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1. Introduction

It is known that the traditional optimal control theory (first of all, the theory of
necessary conditions) supposes existence of optimal controls in a class of usual
(i.e. Lebesgue measurable) or relaxed in the sense of Young (1969), Filippov
(1959), Gamkrelidze (1962), Warga (1971) and Fattorini (1991). It is known also
that realization of the existence conditions requires sufficiently severe assump-
tions, see Filippov (1959), Gamkrelidze (1962), Warga (1971), Fattorini (1991),
for the initial data of optimal control problems connected, for example, with
various compactness properties of the sets of solutions of controlled distributed
systems. We assert that many theoretical ”difficulties” may be surmounted to a
great extent if we consider a minimizing sequence (m.s.) as a “main element” of
the theory instead of optimal control (usual or relaxed). Such transition permits
to develop useful suboptimal control theory. Above all here we keep in mind
necessary and sufficient conditions for elements of m.s., regularity and normal-
ity, differential properties of value functions, sensitivity, Kuhn-Tucker vectors,
nonsmooth problems, numerical methods, etc. We can interpret the transition
to m.s. in a certain sense as a ”maximal” extension of the initial optimal control
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problem. It corresponds well to Hilbert’s dictum (Young, (1969), p.123) that
Every problem of the calculus of variations has a solution, provided the word
"solution” is suitably understood. Here we consider a m.s. as a solution of the
optimal control problem. At the same time, we show that the theory, based on
this concept, generalizes the traditional one and gives a new useful information
about the optimal control problem. Such situation corresponds to the transition
from usual optimal controls to relaxed controls in the sense of Young (1969),
Filippov (1959), Gamkrelidze (1962), Warga (1971), Fattorini (1991).

In this paper we consider some new results of suboptimal control theory,
sec for example Plotnikov and Sumin (1982), Sumin (1987, 1990, 1995, 1996a,
1996b). These results are connected with necessary and sufficient conditions for
elements of m.s., with value functions and with conditions of regularity, as well
as normality and abnormality. Some of these results generalize corresponding re-
sults of Clarke (1983) expressed in terms of usual optimal controls for controlled
ordinary differential systems. According to Sumin (1987,1990,1995,1996a,1996b)
we consider as m.s. the so-called minimizing approximate solutions in the sense
of Warga (1971). Firstly, precisely this use of the minimizing approximate
solutions gives us the possibility to write down the results in terms of the ex-
tended (relaxed), Young (1969), Filippov (1959), Gamkrelidze (1962), Warga
(1971), Fattorini (1991), optimization problem if the problem admits such an
extension. Secondly, the application of m.s. in the mentioned sense permits to
develop many of the results of Clarke (1983) for investigation of differential pro-
perties of corresponding value functions of optimization problems as functions
of their parameters (Sumin 1990,1995,1996a,1996b). Finally, the minimizing
approximate solutions permit also to establish more close connection of optimal
control theory with numerical methods (Sumin (1990,1996b)), since the concept
of suboptimality is the central one in numerical methods of optimization.

In the paper we consider a concrete optimal control problem for a linear
controlled parabolic equation. But all results remain true for essentially more
general optimal control problems for various equations of mathematical physics
with boundary controls, fixed and free time, and various constraints. Full proofs
of the results can be found in Sumin (1996a,1996b). The paper contains illus-
trative examples. Other results connected with the suboptimal control theory
can be found e.g., in Fattorini (1990), Fattorini and Frankowska (1990).

2. Optimal control problem statement

Consider the controlled first boundary-value problem for a linear parabolic equa-
tion in divergence form

2 — aiai,,-(:c,t)zmj + bi(z, t,u(z, ) ze, + a(z, t,u(z, )z + f(z,t,u(z,t)) =0,
#2(z,0) =v(z), 2 €8; 2(z,t)=0, (1) € S (2.1)
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The controls u : Qr — R™, v : Q — R! are elements of the sets W,
{u € Loo(Qr) : u(z,t) € U for a.e. (z,t) € Qr}, Wa = {v € Loo() : v(x)
V for a.e. z € Q}, respectively, U C R™,V C R! are compacts, W = {w
(u,v) : w € Wy x Wa}, Q is a bounded domain in R™.

The object of our studies is the following minimization problem

(P) Iy(m) — inf, I™(7) <0, I"™(r)=0, weD, ky=k-—Kki,
where: I%(m) = (I1(m), ..., L, (7)), I"?(7) = (Le,41(70),. .., Ic(T)),

I m

Ii(m) = /Q Gi(z, zw](z,T),b,v(z)) dz,

D = {r = (uy,v,b) : T € Wy X Wy x B} is a set of triples of controls, B
is a convex compact in B!, D=Wx B, W= {w=(u,v):w € W x

Wh},  zw] eV 3°(Qr) is the weak solution in the sense of Ladyzhenskaya,
Solonnikov and Ural’tseva (1967), Ch.III, of the first boundary-value problem
(2.1) corresponding to the pair w € W.

Assume that the following conditions on the initial data of problem (P) are
fulfilled:

(i) the functions G, 0G/0z, 0G/Obs : 2 x R* x B x R — Rk =
0,1,...,6,8=1,...,0, a;;:Qr — R, bi,a,f:Qr x R™ — R,i,j =
1,...,n, are Lebesgue measurable in (z,%,2,b,u,v) and continuous in
(2,b,u,v) for a.e. (x,t) ;

(ii) the coefficients of the boundary-value problem (2.1) satisfy the inequalities
vIEP < aij(z, )66 < plé® V(z,t) € Qr, v,p>0,
|b7;(m,t,u)| = Ko(.'l?,t), 'a(.’L’,t,’U,)' < Kl(m’t)v If(.’l?,t, ’LL)I < K2($7t)

V(.’L’,t) € QTaU' € U,
where Ko € Lag 2+ (Qr), K1, K2 € Lgr(Qr) and the pair of numbers (g, r)
satisfies certain conditions (7.1), (7.2) in Ladyzhenskaya, Solonnikov and
Ural’tseva (1967), Ch.III;
(iii) the integrands G, k=0,1,...,x, satisfy the inequalities
|Gk (z, 2,b,v)|, |0Gk(z, 2,b,v) /02|, |0Gk(x, 2,b,v) /0bs| < N(M)
V(x,2,b,v) € Ax Siy x BXV,
where S%, = {z € R" : |z| < M}, N(-) is a positive nondecreasing
function of M > 0.

