinguish here the case of those 
initial data of pmblem {P) for· which the summary E-function of Weierstrass­
Plotnikov £[1r, 1ri] is nonnegative. Exactly in this case the corresponding "per-­
turbed" maxim·u.m principle {3.2)-(3.6) constitutes a svjficient condition of sub­
optimality under additional assumptions of regularity of pr-oblem {P ). Note that 
the ineqv.ality £[1r, 1ri] ~ 0 certainly holds for all1r E V in the case of the so-called 
"linear--convex" pr-oblein {P): bi(x, t, u) = bi(x, t), i = 1, . .. , n, a(x, t, u) = 
a(x,t), Gi(x,z,b,v) = G}(x,z,b) + G~(x,v), the function s c; aTe convex in 

(;,b), i ='= 0, 1, ... ,K.1 , Gi(x,z,b,v) = Gi(x)z+ I:~=l GL(x)bJ +G~(x,v), i = 
""1 + 1, ... 'K. . 
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4 . The value function of optimal control problem 

In this section we consider the problem of minimization 

(Po) Io(w)----+ inf, l"'1 (w) :S; 0, l"'2 (w) = 0. 

Problem (Po) is the same as problem (P), but integrands Gi, i = 0, 1, ... , K, 

and, consequently, functionals h i = 0, 1, . .. , K, in problem (Po) do not depend 
on the vector parameter b. We assume that the data of problem (Po) satisfy all 
conditions (i) - (iii) of Section 2; certainly those that do not refer to parameter b. 

We embed problem (Po) into a family of problems (Pp,q) 

I0 (w)----+ inf, I"' 1 (w) :S; p, I"' 2 (w) = q, wE W , 

where p = (p1, ... ,p"'J, q = (q~< 1 +1, . .. ,q"') . 
As in Section 3 we denote: w;,q = {w E w : Ii(w) :S; Pi+ E, i = 

1, .. . , K',l, IIi(w) - qi l :S: E, i = K1 + 1, ... , K}, E 2:: 0 , f3e(P, q) = inf{Io(w) : 
wE w;,q}, f3e(P, q) = +oo, if w;,q = 0. 

Obviously, there exists the limit (finite or infinite) 

lim
0

f3e(p,q) = f3+o(p,q) = f3(p,q) :S: f3o(p,q), 
E-> 

(4.1) 

usually called the value function of the problem (Po). 
According to the concept of m.s. in Section 3, a sequence of pairs wk E 

W, k = 1, 2, . . . , is called a m.s. for problem (Pp,q) if 

Io(wk) :S; /3p,q + Ek , Ii(wk) :S; Pj + Ek, j = 1, . . . , K1, 

IIj(wk)- qji :S; Ek, j = "·1 + 1, .. . , K , 

for some sequence of numbers Ek 2:: 0, k = 1, 2, ... , Ek ----+ 0, k----+ oo. 

(4.2) 

Just as in Sumin (1990,1995,1996a), we are interested in differential proper­
ties of the value function f3(p, q). In this section we shall derive an expression 
for the Clarke's generalized gradient, Clarke (1983), of the function f3(p, q). To 
this end, following Sumin (1990, 1995, 1996a) we use the general approach of 
Clarke (see for example Clarke, 1983, Clarke and Loewen, 1986). 

The following simple but important lemma permits to differentiate formally, 
in Clarke's sense, the value function f3(p , q) but not f3o(p, q). See Example 6.1 
below for illustration of this assertion. 

LEMMA 4.1 The valv.e Jv.nction f3 : R"' ----+ R 1 U { +oo} is bov.nded fmm below 
and loweT semicontinv.ov.s. 

Proof. The boundedness from below of the function f3 follows from the bound­
edness of the solutions z[w], wE W (see Remark 2.1) . Let us take an arbitrary 
sequence 

(pi,l), i=1 ,2, ... , (pi,qi)----+(p,q), i ----+ oo. 
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By virtue of ( 4.1) we have 

fJ(pi, qi) = klim {J,k (pi, qi), Ek > 0, Ek -t 0, k -t 00. 
-->00 

Without loss of generality we can assume that fJ(pi, qi) -t {J(p, q), where {J(p, q) 
is finite or +oo. Let ki, i = 1, 2, ... , be a subsequence of the sequence k = 
1,2, ... , such that the sequence fJ,k_(pi,qi), i = 1,2, ... , has a limit and the 
following equality holds ' 

lim {J,k (pi,qi) = {J(p,q), Ek, > 0, Ek, -t 0, i-t 00. 
2--+CXJ t. 

Then for all i = 1, 2, ... and for some sequence Ei, i = 1, 2, ... , the following 
inclusion holds 

Consequently, we can write 

fJ,k, (pi , qi)::::: /3c.,(p, q), i = 1, 2, ... . 