REMARK 2.1 In view of the conditions (i) - (iii) and Theorem 4.2 in Ladyzhen-
skaya, Solonnikov and Ural’tseva (1967), Ch.III, the primal problem (2.1) has

o
a unique solution z[w] €Vy°(Qr) for any pair w = (u,v) € W. For the same
reason, the adjoint problem

0
Mt — %(ai,_j (:E; t)Tln <+ bj (I7 t7 U(.’I?, f))77) =t a(x, tv U(.’E, t))77 = 0’

=0

n(m7T) = _di["r](x)’ z €Y 77(-75:75) =0, (.’B,t) € 9, w= (w>b) = (u,v,b) (22)
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has a unique solution n;[r] EI;;’O(QT) for any triple 7 = (w,b) = (u,v,b) €
D,i=0,1,...,k, where

d;[7)(z) = 0G;(z, z[w](z,T),b,v(x))/0z.
Moreover, by Theorems 7.1, 10.1 in Ladyzhenskaya, Solonnikov and Ural’tseva

(1967), Ch.III, the solutions z[w)], n;[m] are bounded in Lo (QT) uniformly with
respect to m € D and z[w], ni[r] € H**/?(Qr) for some a > 0.

3. Necessary and sufficient conditions
for minimizing sequences

Let us define

/Be = i%)lef-ZO(W)a €2 07

whereDE={r € D: Li(n) <ei=1,...,60;|L(1)| <€i=r1+1,...,6}, L=
+o0, if D, = 0. Obviously, B¢, > fe, for €1 < 3. Consequently, there exists the
finite or infinite limit (the value of problem (P))

1 = = <
61_1)1110& == 0= P

Just as in Sumin (1987, 1990, 1995, 1996a), we are interested in deriving
necessary and sufficient conditions for elements of m.s. of triples 7 € D,i =
1,2,..., for problem (P) such that

L) <B+e, weD% >0, ¢—0, i— o0 (3.1)

REMARK 3.1 The concept of m.s. in the sense of (8.1) for problem (P) co-
incides with the well-known concept of minimizing approximate solution in the
sense of Warga (1971), Ch.II.

Introduce the notations:

H(!L’,t,Z,p, “777) = —77(2 bi(m7t7u)pi = a(m7tau)2 + f(:l),t,'u)),
=1

Hi(z,2,b,0,m) = nv — Gg(z,2,b,v), k=0,1,...,k,
E=(2,p1,---,0n), E](z,t) = (2lw](z,1), 20, [W](2,1), . . ., 20, W] (2, 1)).

The following theorem gives necessary conditions for elements of m.s. in the
sense of (3.1). We omit the proof of this theorem due to the lack of space. The
details may be found in Sumin (1996a).

THEOREM 3.1 Let 7* € D,i = 1,2,..., be a m.s. 1in the sense of (3.1) for
problem (P). Then there exist a sequence of numbers

Y20, d=L 8 sy Perll I8, (3.2)
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and a sequence of vectors put € R,

|,U,1'| = 1) /‘L}Lc Z 07 k= 0717' -5 R, P«iIk(Wi) > _’yia k= 17 y K1,y (33)
such that

/Cv? Igleal‘)lczu}ﬂ(H('cit’g[wl](m’t)a’U:nk[ﬂﬂ](xvt))_
i k=0
H(z,t,£[w)(z, 1), v’ (2, ), m[r)(x, 1)) dwdt < 7', (3.4)

/Qma,xzﬂk Hiy(w, 2[w')(2,T), b, v, e[} (=, 0)) -

ve

Hy(z, 2[w')(=, T), V', v*(2), e[} (2, 0))) dz < 7, (3.5)

max Z#k / V4G, 2]z, T), B, v (2)) da, b — ) < 7, (3.6)

where ni[r], k= 0,1,...,k, are the solutions of the adjoint problem (2.2) for
o =

REMARK 3.2 If the cost functional m problem (P) has the form
¢(Io(m)) +9(b), ¢ € CHR'), ¥ € C(R),

then we must replace the value pd in (3.4),(5.5) by ¢'(Io(m*))u and rewrite
(8.6) in the form

ma,x{,uO(V'L/)(b’) + ¢’ (To(m / VGo(z, z[w'](z, T), b, v*(x)) dz, b* — b)+
Zu};(/ VG (z, z[w'](z, T), b, vi(z)) dz, b* — b)} < 4*.
k=1 Q

Further, we define the so-called E-functions of Weierstrass-Plotnikov (see
for example Plotnikov (1972), Sumin (1985,1987,1996a), Novozhenov, Sumin V.
and Sumin M. (1986)) to formulate sufficient conditions for elements of m.s. in
the sense of (3.1): E QTlexR”lexR”meme—»Rl EG
QlelexR’lelele,j—O .

Ea(xat7z2>p27zlapl7u27ul) = a(m7t7z 1p , U ) —a(.’E,t, Zlyp17u2)—
(Vpa(mat) Zlapla ’u‘l))p2 - pl) - Vza(a:, t’ Zlapl? ul)(ZZ - zl)?
n
a(z,t,2,p,u) = Z bi(z,t,u)p; + a(z,t,u)z + f(z,t,u),
=1
Eg,(z,2%,2*, 02,01, 0%, 0") = Gy(x, 22,b%,v%) —G'j(’B 24, b, v?)—
V.G,(z, 24, b, 01) (22 — 2Y) — (VGy(z, 24,0, 0Y), 0% — b').




534 M.I. SUMIN

Denote also:

Eg[n®, 7"|(z,t) = Ba(x,t,£[w?|(z,1), E[w'](x, 1), v’ (x, 1), u' (z, 1)),
Eg,[r* m')(z) = Eg, (z, 2[w?|(z, T), z[w'|(z, T), b%,b', v*(z), v (z)).

In order to prove sufficient conditions for elements of m.s. we consider the
following two auxiliary lemmas. The proof of the first lemma is omitted, since
it may be found for example in Novozhenov, Sumin V. and Sumin M. (1986).

LEMMA 3.1 Let us consider the first boundary-value problem for the following
linear parabolic equation

2t = '(‘%aiyj(mﬁ)zmj + bi(m)t)zmi it a,(x,t)z #+ f(a:,t) =0,
Z('an) == ¢(f)7 T €Y z(w,t) =0, (',E7t) & &, (3.7)
where coefficients a; 5, bi, a, f, 1 satisfy the following assumptions:

VIEP < aiy(m, )€€ S plél* V(z,t) €Qr, v,u>0,
bi € L2q,2T(QT)> a)f & Lq,’l"(QT)v 'l/} £ LZ(Q)a 7’7.7 = 1’27 PRl

Here the pair of numbers (q,r) is the same as in the assumption (i1) of Section

2. If a function z ex;;’o(QT) is a weak solution of the problem (8.7), then for
any functions ¢ € Lq»(Qr), d € La(§)) we have

/ c(z,t)z(z,t) dedt — /g d(z)z(z,T) dx

T

= [ (@ on(e,t)dudt ~ [ d@in(e,0)do,
JQr JQ

where the function n E&é’O(QT) 1s a weak solution of the adjoint problem

0
—1e = 5 (005 (% D), + by (@, 1)) + a(z,t)n + c(z.t) =0,
T
77(T7T) = d(T)) z € () n(mat) =0, (:L',t) € Sr.
LEMMA 3.2 The increment Al = I;(w?) — Ii(w'), i = 0,1,...,k, 7', 72 € D,

18 equal to

AIiz/ ZA bi(u?(z, 1), ul (%, 1)) 2a, [w'] (7, 1) +

Qr ;=1

Aotz 1), (o, )28 )(5,) + o (02 0,6, (0, s ) i~
[ @@ = v E@mirw,0)de + [ (e, o1, 8,0 @)
~Gi(a, 2w’ (e, T), V' (@) dot
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(/ VGi(z, 2[w](z, T), b, v (z)) dz, b? — b*)
Q

+ ‘ Eg[wg,ﬂl](x,t)ni[wl](:c,t)dmdt+/E(;i[vrz,wl](a:)da:, (3.8)
Qr Q

where: Aybi(u?(-,-),ut () = bi(s, - u(+, 7)) — bi(s, -, ul(+, ), ete.

Proof. Since z[r%], i = 1,2, are the solutions of the boundary-value problem
(2.1), it is easy to see that the increment Az = z[r?]—z[r!] satisfies the following
boundary-value problem

0
Az — B i (z,t)Azg; + bi(z,t,u' (z,1))Azg, + a(z,t,ul(z,1)) Az

+Eg[n?, 7l (z, 1) + Aubi(u?(z, 1), ul (z, 1) 24, 1] (2, 1)
+Aya(u?(z,t), ut(z, 1)) 2[r)(z, ) + Ay f(u?(z,t),u'z,t) = 0
Az(z,0) = v%(z) —v'(z), z€Q; Az(z,t) =0, (z,t) € Sr. (3.9)

i, v ofien Tl

Li(r?) — L(xt) = /Q v, Golas 2 e, T), B o () A, T) st
( /Q VG, ]2, T), b1, 0 (@) day ¥ ) + /Q Bo i, #Y() do +
| /Q(Gi(m, (2, T), b, v2(x)) — Gi(, 2] (=, T), b, v’ (x))) dv.

In view of (3.9) we can apply Lemma 3.1 to rearrange the first term on the
right-hand side of the last equality. As a result, we get (3.8). . O

THEOREM 3.2 A sequence * € D, i =1,2,..., is a m.s. in the sense of (3.1)

for problem (P), if for some sequence of numbers (3.2) we have n* € D" and
there ezists a sequence of vectors pu* € R*t1 i =1,2,...,

< Cy || #0, ph>7, ph>0, pili(r®) 2 =4, k=1,...,6,  (3.10)
where C, v > 0 are some positive constants, such that

iu;;(fk(w) —L(r) > -4 VreD". (3.11)
k=0

Moreover, the following expressions hold for the left-hand side of (3.11) and for
the increment Iy (m) — Ix(m*):

> i (T(m) = (7)) =
k=0
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(D wiHalm, '} + D phélm, 7]y = {Hm, 7]} + {E[x, 7]}, (3.12)
k=0 k=0

Ti(m) — T(r') = { /Q (B et 60 0,0 0, 1) -
Hiz, 1, f[wi](z, t), u(z,t), Nk [7ri](:1:, t))) dzdt +
[ e 2101, T, B, ) el ,0) -
Hi (o, #w')(z, T), B, o(z), melr] (2, 0))) de +
(/ VG (a, ul](z, T), b, v(z)) dz, b — b)Y} +

{ Eglr, n'](z, t)ne [7*] (2, 1) dmdt+/ Eg, [r, 7% (z) dz}
JQr

= {Hx [ﬂ—aﬂ'i]} + {& [ﬂ-aﬂ-i]}' (3.13)
Proof. In view of (3.10),(3.11) we can write
B (Io(m) — To() > |

S MG~ R~ Y ) - L)~ >
k=1

k=krk1+1

K
29" |pk| -7 =i Vr e DY
k=1

Obviously, by (3.10) and by the inclusion 7* € D we have: a; — 0, 1 — oo.
From here and (3.10) we conclude that the first assertion of the lemma is correct.
Equalities (3.12),(3.13) follow from equality (3.8) of Lemma 3.2. O

REMARK 3.3 By virtue of (8.12), inequality (8.11) holds if the following in-
equalities are fulfilled:

’H[7r,7r’] - —7’,4 Elm >0 Vre DT

It is easy to see that the first of these inequalities is directly tonnected with the
conditions of suboptimality of Theorem 3.1. We distinguish here the case of those
initial data of problem (P) for which the summary E-function of Weierstrass-
Plotnikov E[m, '] is nonnegative. Ezactly in this case the corresponding "per-
turbed” mazimum principle (3.2)-(3.6) constitutes a sufficient condition of sub-
* optimality under additional assumptions of regularity of problem (P). Note that
the inequality E[m, %] > 0 certainly holds for all ™ € D in the case of the so-called
linear-convex” problem (P): bi(z,t,u) = .bi(z,t),7 = 1,...,n, a(z,t,u) =
a(z,t), Gi(z,z,bv) = Gi(z,2,b) + Gi(z,v), the functions G} are convex in
(2,b),i=0,1,...,61, Gi(z,2,b,v) =GCi()z+T 5 G2;(x)b; +Gi(z,v), i =
K1 + 1, ey R ) '
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4. The value function of optimal control problem

In this section we consider the problem of minimization
(Po) Ip(w) — inf, I™(w) <0, I"*(w)=0.

Problem (FPp) is the same as problem (P), but integrands G;,7= 0,1, ..., x,
and, consequently, functionals I;, 1= 0,1,...,, in problem (FPp) do not depend
on the vector parameter b. We assume that the data of problem (Pp) satisfy all
. conditions (i) - (iii) of Section 2; certainly those that do not refer to parameter b.
We embed problem (F) into a family of problems (P q)

(Ppyq) Io(’w) - inf? INI (w) S b, IHZ (w) =4q, w e W7

where p= (pla e aplﬂ)a q= (qf91+1’ ¥ B ’q'i)'

As in Section 3 we denote: Wy, = {w € W : Li(w) < p; +¢€i =
L.,k [ L(w) =gl £6i=r+1,...,6} € >0, Bep,q) = inf{lo(w) :
weWs b, Be(p,q) = +oo, if Wy, = 0.