Whence it follows that 

fJ(p, q) = lim /3c., (p, q) ~ {J(p, q). 
t-->00 

The last inequality means that the lemma is proved. D 

Further, we derive an expression for Clarke's generalized gradient 8fJ(p, q). 
Let (p,q) ER" be a point such that fJ(p,q) < +oo. Let also (pi,qi) ER"·, viE 
R 1 , (i E R"', ryi E R 1 , i = 1, 2, . .. , be sequences such that 

(pi,qi) -t (p,q), vi -t fJ(p,q), vi::::: fJ(pi,qi), 

T/i ::::: 0, (i -t 0, T/i -t 0, i -t oo, (4.3) 

and, moreover, (see the definition of perpendicular or proximal normal to a set 
in Clarke, 1983) 

(4.4) 

The existence of such sequences follows from the closedness of the set epifJ. 
Thus the existence is a corollary of Lemma 4.1 (see Clarke, 1983). 

By the condition of orthogonality ( 4.4) and by Proposition 2.5.5 in Clarke 
(1983), it follows that 

(((i,-ryi),((p',q'),I +vi -fJ(pi,l)) _ ((pi,qi),vi)) ~ 

~i((p',q'),I +vi -fJ(pi,qi))- ((pi,qi),vi)i2 'v'(p',q') ER"', I::::: fJ(p',q'). 

Whence 

ryifJ(pi ,qi)- ((i, (pi,qi)) ~ ryii- ((i, (p',q'))+ 

~i((p',q') - (pi,qi),I - fJ(pi,qi))i2 'v'(p',q') ER"·, I::::: fJ(p',q'). (4.5) 
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In turn, it follows from the last inequality that any m.s. wi,k E W, k = 1, 2, ... , 
in the sense of ( 4.2) for problem (Ppi,qi) is also a m.s. in the same sense for the 
following problem 

Ii(w, (p', q')) =- 7)ilo( w) - ((i, (p', q'))+ 

~l((p',q')- (pi,qi),Io(w)- ,B(pi,qi)W ___. inf, 

!"'1 (w) ~p', !"'2 (w) = q', (p',q') ER"', wE W, 

since the sequence ( wi,k, (pi, qi)), i = 1, 2, ... , satisfies the inequalities 

r/Io(wi,k) _ ((i, (pi, qi)) + ~(Io(wi,k) _ ,B(pi, qi))2 ~ 

7Ji,B(pi,qi) _ ((i,(pi , qi)) +7JiEk +~EL 

(4.6) 

l.i(wi,k) ~ pj + Ek, j = 1, ... ,"-1i IJj(Wi,k)- q; l ~ Ek, j = /'\',1 + 1, ... , K.. (4.7) 

At the same time, the lower bound ,Bi in the problem ( 4.6), 

jji =- lim iJ!, iJ! =- iEfli ( w, (p', q')) , 
e-+0 w. 

wE = { ( w' (p'' q')) E w = w X R" : Ii ( w) - pj ~ E, j = 1' 0 0 ° ' "-1' 

IIj(w)- qjl ~ E, j = K.1 + 1, . .. ,"-}, 

satisfies the equality 

jji = 7)i,8(pi,qi)- ((i, (pi,qi)) = O'i. (4.8) 

We will show that ( 4.8) really holds. Indeed, suppose that it is not satisfied . 
Then jji < ai and there exists a sequence (w 8

, (p 8
, q8

)) E W, s ~ 1, 2, ... , such 
that 

Ii(u/,(ps,qs))~iJi+8~ai , 's=1,2, ... , (4.9) 

Ii(w 8
)- pj ~ E8 , j = 1, .. . , /'\'.1, 1Ij(W8

)- qjl ~ Es, j = "-1 + 1, ... , K., 

for some sequence E8 2:: 0, s = 1, 2, ... , E8 ---> 0, s---> oo. By virtue of ( 4.9) and 
by the definition of the value ,8,, (p 8

, q8
) we have 

Io(w 8
) 2:: ,8,, (p 8

, q8
), s = 1, 2, .... 

On the other hand, by (4.9), the boundedness of functional Io (see Remark 
2.1) and the construction of functional Ji, the sequence (p8 ,q8

), s = 1,2, .. . is 
bounded. W ithout loss of generality we can assume that this sequence converges: 

(ps,qs) -4 (p,q), S -4 00. 

It follows from this limit relation that 
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for some sequence E8 > 0, s = 1, 2, ... , E8 ~ 0, s ~ oo. Then, in view of the 
previous inequality and the definition of the value {J(p, q) we obtain 

Thus, fors~ oo the points ((p 8 ,q8 ),Io(w8
)) converge to the set epi{J. Hence, 

by ( 4.5) and by continuity of the function 

with respect to ((p',q'),I), the value Ji(w 8 ,(p8 ,q8
)) can not satisfy the strict 

inequality (4.9). This contradiction completes the proof of (4.8). 
Consider the following restriction of the problem (4.6): 

Ii(w, (p', q')) ~ inf, 1"1 (w):::; p', !"'2 (w) = q', (p', q') E S'M, wE W, (4.10) 

where S'M is a ball containing the points (p, q), (pi, qi), i = 1, 2, .... The se­
quence (wi·k,(pi, qi)), i = 1, 2, .. . , is m.s. also for problem (4.10). Moreover, 
problem (4.10) has the form of problem (P) with D = W x S'M, B = S'M, 
b = (p', q'), l = K, Gi(x,z,b,v) = Gi(x,z,v) - pUmeas n, i = 1, ... ,K.1, 

Gi(x, z, b, v) = Gi(x, z, v) - qUmeas n, i = "·1 + 1, . .. 'K, and with the cost 
functional 'r/i J0 (w)- ((i, (p', q'))+ l(Jo(w)- {J(pi, qi))2 + ~ \p' _ pi\2+ ~\q' _ qi\2 
(see Remark 3.2 for cp(I) = ryiJ+ lu- {3(pi,qi))2, '1/J(p',q') = -((i, (p',q')))+ 
~\p'- pi\ 2 + ~\q'- qi\ 2). Thus, we can apply Theorem 3.1 to problem (4.10). 
Taking into account relations ( 4. 7) and Remark 3.2 we obtain the following 
lemma. 