Obviously, there exists the limit (finite or infinite)

lim Be(p, q) = B+o(p, q) = B(p,9) < Polp, ), (4.1)

usually called the value function of the problem (FPp).
According to the concept of m.s. in Section 3, a sequence of pairs w* €
W, k=1,2,...,is called a m.s. for problem (P, ) if

I0<U)k) < /Bp,q + ek, Ij(wk) < by + €k, ] = 17 -y R,
|Ij(wk)_qj|§6kaj:K'l'i']-)"'aK': (42)

for some sequence of numbers ¢, >0, k=1,2,..., ¢, — 0, k — oo.

Just as in Sumin (1990,1995,1996a), we are interested in differential proper-
ties of the value function SB(p,q). In this section we shall derive an expression
for the Clarke’s generalized gradient, Clarke (1983), of the function B(p,q). To
this end, following Sumin (1990, 1995, 1996a) we use the general approach of
Clarke (see for example Clarke, 1983, Clarke and Loewen, 1986).

The following simple but important lemma permits to differentiate formally,
in Clarke’s sense, the value function 3(p,q) but not Bo(p,q). See Example 6.1
below for illustration of this assertion.

LEMMA 4.1 The value function 8 : R® — R* U {+oo} is bounded from below
and lower semicontinuous.

Proof. The boundedness from below of the function g follows from the bound-
edness of the solutions z[w], w € W (see Remark 2.1). Let us take an arbitrary
sequence

', q), i=1,2,..., (¢',¢") = (p,q), i — oo.
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By virtue of (4.1) we have
Blr*,q") = klim Ber (0',4"), € >0, ex — 0, k — co.
—00

Without loss of generality we can assume that B(p*, ¢*) — B(p, q), where B(p, q)
is finite or +o0o. Let k;, 2 = 1,2,..., be a subsequence of the sequence k =
1,2,..., such that the sequence B, (p',q"), i = 1,2,..., has a limit and the
following equality holds '

lim Be, (',4") = B(p,q), x>0, e, =0, i — oo,

Then for all i = 1,2,... and for some sequence €;, i = 1,2,..., the following
inclusion holds

€k Y
Wia i€ Wy

by € >0, & —0, i— oo.

Consequently, we can write
ﬁeki (p’b)qz) > IBEi(p7 Q)a 1= 1a2’ TR
Whence it follows that

Alp,q) = lim Bz (p,q) < B(p,q)-

The last inequality means that the lemma is proved. O
Further, we derive an expression for Clarke’s generalized gradient 083(p, q).
€

Let (p,q) € R* be a point such that B(p,q) < +oco. Let also (0, q") € R*, ¢
R, (* € R, n* € RY, i=1,2,..., be sequences such that

', q") = (p,q), v* = B(p,q), v > B, q"),
n>0,¢ —0,7" = 0,i— oo, =

and, morcover, (see the definition of perpendicular or proximal normal to a set
in Clarke, 1983)

(¢',—n") Lepif at ((p',4"),v"). (4.4)

The existence of such sequences follows from the closedness of the set epif.
Thus the existence is a corollary of Lemma 4.1 (see Clarke, 1983).

By the condition of orthogonality (4.4) and by Proposition 2.5.5 in Clarke
(1983), it follows that

(¢ =), (@), I+ = B’ a) — (0,40 <
L@ ) I+ = B0 - (OO W d) € BE, T2 B0
Whence
B, q") — (¢, (', q")) < ' = (¢, (0 )+
L)~ (0 a) T~ B V7)€ R T2 AWd).  (45)
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In turn, it follows from the last inequality that any m.s. w'* e W, k=1,2,...,
in the sense of (4.2) for problem (P 4:) is also a m.s. in the same sense for the
- following problem

I, () = 7' To(w) — (', 0+
S, 0) - 0,0), Tolw) — B(p', 4P — inf,
") <y, I*(w)=d, (,qd)€R", weW, (4.6)

since the sequence (w®*, (pi,q')), i =1,2,..., satisfies the inequalities
i i i (i i 1 i i i
' To(w'*) — (¢, (0%, ¢) + 5 (To(w™*) = B(p',4)* <

T a) — (¢ (0,0 + e + 5
Li(w™ ) <piter, j=1,...,60; [ —g|<e, j=r1+1,...,6 (47)
At the same time, the lower bound 3 in the problem (4.6),
B = ll_%ﬁl, Bi=inf I'(w, (7', q)),

We = {(w,(¥',q)) € W=W x R*: Li(w) —1; L& §=1,...,8i;

|j(w) —dq;| <€ j=r1+1...,6}

satisfies the equality

A =n'B',¢") — (¢, (0, 4)) = o', (4.8)
We will @how that (4.8) really holds. Indeed, suppose that it is not satisfied.

Then ¢ < o and there exists a sequence (w®, (p°,q°)) € W, s=1,2,..., such
that

rw, (p%,¢°)) < i +6<al, , s=1,2,..., (4.9)
Ii(ws)_p; SES? .7: 1"")H1’ |I7(ws)_q;l Sesa j:K’1+17'-'7"47

for some sequence €5 > 0, s =1,2,..., €, — 0, s — co. By virtue of (4.9) and
by the definition of the value S, (p®, ¢°) we have

Io(w®) > Be,(p°,4°), s=1,2,....

On the other hand, by (4.9), the boundedness of functional I (see Remark
2.1) and the construction of functional I*, the sequence (p°,¢°), s =1,2,... is
bounded. Without loss of generality we can assume that this sequence converges:

(°,4°) = (7,7), s — oo.
It follows from this limit relation that

ﬁes(psaqs) > ﬁgs(ﬁ,ﬁ), 8= 1721 sy
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for some sequence €; >0, s =1,2,..., €& — 0, s — oo. Then, in view of the
previous inequality and the definition of the value 3(,q) we obtain

Io(ws) 2 /8(576) —€s7 gs > O, Es - 0, 8 — 00,

Thus, for s — oo the points ((p®, ¢°), Io(w?®)) converge to the set epi. Hence,
by (4.5) and by continuity of the function

W= () + () — 00,1~ B, )P

with respect to ((p/,q'),I), the value I*(w®, (p®,¢®)) can not satisfy the strict
inequality (4.9). This contradiction completes the proof of (4.8).
Consider the following restriction of the problem (4.6):

I'(w, (p',q")) — inf, I"(w) <yp/, I"*(w)=¢, (p',d)€SF, weW, (4.10)

where S%, is a ball containing the points (p,q), (9,¢%), i = 1,2,.... The se-
quence (wh* (p?, ¢*)), i = 1,2,..., is m.s. also for problem (4.10). Moreover,
problem (4.10) has the form of problem (P) with D = W x S%,, B = S%,,
b= (¢, ¢), | = k, Gi(z,2,b,v) = Gi(z,2,v) — pi/meas Q, i = 1,...,K1,
Gi(z,z;b,v) = Gi(z,z,v) — ¢j/meas Q, i = k1 +1,...,K, and with the cost
functional n*Io(w) — (¢*, (¢',¢'))+ %(Io(w) - B, ¢ ))* + 3l — '+ 3¢ — o'
(see Remark 3.2 for ¢(I) = n*I+ 5(I — B(r*,¢"))% ¥(¥',q) = —(C*, (¢, )+
11p’ — p'|> + 31¢’ — ¢'|*). Thus, we can apply Theorem 3.1 to problem (4.10).
Taking into account relations (4.7) and Remark 3.2 we obtain the following
lemma.

LEMMA 4.2 Let wh* k = 1,2,..., be an arbitrary m.s. in the sense of (4.2)

(ex = €i 1) for problem (P, 4) with (p,q) = (p*,q"). Then, there ezist a sequence
of numbers

7% >0, k=1,2,..., v"* =0, k — oo, (4.11)
and a sequence of vectors u* € R*1

¥ =1, %20, §=0,1 .omn, B G0~ 2 P,
j:17"')’<’1> (412)

such that

o Iyeagc{ué’k(ni + (Io(w™*) - (", ¢")) H(z, 1, E[w"*](2, 1), v, m0[w"*|(z, 1))+

S Ui H(w, t, € ¥ (2, 1), v, 5[0 (2, 1)) -
j=1

us" (' + (Io(w*) — B0, ¢")) H (&, 1, Ew**](z, ), u"* (z, 1), no[w"*)(z, 1)) —
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Z/ka 2,1, E[w"*)(z, 1), u"* (z, 1), n;[w*] (2, 1))} dedt < A,
/Qmax{ué’k(ni + (Io(w™*) — B(p*, ¢"))) Ho(z, 2[w**|(x, T), v, no[w*)(z,0)) +
Zp (z, z[w" ](z,T),v,nj[wi’k](m,O)) —

,LLOJ (77 + (Io(wl’k) - /B(piyqi)))HO(mvz[wi’k}(waT)7'Ui’k(x)7"70[wi’k]($7O)) -

K
> uyt Hy(w, 2[w*(z, T), v"* (2), 1, [w**)(z, 0))} de < 75,
j=1

K
i,k ~q 1, i LI 7
max__(—pg*Ct = > ptel, (o', ¢") - (0, d)) < 7,
j=1

(p',9")ESY,

j—1
; i —"
e =(0,...,0,1,0,...,0). (4.13)
We have Ip(w®*) — B(p%,q"), k — oo, (p',¢") — (p,q), i — oo. Hence,
in view of (4.11) there exists a subsequence k;, ¢ = 1,2,..., of the sequence
k=1,2,..., such that
Ij(wi> S Dj I (p; _pj) +Ei,ki7 P; — Dy + €ik; — O) .7 — 1; <.y R, (414)

L (wh) — 5] < |L;(w) ~ | + |} — ¢5] < € + 15 — a5,

g +1a— a5l =0, j=r1+1,...,K €r —0,

(To(w®) = B(", ¢))/I(CF, =1 = 0, ¥**/|(¢",=n*)| = 0, i — 00, w'="w"k,
Moreover, by virtue of (4.3),(4.12),(4.13) and of Proposition 2.5.7 in Clarke

(1983) we can assume without loss of generality that Ng(z) is the cone of
normals to the set C' at = (see Clarke, 1983)

Re I = (0%, =1) € Nyt p((2:), B )), = o0 (4.15)
u”“ -1, g™ =0,

/|(CL:'~T] )|_),uj’ j:]""')’c’ ’l;—>OO, (noy,ula"'nufc);éo' (416)
Relations (4.14)-(4.16) allow to obtain the following corollary of Lemma 4.2.

LEMMA 4.3 Let (p,q) be a point such that B(p,q) < +oo. Then there exist a
sequence of numbers v*, i=1,2,...,

¥>0, 4" —0,i— o0, (4.17)
a sequence of pairs

wteWl,i=12..., (4.18)




542 M.I. SUMIN

and a sequence of vectors ut € RFtY i=1,2,...,

!)uz|7é07 /1/;;: Zoa k=0,1,...,,‘<,1, H%(Ik(wz)—pk) 2"71;
k=1,2,...,51, (4.19)
such that

/;ﬂggyum@mwmamwmmmam—

H(z,t,€[w'](2, 1), v (z, t), ne[w'](z, 1)) dedt < 7, (4.20)
K
[ mee " k(o 2ol (o, T), v mell (2, 0) -
Q veEV k=0
Hi(, 2], T), v* (@), mefw'] (w,0))) do < 7', (4.21)
K
¢®+ ) nge’ =0, (4.22)
=1
where jp = (N°, p1, ..., i) # 0 4s an arbitrary accumulation point of the sequence
pti=1,2,..., and (¢°,—n°) is a vector satisfying the relations
I(C07—‘no)’ = 17 (C0>_770) € Nepi ﬁ((paq)rﬁ(pa Q)) (423)
DEFINITION 4.1 A sequence of pairs w* € W, i =1,2,..., is called stationary

for problem (Ppq) if there exists a sequence of numbers (4.17), for which all
relations (4.18)-(4.21) hold and for the corresponding sequence p*, i =1,2,...
all accumulation points are mon-zero.

REMARK 4.1 In view of Lemma 4.8 and Definition 4.1, there exist stationary
sequences for problem (Pp q) which satisfy also relations (4.22), (4.23).

Further, we consider the only two cases possible here: n° = 0, n° > 0. To
this end define the following sets:

L;\,qE {~ E;:l /“Ljej € R* : B = (anﬂl,---vﬂn) € RK+1> 12 7& 07 770 = )‘a
there exists a stationary sequence for problem (P, 4 ) such that the vector y is
an accumulation point of the corresponding sequence of vectors p*, i =1,2,...};
A=0,1;

My =Ly 0} My, =1Ly,
If n° = 0, then by Lemma 4.3 and by the definition of the asymptotic generalized
gradient of Clarke (1983) we have

0 00 0
¢° € 0%°B(p,q) N M, ,. (4.24)
If n° > 0, then by (4.22)

¢° Zn Hi j

—_— = — —e!.,
0 0

n =4
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Since we have also ¢°/n° € 88(p, ), then
0

f;_o € 0B(p,0) N My, e
Define the sets:

Ny={r(¢,—1): 7> 0, € 08(p,g) N ML}

Ny ={(¢,0): ¢ € 0%B(p,a) N M}

Obviously, by the definitions of the sets 96(p, q), 9°°B(p,q) we have the inclu-
sion - scc Proposition 2.9.6 in Clarke (1983):

W(Nl U NQ) C Nepi ﬁ((pyq))lg(p7 Q))

On the other hand, since sequences (p%,q), v*, %, 0%, i = 1,2,... in (4.3),
(4.4) arc arbitrary, by inclusion (4.24), (4.25) and by the limit relation (4.15)
we obtain — sec Proposition 2.5.7 in Clarke (1983):

Newi 6((p, ), B(p, 4)) C TOE(N, U Vo).