LEMMA 4.2 Let wi,k, k = 1, 2, ... , be an ar-bitrary m.s. in the sense of (4.2) 
( Ek = E;,k) for- problem (Pp,q) with (p, q) = (pi, qi). Then, ther-e exist a seqv.ence 
of numbers 

'Yi,k ;::: 0, k = 1, 2, . .. ' 'Yi,k ~ 0, k ~ oo, (4. 11) 

and a sequence of vectors J-Li,k E R"+1 , 

\J-Li,k\ = 1, J-Lj'k;::: 0, j = 0, 1, ... '"·1, J-L~'k(Ij(wi,k)- p;);::: _'Yi,k, 

j=1, .. . ,K:1, (4.12) 

such that 

K 

2:: J-L~,k H(x, t, ~[wi,k](x, t), v, 'r/j [wi,k](x, t)) -
j=1 
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I< 

'L>t~'k H(x, t, ~[wi·"'](x, t), v,i,k(x, t), 1JJ [wi,k](x, t))} dxdt S 'Yi,k, 
j=l 

I< 

L tJ/ Hi(x, z[wi,k](x, T), v, 1JJ[wi,k](x, 0))-
j=l 

I< 

L fJ? Hj(x, z[wi,k](x, T), vi,k(x ), 1JJ [wi,k](x, 0))} dx s 'Yi,k, 
j=l 

max_(-tJ~'k(i _ LfJ}'keJ,(pi,qi) _ (p',q')) S 1 i,k, 
(p' ,q')ES';:.,r j=l 

j-1 
.~ 

e1 = (0, ... ,0, 1,0, ... ,0). 
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(4.13) 

We have I 0 (wi,k) _, {J(pi, qi), k _, oo, (pi, qi) _, (p, q), i _, oo. Hence, 
in view of ( 4.11) there exists a subsequence ki, i = 1, 2, ... , of the sequence 
k = 1, 2, ... , such that 

Ij(wi) S P.i + (p~- PJ) + Ei,k, p~- PJ + Ei,k; _, 0, j = 1, · ·., K1, (4.14) 

IIi(wi) - q.il S IIJ(wi) -- qjl + lqj- qJI S Ei,k; + lqj- qjl, 

Ei,k; + lq,;- %1 _, 0, J = K1 + 1, ... , K, Ei,k; _, 0, 

(Io(wi)- {J(pi, qi))/1((\ -ryi)l _, 0, 'Yi,k; /l((i, -ryi)l _, 0, i _, oo, wi = ·wi,k;. 

Moreover, by virtue of (4.3),(4.12),(4.13) and of Proposition 2.5.7 in Clarke 
(1983) we can assume without loss of generality that Nc(x) is the cone of 
normals to the set C at x (see Clarke, 1983) 

((i, -ryi) ((o o) N (( ) {3( )) . 
l((i,-ryi)l _, ,-1] E epi/3 p,q' p,q '2--->oo, (4.15) 

i,k; 1 i,k; 0 
fJo _, ' !Jj _, ' 

(4.16) 

Relations (4.14)-(4.16) allow to obtain the following corollary of Lemma 4.2. 

LEMMA 4.3 Let (p, q) be a point such that {J(p, q) < +oo. Then there exist a 
sequence of numbers 'Yi, i = 1, 2, ... , 

'Yi ~ 0, 'Yi _, 0, i _, oo, 

a sequence of pairs 

wi E w;,~, i = 1, 2, ... , 

( 4.17) 

(4.18) 
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and a sequence of vectors f..Li .E R"'+l, i = 1, 2, .. . , 

lf-Lil-=/= 0, f-L1;:::: 0, k = 0, 1, ... , K.1, f-L1(h(wi)- Pk);:::: -·/, 

k = 1, 2, .. . 'K-1, 

sv.ch that 

j. max t f-L1(H(x, t,~[wi](x, t), v, 'T]k[wi](x, t))-
QT vEU k=O 

H(x, t,~[wi](x, t), ui(x, t),'T]k[wi](x, t))) dxdt:::; 'Yi, 

{ max tf..L1(Hk(x,z[wi](x,T),v,7]k[wi](x,O))-
}o. vEV k=O 

Hk(x, z[wi](x, T), vi(x), 'T]k[wi](x, 0))) dx:::; 'Yi, 

"' 
(o + L fl·.iei = 0, 

.i=1 
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(4.19) 

(4.20) 

(4.21) 

( 4.22) 

wher-e f..L = ( 7]0 , f..L 1 , ... , f..Lr;) -=/= 0 is an arbitrary accumulation point of the seqv.ence 
f..Li, i = 1, 2, ... , and ( ( 0 , -7]0 ) is a vector satisfying the relations 

( 4.23) 

DEFINITION 4.1 A sequence of pairs wi E W, i = 1, 2, ... , is called stationary 
for· pmblem (Pp,q) if there exists a seqv.ence of numbeTS (4.17), for- which all 
relations (4.18)-(4.21) hold and for the cor-r-esponding sequence f..Li, i = 1, 2, ... 
all accumulation points ar-e non-zero. 