The last inclusion together with the previous one gives us

Nepi ﬁ(([)aQ)aﬂ(p7q)) ZCOHV(NI UNQ) (42())
LEMMA 4.4 Th(’ set M} is closed, 0Y M, . C My .. In the case, where MY =
{0} the set M}, is bounded. The set M0 s o closed cone.

Proof. Since all four assertions can be proved using similar arguments, we
confine ourselves to proving the second one.

Recall that the recession conc 07C of a set C C R™ is given by 07C =
{lim;—e0 6iyi : yi € C, 6; >0, §; =0, i — oo}

Let A € 0T M) . Then for some sequence of the vectors \° € My ., s =
1,2,..., we have

6A° — A, 65 >0, 6 — 0, s — o0.

Denoting /Ls = (1,)°), we scc that for each s = 1,2, ... relations (4.17)-(4.21)
hold with p®?, us, ¥>¢, w* substltutcd by pt, p, ¥¢, w?, respectively. At the

same time, 'ys 50, wht e Wg q » © — 0o. Without loss of generality assume

that 6 <1, s=1,2,.... Then
Sopt® £ 0, Sept — 6, (Ss/l,;’i — 85, j=1,...,K, i — 00,
6sA; > 0, §S/I,S.’i(I-(ws’i) —p)) =7 i=1,...,k

/ maxZésy“(H(T t, E[w*?)(x, 1), v,n[w* (z, 1) —

(ot €01, 6,05, 1) ), ) <
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K

/ng 65112 (H (, 21w (2, T), v, m; 1w, 0)) -

H (iv 2[w*)(z, T),v*(z), njlw*"](=,0))) dz < v**

Choosing a subsequence 75, s = 1,2,..., of the sequence i = 1,2,.. ., such that
ASts — 0, Soud™ — 0, bsui™ — Xj, § = 1,...,K, s — oo, we verify easily
that A € MJ . Thus the lemma is proved. O

Further, we note that the closed cone D® = 9 B(p, q)ﬂMg’q contains always
zero and the recession cone 0% D of the closed set D = 9f(p,q) N M, ,. Indeed,
we have 0YD C 0Y88(p,q) N 0T M, ,. Moreover, it is known (see for example
Clarke, 1983) that the inclusion 0798(p, q) C 9°°B(p, q) always holds. Besides
that, according to Lemma 4.4 we have 0T M, . C M) . Thus, 07D C D*. The
last relation, together with equality (4.26) permits to apply Proposition 15 from
Rockafellar (1982) (sece also Proposition 3.5 in Clarke and Loewen, 1986) and
to obtain the following theorem.

THEOREM 4.1 If B(p,q) < +oo, then My \JMJ \ {0} # 0 and the Clarke’s
generalized gradient 03(p,q) of the value function B at (p,q) is equal to

0B(p, q) = como{0B(p,a) [ | My +0%B(p,0) [ | My}, (4.27)
where 9% B(p, q) is the Clarke’s asymplotic generalized gradient of 5 at (p,q).

5. Conditions of regularity and normality in suboptimal
control theory

In this section we consider various conditions of regularity and normality of
problem (P, 4). The following definition (Sumin, 1995, 1996b) generalizes the
well-known classical concepts (see for example Warga (1971), Clarke (1983)).

DEFINITION 5.1 A stationary sequence w' € qu i=1,2,..., >0~ —
0, i — oo, for problem (Pp,q) is called normal (regular, abnormal), if all (there
exist, do not exist) sequences j1i*, i = 1,2,..., have (having, having) accumu-
lation points p with the component [ % 0 only (with the component jio # 0
only, with the component uo # 0). The problem (P, ) is called normal (regular,
abnormal) if all its stationary sequences are normal (regular, abnormal).

LEMMA 5.1 Let B(p,q) < +oo and M) , = {0} (i.e., problem (Ppq) is normal).
Then the function 3 is Lipschitz in a neighborhood of (p,q).

Proof. Since MQ, = {0}, then all sets M, , are bounded uniformly with
respect to (p',q’) E Opq; Where Op 4 is a nelghborhood of (p,q). The proof of
this fact is similar to the proof of Lemma 4.4. By this remark the assertion of
the lemma is a simple corollary of Propositions 2.3.7, 2.9.7 in Clarke (1983) and
of equality (4.27). O
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This lemma is one of many important corollaries of Theorem 4.1. It gives a
necessary condition of normality of problem (P, ). Note that Theorem 4.1 and
Lemma 5.1 are suboptimal analogues of certain corresponding results of Clarke
(1983), expressed in terms of usual optimal controls for controlled systems of
ordinary differential equations.

On the other hand, we can get the following sufficient condition of regularity
for problem (P, 4) expressed in terms of perpendiculars to epi #. Its proof is
similar to the proof of Lemma 4.2.

LEMMA 5.2 If ({,—n) Lepi B at ((p,q),B(p,q)) and n > 0 then problem (P, 4)
is regular.

Other sufficient condition of regularity of problem (P, q) is connected with
the existence of a Kuhn-Tucker vector. To this end we generalize the classical
concept of Kuhn-Tucker vector.

DEFINITION 5.2 A vector p € A= {(A\1,...,Ax) € RF: Ay >0,...,A;, >0}
is called a Kuhn-Tucker vector of problem (Ppq), if it satisfies the inequality

K

B(p,q) < Io(w +Zm p)+ Y, mi(li(w)—q) Ywew. (51)

’l:=h‘.1+1

To prove the above mentioned sufficient condition of regularity, we shall use
the following criterion of perpendicularity.

LEMMA 5.3 A nonzero vector v is perpendicular to a set C at a-point x© € clC
if and only if

(v,c—z) < |r—c|?/2 VeecC, c#x.

Proof. The necessity follows from Proposition 2.5.5 in Clarke (1983). We shall
prove the sufficiency. Let 2’ = v+z. Then, it follows from the inequality of the
lemma that

(#' —z,2 —z4+c—1) <|t'—c—(z' —2)[*/2 VeedC, c#m,
and hence
O<|z'—z|<|z'—c| VeedC, c#z, z'¢clC.