REMARK 4.1 In view of Lemma 4.3 and Definition 4.1, ther-e exist stationary 
seq1Lences for- pmblem (Pp,q) which satisfy also r-elations (4.22), (4.2.'3). 

Further, we consider the only two cases possible here: TJ0 = 0, 7]0 > 0. To 
this end define the following sets: 

L;,q= {- 2:::.7=1 {-Lje.i E R"' : f..L =: (TJ 0
, f..Ll, ... , f..L"J E R"'+1

, f..L -=/= 0, T)
0 = A, 

there exists a stationary sequence for problem (Pp,q ) such that the vector f..L is 
an accumulation point of the corresponding sequence of vectors f..L i, i = 1, 2, ... } ; 
.\ = 0, 1; 

M2,q = L~,q U{o}, Mi,,q = L~,q· 
If T)o = 0, then by Lemma 4.3 and by the definition of the asymptotic generalized 
gradient of Clarke (1983) we have 

( 0 E800{3(p,q)nM2,q· (4.24) 

If T)o > 0, then by ( 4.22) 

;-0 "' 

~o =-L ~~e·i. 
J=1 



Suboptimal control of distributed systems 

Since we have also ( 0 /rl E 8f3(p, q), then 

~: E 8f3(TJ, q) n M};,q· 

Define the sets: 

N1 := {r((, -1): r > 0, ( E 8f3(p, q) n M};,q} 

N2 := {((,0): ( E 800 {3(p,q) n Mg,q}· 
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( 4.25) 

Obviously, by the definitions of the sets 8f3(p, q), 8 00 f3(p, q) we have the inclu­
sion - sec Proposition 2.9.6 in Clarke (1983): 

On the other hand, since sequences (pi,qi), vi, (i, 'rji, i = 1,2, ... in (4.3), 
(4.4) are arbitrary, by inclusion (4.24), (4.25) and by the limit relation (4.15) 
we obtain- see Proposition 2.5.7 in Clarke (1983): 

The last inclusion together with the previous one gives us 

(4.26) 

LEMMA 4.4 ~he set M};,q is closed, o+ ':};,q C M~,q· In the case, where M~,q = 
{0} the set Mp,q 1.s bounded. The set Mp,q 1.s a closed cone. 

Proof. Since all four assertions can be proved using similar arguments, we 
confine ourselves to proving the second one. 

Recall that the recession cone o+c of a set C c Rn is given by o+c = 

{lirni-+oo 8iYi : Yi E C, 8i > 0, 8i ---+ 0, i---+ oo }. 
Let ).. E o+ Mi;,q· Then for some sequence of the vectors A8 E M};,q, s = 

1, 2, ... , we have 

Denoting fL 8 = (1,-\8
), we sec that for each s = 1,2, ... relations (4.17)-(4.21) 

hold with fL 8 ,i, fL 8
, 'Y8 'i, ws,i substituted by fLi, {L, 'Yi, wi, respectively. At the 

same time, 'Ys,i ---+ 0, ws,i E WJ,"~', i ---+ oo. Without loss of generality assume 
that 88 ::; 1, s = 1, 2, ... . Then 

, 8 ; ...L O , s,i , c s,i c \S · 1 · Us/1, ', / , Usfl•Q ---+ Us, UsfL,i ---+ Us/\.i, J = , ... , K,, 1, ---+ 00, 

, \S > O c s,i(J·( s,i) _, ·) > -'Vs ,i J. _ 1 K: Us/\.i _ , Usfl,.i .1 'W P.1 _ 1 ' - '· • • ' •1 

!, max ~ b8 fL 8 'i(H(:r, t, ~['UJ 8 'i](x, t), v, rJ,i['W 8 'i](x, t))-
vEUL .1 

' QT .i=O 

H(.r., ·t, ~[ws,i](x, t), v!'i(x, t), rJ,i[ws,i](x, t))) d.r.dt::; 'Ys,i, 
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l ~JLJC :t 8sfL.}'i(Hi(x, z[W 8 'i](x, T), v, 7J.i [w8 'i] (x, 0) )-
n .i=O 

Hi(x, z[ws,i](x, T), V 8 'i(x), 7Jj[W 8 'i](x, 0))) dx:::; ls,i. 

Choosing a subsequence is, s = 1, 2, ... , of the sequence i = 1, 2, ... , such that 
ls,i, ----+ 0, 158 p,~'i, ----+ 0, l5sfL.i'i, ----+ Aj, j = 1, ... , K., s ----+ oo, we verify easily 

that ).. E Mg,q. Thus the lemma is proved. D 

Further, we note that the closed cone n= =a= f3(p, q)nMg,q contains always 
zero and the recession cone o+ D of the closed set D = a(3(p, q) n M};,q· Indeed, 
WC have o+ D c o+a(3(p, q) no+ M};,q· Moreover, it is known (see for example 
Clarke, 1983) that the inclusion o+ a(3(p, q) c a= f3(p, q) always holds. Besides 
that, according to Lemma 4.4 we have o+ M};,q c Mg,q. Thus, o+ D c n=. The 
last relation, together with equality ( 4.26) permits to apply Proposition 15 from 
Rockafellar (1982) (see also Proposition 3.5 in Clarke and Loewen, 1986) and 
to obtain the following theorem. 

THEOREM 4.1 If f3(p,q) < +oo, then M};,qUMg,q \ {0}-=/- 0 and the Clarke's 
gener·alized gradient a(3(p, q) of the value function f3 at (p, q) is eqv.al to 

( 4.27) 

where a= (3(p, q) is the Clarke's asymptotic generalized gradient of (3 at (p, q). 

5. Conditions of regularity and normality in suboptimal 
control theory 

In this section we consider various conditions of regularity and normality of 
problem (Pp,q)· The following definition (Sumin, 1995, 1996b) generalizes the 
well-known classical concepts (see for example Warga (1971), Clarke (1983)). 

DEFINITION 5.1 A stationary sequence wi E WJ,~, i = 1, 2, ... , !i::::: 0, !i----+ 
0, i ----+ oo, for pmblem (Pp,q) is called normal (reg1~lar, abnormal), if all (there 
exist, do not exist) seqv.ences ~~i, i = 1, 2, ... , have (having, having) accv.mv.­
lation points ft with the component P,o -=1- 0 only (with the component p,0 -=1- 0 
only, with the component p,0 -=1- 0). The problem (Pp,q) is called normal (regv.lar, 
abnormal) if all its stationary seqv.ences are normal (regular, abnormal). 

LEMMA 5.1 Letf3(p,q) < +oo andMg,q = {0} (i.e., problem (Pp,q) is nonnal). 
Then the function f3 is Lipschitz in a neighborhood of (p, q). 

Proof. Since Mg,q = {0}, then all sets M};',q' are bounded uniformly with 
respect to (p',q') E Op,q, where Op,q is a neighborhood of (p,q). The proof of 
this fact is similar to the proof of Lemma 4.4. By this remark the assertion of 
the lemma is a simple corollary of Propositions 2.3.7, 2.9.7 in Clarke (1983) and 
of equality ( 4.27). D 
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This lemma is one of many important corollaries of Theorem 4.1. It gives a 
necessary condition of normality of problem (Pp,q)· Note that Theorem 4.1 and 
Lemma 5.1 are suboptimal analogues of certain corresponding results of Clarke 
(1983), expressed in terms of usual optimal controls for controlled systems of 
ordinary differential equations. 

On the other hand, we can get the following sufficient condition of regularity 
for problem (Pp,q) expressed in terms of perpendiculars to epi (3. Its proof is 
similar to the proof of Lemma 4.2. 

LEMMA 5.2 If((,-ry) l_ epi (3 at ((p,q),(J(p,q)) andry > 0 then problem. (Pp,q) 
is regular. 

Other sufficient condition of regularity of problem (Pp,q) is connected with 
the existence of a Kuhn-Tucker vector. To this end we generalize the classical 
concept of Kuhn-Tucker vector. 

DEFINITION 5.2 A vector p, EA= {(.A1, ... ,.A"') ER"': A1;:::: 0, . .. ,A"' 1 ;:::: 0} 
is called a Kv.hn- Tucker vector of pmblem. (Pp,q), if it satisfies the ineqv.ality 

K.t "" 

(J(p, q) :::; Io(w) + L P,i(Ii(w)- Pi)+ L P,i(Ii(w)- qi) Vw E W. (5.1) 
i=l 

To prove the above mentioned sufficient condition of regularity, we shall use 
the following criterion of perpendicularity. 

LEMMA 5. 3 A nonzem vector v is perpendicv.lar to a set C at a point x E cl C 
if and only if 

(v, c- x) < lx- cl 2 /2 Vc E cl C, cf. x. 

Proof. The necessity follows from Proposition 2.5.5 in Clarke (1983). We shall 
prove the sufficiency. Let x' = v + x. Then, it follows from the inequality of the 
lemma that 

(x'- x, x'- x + c - :r') < lx'- c - (:r'- xW /2 Vc E cl C, cf. x, 

and hence 

0 < lx' - xl < lx' -cl Vc E cl C, cf. x, x' f:. cl C. 