Thus, the point 2’ ¢ clC has a unique nearest point z in clC. It means that
the vector v = 2’ — z is perpendicular to clC at z. m]

LEMMA 5.4 If i € A is a Kuhn-Tucker vector of problem (P,,), then —p €
Mplyq and (—p, —1) L epi B at ((p,q),B(p,q))-




546 M.I. SUMIN

Proof. It follows from (5.1) that

K1 K K
Bpa)+ > mipi+ Y g < To(w) + Y mli(w) YweW,
=1 =1

i=K1+1

and, consequently,

B, q) — (=, (p,0)) < Io— (—p, (', q")) Y(',q') € dom B, I > B(Y',q)

or

Bp,0) — (s (0,0)) < To = (=11, (&) + 518, 4) ~ (0, To — B, 1))
V(p',q') € dom B, Io > B(p',q), ((v',4),To) # (), B(p, 2))-

From here we conclude that

(=, 1), (0", '), To) — (0, 9), B(p,9))) < %I((p’,q'),lo) — ((p, 0, B(p, )|
V(p',q') € dom B, Iy > B(p',q"), ((v',d),To) # ((p,q), B(p,q))-

From the last strict inequality and from Lemma 5.3 it follows that the vector
(—p, —1) is perpendicular to the set epi 8 at the point ((p, ¢), B(p, q)). Therefore,
by the argument of the proof of Lemma 4.2, we get —p € M]})q. The lemma is
proved. ]

The following lemma connects conditions of normality of problem (P, ,) with
the magnitude of the gap Bo(p,q) — B(p,q) and generalizes to the considered
situation the corresponding result in Warga (1971), Theorem V.3.4. The proof
of the lemma is omitted due to the lack of the space. It can be found in Sumin
(1995,1996Db).

LEMMA 5.5 If the strict inequality B(p,q) < Bo(p,q) holds for problem (P,,),
then any sequence w* € W, i = 1,2, ... satisfying the relations

Io(w*) — B € [B(p,a), Po(p, )], To(w') < o(p,a) +ei, w' € Wy,

€>0,¢,—>20,7— 00

is a stationary one. At the same time, it is not a normal stationary sequence if

COROLLARY 5.1 The strict inequality 8(p,q) < Bo(p,q) for problem (P, ) does
not hold at least in the following two cases, where: 1) all stationary sequences
are mormal ones; 2) there exists a normal minimizing sequence in the sense of

(4.2)-

Further, we shall prove two lemmas that constitute sufficient conditions of
normality for problem (P, 4) and generalize to the case of suboptimal theory
the classic conditions of normality in mathematical programming (condition of
Slater and condition of linearity).
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LEMMA 5.6 Let in problem (P, ,) the equality constraints be absent, i.e., k =
k1, and the initial data have the form: bi(z,t,u) = bi(z,t),i=1,...,n, a(z,t,u)
= a(z,t). Moreover the functions G; are convexrin z,1=1,...,k. If there exists
a pair w® € W such that I;(w®) < p;, i =1,...,k, then problem (P, ) = (P,)
is mormal.

Proof. Assumc that the assertion of the lemma is not true. Let w® € W, i =
1,2,..., be a stationary sequence for problem (P,) such that the corresponding
sequence of vectors puf € R+, i =1,2,..., has an accumulation point p with
the component po = 0. Then, by virtue of (3.12), (3.13) and the assumptions
of the lemma we have

p (Io(w®) — Io(w?) +Z/Lk(1k (w®) — Ip(w) =
k=1

/LO(H()[ w]—l—&)[w u) —{-Z/Lk 'ka w]—}-é’k[w w])
k=1

K
Z pih Hyp [w®, '] + b Eolw®, w,
k=0

where

Halw?,w') = [ (ot (o,0) v o, el ) (5.2
B ) (2,6, 03 1), el (1)) i +
| (e, 210) e, 1), 0 ), el o, 00)
Hi (o, 0] (@, ), 0% (), w1, 0)) i,

Ep[w?,w'] = Fgzlw?, w)(z, t)nk[w?] (z,t) dzdt +/ Eg, [w?, w'](z) dz,
JQr Q

Fg, Eg, arc corresponding E-functions of Weierstrass-Plotnikov (see Theorem
3.2). From here due to the assumptions of the lemma, stationarity of the se-
quence w' and the convergence py — 0, @ — oo, for all 7 sufficiently large we
have

Z i H[w ,w')

K
—priEow®, w'] + ph(To(uw®) — Io(w')) + k' + > pi(Te(w®) — pr) < —a,
k=1

where o > 0 is some number. The last inequality contradicts the stationarity
of the sequence w'. The lemma is proved. O
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LEMMA 5.7 Let the functions b;(z,t,u), i = 1,...,n, a(z,t,u) in the problem
(Ppq) be the same as in Lemma 5.6, Gi(z,z,v) = GH(z)z + G3(z,v),i =
1,...,K, and there exists a nonstationary sequence w' € Wg’z, o P
4t >0, v* — 0, i — oco. Then problem (Ppq) is normal.

Proof. Assume that the assertion of the lemma is not true. Let w? € WY© =

: . P,q’
1,2,...,9* >0, v* = 0, i — oo, be a stationary sequence for problem (P, q)
such that the corresponding sequence of vectors u* € RFTL, 1 =1,2,.. ., satisfies

the relations
B, p#0, gy — 0, pi(Ie(w®) —pr) 2 =7, k=1,...,51.

Let also W' € Wziq, i=1,2,..., 7% >0, 7 — 0, i — 0o, be a given sequence.
By virtue of (3.12),(3.13) and the assumptions of the lemma we get (see also

(5.2))

po(To (@) — Io(w')) + Y pi(Tu(@") — In(w)) =

p(Ho[@', w'] + Eof@, w']) + Y ik (Hi @, w'] + Ex[, w']) =
k=1

115 (Ho[@', w'] + Eo[w’, w']) + Z pi Hi ', w'). (5.3)
k=1

From here by the convergence u§ — 0, © — oo, and stationarity of the sequence
wt, it follows

—" <> i He[T, w) = —piEo[@t w'] + ) pi (Te(@') — In(w?)) <
k=0 k=0

K1
—pbEol@, w'] + ph(Lo(@') — Io(wh)) + Y w7 + k1’ +
k=1

> @) — Le(w?), (5.4)

k=rx1+1

where 8¢ > 0, ¢ — 0, i — oo, is a sequence of numbers. Consequently, we
have .