Thus, the point x' f:. cl C has a unique nearest point x in cl C. It means that 
the vector v = x' - x is perpendicular to cl C at x. 0 

LEMMA 5.4 If p, E A is a Kv.hn-Tv.cker vector· of problem. (Pp ,q ), then -p, E 

M;,q and (-p., -1) l_ epi (3 at ((p,q),(J(p,q)). 
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Proof. It follows from (5.1) that 

K,l K r;, 

f3(p, q) + 2.:.:: J.liPi + 2.:.:: p,iqi :::; Io(w) + 2.:.:: P,iii(w) Vw E W, 
i=l i=l 

and, consequently, 

{J(p, q) - ( -p,, (p, q)) :::; Io- ( -p,, (p', q')) V(p', q') E dom {3, Io ~ {J(p', q') 

or 

{J(p, q)- (-JL, (p, q)) < Io- ( -p,, (p', q')) + ~l((p', q')- (p, q),Io- {J(p, q)W 

V(p',q') E dom {3, Io ~ {J(p',q'), ((p',q'),Io) =f. ((p,q),{J(p,q)). 

From here we conclude that 

(( -JL, -1), ((p', q'), Io)- ((p, q),{J(p, q))) < ~l((p', q'), Io)- ((p, q),{J(p, q))l 2 

V(p', q') E do m {3, Io ~ {J(p', q') , ( (p', q'), Io) =f. ( (p, q), {J(p, q)). 

From the la.''>t strict inequality and from Lemma 5.3 it follows that the vector 
( -11,, -1) is perpendicular to the set cpi {3 at the point ( (p, q), {J(p, q)). Therefore, 
by the argument of the proof of Lemma 4.2, we get -p, E Mi,,q· The lemma is 
proved. D 

The following lemma connects conditions of normality of problem (Pp,q) with 
the magnitude of the gap {30 (p, q) - {J(p, q) and generalizes to the considered 
situation the corresponding result in vVarga (1971), Theorem V.3.4. The proof 
of the lemma is omitted due to the lack of the space. It can be found in Sumin 
(1995,1996b) 0 

LEMMA 5.5 If the stTict ineqv.ality {J(p, q) < {30 (p, q) holds joT pToblern {Pp,q), 
then any seqv.ence wi E W, i = 1, 2, ... satisfying the r-elations 

Io(wi) __, 73 E [{J(p,q),fJo(p,q)], Io(wi):::; f3o(p,q) + Ei, wi E w;:q, 
Ei ~ 0, Ei -4 0, i -4 00 

is a stationaTJJ one. At the same time, it is not a normal stationar-y seqv.ence if 
73 E [{J(p, q), f3o(p, q)). 

COROLLARY 5.1 The stTict ineq11.ality {J(p, q) < f3o(p, q) for- pToblern {Pp,q) does 
not hold at least in the following two cases, where: 1) all stationary sequences 
ar-e rLO'rmal ones; 2) theTe exists a noTmal minimizing seqv.ence in the sense of 
(4.2). 

Further, we shall prove two lemmas that constitute sufficient conditions of 
normality for problem (Pp,q) and generalize to the case of suboptimal theory 
the classic conditions of normality in mathematical programming (condition of 
Slater and condition of linearity). 
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LEMMA 5. 6 Let in pTOblern (Pp,q} the equality constr-aints be absent, i.e., ;;, = 
K.1 , and the initial data have the form: bi(x, t, u) = b;(x, t), i = 1, . .. , n, a.(x, t, u) 
= a( x, t) . Mor-eover- the fv:nctions Gi ar-e convex in z, i = 1, ... , K,. If ther-e exists 
a pair- w0 E W sv.ch that Ii(w0 ) <Pi, i = 1, .. . , ;;,, then problem (Pp,q) = (Pp) 
is rwr-m.al. 

Proof. Assume that the assertion of the lemma is not true. Let v} E W, i = 
1, 2, . .. , be a stationary sequence for problem (Pp) such that the corresponding 
sequence of vectors fLi E R"'+1 , i = 1, 2, ... , has an accumulation point fL with 
the component JLo = 0. Then, by virtue of (3.12), (3.13) and the assumptions 
of the lcmrna we have 

K. 

Jl.b(Io(w0
)- Io(wi)) + L fLt(h(w 0

)- h(wi)) = 
k=l 

k=l 

"" i 'lJ [ 0 il + i c [ 0 il LJl·k''-kw ,w JLo"ow ,w, 
k=O 

where 

Hk[w 2
, w 1

] = ;· (H(x , t,~[w 1 ](x, t), v.1 (:r, t),'l]k[w 1 ](x, t))- (5.2) 
• QT 

H(x, t, ~[w 1 ] (x, t), v?(x, t), 'l]k[w 1 ](:r, t))) dxdt + 

/ (Hk(x, z[v?](x, T), v1 (x),'l]k[w 1](x, 0))-
./n 
Ih (x, z[w 1](x, T), v2 (x), '/]k [w1 ](x, 0))) dx, 

t'k[w2,w1] = / Ea[w2 ,v?](x,t)'l]k[w1](x,t)dxdt+ / Eak[w2 ,w1 ](x)dx, 
.JQT ./n 

Ea, Eck arc corresponding E -functions of Weierstrass-Plotnikov (see Theorem 
3.2). From here due to the assumptions of the lemma, stationarity of the se­
quence wi and the convergence JLb -+ 0, i -+ oo, for all i sufficiently large we 
have 

"· L J41ik[wo, wi] ::::; 
k=O 

- Jtbt'o[w 0
, wi] + Mb(Io(w0

)- Io(wi)) + K.'"-/ + L JLi(h(w 0
)- Pk) <-a, 

k=l 

where a > 0 is some number. The last inequality contradicts the stationarity 
of the sequence wi. The lemma is proved. D 
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LEMMA 5. 7 Let the fv.nctions bi(x, t, u), i = 1, ... , n, a(x, t, v.) in the pmblem 
(Pp,q) be the same as in Lemma 5.6, Gi(x,z,v) = Gt(x)z + Gr(x,v), i = 
1, .. . , K., and there exists a nonstationar-y sequence wi E WJ,~, i = 1, 2, ... , 
li ;:::: 0, ri-+ 0, i-+ oo. Then pmblem (Pp,q) is normal. 

Proof. Assume that the assertion of the lemma is not true. Let wi E WJ,~, i = 
1, 2, . .. , li ;:::: 0, li -+ 0, i -+ oo, be a stationary sequence for problem (Pp,q) 
such that the corresponding sequence of vectors J.Li E R"'+1 , i = 1, 2, ... , satisfies 
the relations 

fli-+ J.L, J.L =f. 0, J.Lb-+ 0, J.Li.(h(wi)- Pk) ;::: _,i, k = 1, ... , K,l· 

Let also "fff E WJ,~, i = 1, 2, ... , -;yi ;:::: 0, -;yi -+ 0, i -+ oo, be a given sequence. 
By virtue of (3.12),(3.13) and the assumptions of the lemma we get (see also 
(5.2)) 

k=l 
I< 

J.Lb(Ho[wi,wi] +Eo[wi,wi]) + 'L~>i.(Hk[wi,wi] +Ek[wi,wi]) = 

k=l 

p.b(Ho[wi,wi] +Eo[wi,wi]) + LJ.Li.Hk[wi,wi]. (5.3) 
k=l 

From here by the convergence J.Lh -+ 0, i -+ oo, and stationarity of the sequence 
wi, it follows 

I< I< 

-f3i:::; LJ.Li.Hk[wi,wi] = -J.LbEo[wi,wi] + LJ.Li.(h(wi)- h(wi)):::; 
k=D k=O 

1<1 

-J.LbEo[wi, wi] + J.Lb(Io(wi)- Io(wi)) + L J.Li."ii + "·1/i + 
k=l 

"· 
L J.Li.(h("fif)- h(wi)), 

k=~<1+l 

(5.4) 

where f3i ;:::: 0, f3i -+ 0, i -+ oo, is a sequence of numbers. Consequently, we 
have 

t J.Li.Hk["fif, wi] = {t J.Li. l (H(x, t, ~[wi](x, t), v,i(x, t), 'l]k[wi](x, t))-
k=D k=O 'QT 

H(x, t, ~[wi] (:r, t), 'lt(x, t), '17k [1ri] (x, t))) dxdt} + 

{tJ.Li. / (Hk(x,z[wi](x,T),1}(x),1]k[wi](::z:,O))­
k=D .ln 

Hk(x,z[wi](x,T),vi(x),'l]k[wi](:r:,O)))dx} ={at}+ {an-+ 0, i-+ oo. 
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From here , in view of the stationarity of the sequence wi, it follows 

1 2 0 . ai , ai -+ , ~ -+ oo. 

In turn, due to the last limit relation, independence of the adjoint functions 
ryk[w] of w E W for k = 1, ... ,"' (this follows from the assumptions of the 
lemma) and the convergence 11b -+ 0, i -+ oo we conclude that the sequence 
wi, i = 1, 2, . .. , is also a stationary one, since due to (5.3),(5.4), we can write 

"'1 

Jli(h(wi)- Pk) 2 Jli(h(wi)- Pk- 'Yi) 2 L 11i(Ik(wi)- Pk- ;yi) = 
k=l 

"'1 "' 

-Jlb(Io(wi)- Io(wi)) + L Jli(h(wi)- Pk)- L Jli(h(wi)- h(wi)) + 
k=l k=x;1+1 

K. K.! 

Ll1i1ik[wi,wi] + 11b£o[wi,wi]- Ll1i1 2 -ai, k = 1, ... ,K.1, 

k=O k=l 

for some sequence of numbers ai 2 0, ai -+ 0, i -+ oo. The last inequality 
contradicts the assumptions of the lemma. The lemma is proved. D 

Finally, we formulate the following lemma improving Theorem 4.1 for "linear­
convex" case of problem (Pp,q)· The lemma is a corollary of Theorem 3.2 and 
of Lemmas 5.4, 5.6, 5.7. The proof is omitted for the same reason as that of 
Lemma 5.5 . 

LEMMA 5.8 Let pmblem {Pp,q) be normal and the initial data be the same as 
in TheoTem 3.2. Then the equality 

EJf3(p, q) = -Mi,q = Mp,q 

holds, wheTe Mp,q is the set of all Kuhn- TuckeT vectoTs of pmblem {Pp,q}. 