S b Ha ] = {3 [ (oot €ful(o, ), v ) el 1)~
k=0 k=0 YQr
H(z,t,E[w'](z,t),a" (z,t), ne[7"] (2, 1)) dzdt} +
(Ont [ (e, 2o, 70,0 ), e, 0) —
k=0 8
Hi (e, 2| (2, T),(2), nelw] (5, 0))) dz} = {0} + {02} — 0, i — oo.




Suboptimal control of distributed systems 549

From here, in view of the stationarity of the sequence w?, it follows
1 . .
oy, o =0, 17— 0.

In turn, due to the last limit relation, independence of the adjoint functions
nilw] of w € W for k = 1,...,x (this follows from the assumptions of the
lemma) and the convergence u — 0, i — oo we conclude that the sequence
w', i =1,2,..., is also a stationary one, since due to (5.3),(5.4), we can write

P (T(T) = pi) 2 ph (L) — pi = T >Zuk L(@) - pi - 7) =

—ué(fo(iu"’)—Io(w"))+Zlm;(Ik(wi)—pk)— > @@ - Ie(wh)) +

k=r1+1

Zukm[w w'] + ppEol@', w'] Zu , k=1,...,m1,

k=0
for some sequence of numbers @; > 0, @; — 0, 4 — oco. The last inequality
contradicts the assumptions of the lemma. The lemma is proved. m|

Finally, we formulate the following lemma improving Theorem 4.1 for ”linear-

convex” case of problem (P,4). The lemma is a corollary of Theorem 3.2 and
of Lemmas 5.4, 5.6, 5.7. The proof is omitted for the same reason as that of
Lemma 5.5.

t

LEMMA 5.8 Let problem (P, q) be normal and the initial data be the same as
in Theorem 3.2. Then the equality

0B(p,q) = —My 4 = Mp,g
holds, where M, 4 is the set of all Kuhn-Tucker vectors of problem (Pp ).

6. Illustrative examples

Example 6.1 To illustrate Lemma 4.1 we consider the following optimal control
problem

1 1
Iy(v) = / (2%(z,T) — v*(x))dz — inf, IL(v) = / 22(z,P)dz =q, I,T >0,
Jo Jo
0 _ 2P
ot 0x?’
It is easy to seec that obvious equality fo(0) = 0 holds. But on the other

hand the limit relations I(v®) — —I, I;(v*) — 0 for i — oo are fulfilled for
example for the sequence v¢ € Wg' of the following elements

oo [1 2k/2i <z < (2k+1)/2,
VB =1 @k 1)/2i <w < (2k+2)/2, k=0,1,...,i—1,

2(x,0) = v(z), = € (0,1), 2(0,t) = 2(I,£) =0,t € (0,T), V =[-1,1].

(6.1)
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where €; — 0 is a suitable sequence of positive numbers. Hence, for ¢ — 40 the
function fo(q) takes on values approaching —I, so it is not lower semicontinuous.

Example 6.2 Consider the optimal control problem (P, 4) in the following form

v L
Iy(v) = ./o (2%(z,T) — v2(x)) dz — inf, L(v)= /0 z2(z,T)dx = q € [-1,1],

0: _ o
ot~ ox?’

The relations of Theorem 3.1 have the form

z(z,0) = v(z), z € (0,1), 2(0,t) = 2(I,t) = 0,1t € (0,T), V =[-1,1].

Aggﬁ%mwﬂ@ﬁxv—wm»+ﬁ—oMmVH

pim ') (z,0)(v — v'(z)} dz < 7, (6.2)
(,UZ)H““II) 7é Oa ILB > O: ‘Il(vz) e ql < 71[7 ’YZ — 0,7 — 00,

where the adjoint functions no[v], n1[v?] satisfy the boundary-value problem

QQ—!—@:O n(z, T) =¢(x), z € (0,1), n(0,%) =n(l,t) =0,t € (0,T)
8{: axz b ¥ ) b ) ) ) ) b)
for 1(z) = —22[v](z,T), v = 0" and ¥(z) = —1, = € (0,1) respectively.
Due to elementary properties of solutions of these primal and adjoint bound-
ary-value problems

mo[v*](, Oll2,00, 12[0°1¢, T)ll2, 0,5y — O (6.3)

if v* — 0,4 — oo weakly in Ls(0,7). Therefore, in the case that ¢ = 0, the
sequence (6.1) satisfies the relations (6.2) if p — 0, 4 — oco. For this reason if
q = 0, then (6.1) is a stationary sequence for our problem. At the same time,
by Theorem 3.2 this sequence is a minimizing one.

Calculate 06(0). First note that the control v(z) = 0 satisfies the equality
I;(0) = 0 but it is not a stationary one for the considered problem at ¢ = 0 (this
fact can be easily verified). Then due to Lemma 5.7 our problem is normal for
q = 0 and we have M§ = {0}.

If 4 — 1, i — oo then an elementary analysis shows that only a sequence
of controls v*, i = 1,2,... such that |[v'(z)| — 1 for a.e. z € (0,1) can satisfy
the relations (6.2). Let A[v](z) = z[v](z,T). Since A : Ly(0,1) — L2(0,1) is a
linear bounded operator and no[v?](w,0) = —2A4*[z[v*](:, T)](z), m[v*](z,0) =
—A*[1](z), then in view of (6.2) we conclude that

[ e (s rob ), 0)(0 v (w) + 07 ~ () )+
o)z, 0)(v — vi(x)} d > (6.4)

ol
/0 (—2(pbmo[v’)(z, 0) + pim[v’] (=, 0))v'(x)) dz =
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1
| / Qs A* [20°](, T)) (&) + i A* (1) () (2)) d =

ol
2 / (2422 [] (&, T) + i 2] (&, T)) di.

Therefore, since I (v*) — 0, i — oo, then in view of (6.2) and (6.4), we find
that ||z[v*](-,T)ll2,(04) — 0, % — 0o. On the other hand, the first limit relation
(6.3) obviously holds. This means that

ol
| max? - @) + sbmbI(e,0)(0 = @)} da <,

and, consequently, (since [v*(z)| — 1, i — 00)

/ mapx (s [v7)(s, 0)(v — v'(2)} v < (6.5)

where v > 0, 4 — 0, i — 0o. At the same time, since our problem for ¢ = 0 is
nprmal, in the case p} — a # 0, i — oo, for the same sequence of the controls
v* we have

l
/ max{pin [v¥](z,0)(v —v'(z)}dz > a >0, i=1,2,...
Jo vEV

The last relation contradicts (6.5). Thus, in the case py — 1, i — oo, we must
have the limit relation u¢ — 0, i — oo which means that Mg = {0}. Then, by
virtue of Lemma 5.8, we find that 83(0) = M} = My = {0}, where My is the
set of Kuhn-Tucker vectors of our problem.
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