6. Illustrative examples 

Example 6.1 To illustrate Lemma 4.1 we consider the following optimal control 
problem 

J0 (v)==. {
1

(z2 (x,T)-v 2 (x))dx-+inf, h(v)==. (z 2 (x,T)dx=q, l,T>O, 
.fo .fo 

EJz 82 z - = -
2

, z(x,O) = v(x), x E (O,l), z(O,t) = z(l,t) = 0, t E (O,T), V= [-1, 1]. 
EJt OX 

It is easy to see that obvious equality f3o(O) = 0 holds. But on the other 
hand the limit relations I0 (vi) -+ -l, h(vi) -+ 0 for i -+ oo are fulfilled for 
example for the sequence vi E W~' of the following elements 

vi(x) = { 1 2k/2i:::; x < (2k + 1)/2i, . . (6 1) 
-1 (2k+1)/2z:::;x<(2k+2)/2z, k=0,1, ... ,z-1, · 
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where Ei ----+ 0 is a suitable sequence of positive numbers. Hence, for q ----+ +0 the 
function f30 (q) takes on values approaching -l, so it is not lower semicontinuous. 

Example 6.2 Consider the optimal control problem (Pp ,q) in the following form 

J0 (v) = t (z2 (x, T)- v2 (x)) dx----+ inf, h(v) = /1 

z(x, T) dx = q E [-1 , 1], 
.fo .fo 

oz o2 z 
~ = "' 2 , z(x, 0) = v(x), x E (0, l), z(O, t) = z(l, t) = 0, t E (0, T), V= [-1, 1]. 
ut ux 

The relations of Theorem 3.1 have the form 

t max{JLb( 7)o[vi] (x, 0) ( v - vi(x)) + v2 
- ( vi(x) )2)+ 

./0 vEV 

JLl7J1[vi](x ,O)(v - vi(x)}dx :=; , ... -/, 
(p,b,Jl,l) =1- 0, JLb ~ 0, lh(vi)- ql :=; '/, '"·/----+ 0, i----+ oo, 

(6.2) 

where the adjoint functions 7)o [vi], 7)1 [vi] satisfy the boundary-value problem 

0'1] 82 '1] -;- + "' 2 = 0, 7J(x, T) = 'lj;(x), x E (0, l) , 77(0, t) = 'l](l, t) = 0, t E (0, T) 
Ot ux 

for 'lj;(x) = -2z[v](x, T), v =vi and 'lj;(x) = -1, x E (0, l) respectively. 
Due to elementary properties of solutions of these primal and adjoint bound­

ar·y-value problems 

(6.3) 

if vi ----+ 0, i ----+ oo weakly in L2 (0, l). Therefore, in the case that q = 0, the 
sequence (6.1) satisfies the relations (6.2) if p,i ----+ 0, i----+ oo. For this reason if 
q = 0, then (6.1) is a stationary sequence for our problem. At the same time, 
by Theorem 3.2 this sequence is a minimizing one. 

Calculate of3(0). First note that the control v(x) = 0 satisfies the equality 
h (0) = 0 but it is not a stationary one for the considered problem at q = 0 (this 
fact can be easily verified). Then due to Lemma 5.7 our problem is normal for 
q = 0 and we have M8 = {0}. 

If JLb ----+ 1, i ----+ oo then an elementary analysis shows that only a sequence 
of controls vi, i = 1,2, ... such that lvi(x)l ----+ 1 for a.e. x E (O,l) can satisfy 
the relations (6.2). Let A[v](x) = z[v](x, T). Since A: L 2 (0, l) ----+ L 2 (0, l) is a 
linear bounded operator and 7)o[vi](x, 0) = -2A* [z[vi](-, T)](x), "71[vi](x, 0) = 
-A*[1](x), then in view of (6.2) we conclude that 

t max {JLb(7Jo[vi](x, O)(v- vi(x)) + v2
- (vi(x)) 2)+ 

./0 vEV 

1A "71 [vi](:r, 0)( v- vi(x)} dx ~ 

t (-2(JLb"7o[vi](x,O) + ftl"71[vi](x, O))vi(x)) dx = 
.fo 

(6.4) 
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/

1 

(2(2J.LbA * [z[vi](·, T)](x) + J.Li A* [1](x) )vi(x)) dx = 
.fo 

2 /
1 

(2J.Lbz2 [vi](x, T) + J.Liz[vi](x, T)) dx . 
.fo 

551 

Therefore, since I 1(vi)---> 0, i---> oo, then in view of (6.2) and (6.4), we find 
that ll z[vi](·, T) ll 2 ,(o,!) ---> 0, i---> oo. On the other hand, the first limit relation 
(6.3) obviously holds. This means that 

and, consequently, (since lvi(x)l---> 1, i---> oo) 

t max{J.Li'l]l[vi](x, O)(v- vi(x)} dx::::; "'/ , 
.}0 vEV 

(6.5) 

where'"/ 2: 0, li ---> 0, i ---> oo. At the same time, since our problem for q = 0 is 
normal, in the case J.Li ---> a =/= 0, i ---> oo, for the same sequence of the controls 
vi we have 

The last relation contradicts (6.5). Thus, in the case J.Lh---> 1, i---> oo, we must 
have the limit relation J.Li ---> 0, i---> oo which means that MJ = {0}. Then, by 
virtue of Lemma 5.8, we find that 8{3(0) = MJ = Mo = {0}, where Mo is the 
set of K uhn-Tucker vectors of our problem. 
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