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Abstract. We consider an established model of a thin, shal
low spherical shell. Complementing Lasiecka and Triggiani (1996a), 
Lasiecka, Triggiani and Valente (1996) - which referred to well
posedness and uniform stabilization of the closed-loop problem with 
boundary dissipation - in this paper we consider the correspond
ing open-loop problem, with physical boundary controls as forces , 
moments and shear forces. We prove an optimal (boundary and, 
by duality) interior regularity result, as well as exact controllability 
on [0, T], T sufficiently large. That is, the input-solution operator 
(with zero initial conditions) is both continuous and surjective from 
the space of controls to the state space, at time t = T. As a con
sequence, the abstract theory from Flandoli, Lasiecka and Triggiani 
(1988) of optimal control with quadratic cost over an infinite time 
horizon and corresponding algebraic Riccati equation is applicable 
to such spherical shells. 

Keywords: spherical shells, exact controllability, partial diffe
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1. Introduction 

1.1. The model 

We consider a thin elastic spherical shell whose reference configuration in spher
ical coordinates (r, e, cp) is the region: r E [R-h, R + h], 8 E [0 , BoJ, cp E [0, 27r) , 
where the half-thickness h of the shell, the middle surface ray R, and the open
ing angle 80 < 7T' are given. A spherical shell has two characteristic param
eters, thinness and shallowness defined respectively by: 7) = h/ R sin Bo; and 
(3 = ( R - R cos 80 ) / R sin 80 . We restrict our interest to a thin and shallow 
spherical shell, so that for some fixed £ > 0, we take £ = R sin Bo and suppose 
Tf = h/ £ < < 1 and f3 < < 1. This latter condition implies 80 sufficiently small. 
Starting from the Koiter linear shell model as in Geymonat, Loreti and Valente 
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(1993), Koiter (1970), Love (1927) we arrive at the shallow shell approxima
tion by introducing the coordinate p = RB and by replacing cote by i· Then, 
the axially symmetric vibration for the meridional and radial middle surface 
displacements (x, y) can be written in the following form on (0, T) x (0, p0 ): 

{ 

e e (1 + v) , 
Xtt + - Ztt - L(x)- -L(z) + --y 

R R R 

e 1 e 1 (1+v) 1 2(1+v) 
Ytt- p[ZttP] + p[L(z)p] - ~(xp) + R 2 Y 

0· 
' (1.1a) 

0· 
' 

(1.1b) 

X 1 11 X1 X h2 

z = R + y; L(x) = x + p- p2 ; Po = RBo; e = 3 ; 0 < v < 1; (1.1c) 

v = Poisson's ratio, where the prime symbol 1 denotes differentiation with re
spect to p, along with the initial conditions 

x(O, ·) = xo, Xt(O, ·) = x1; y(O, ·) = Yo· Yt(O, ·) = Yl, 

the following boundary conditions at p = 0: 

x = y' = L(z) = 0, p = 0, t > 0, 

and the following non-homogeneous boundary conditions at p = po: 

! 
1 (1 + v) V 

x - R Y + Po x + x = .91; 

ez' = .92i 

eL(z)- eztt .93; 

p = po, t > 0, 

(1.1d) 

(1.1e) 

(l.lf) 

(1.1g) 

(1.1h) 

where .9i E L2 (0, T) are the boundary control functions. To the mixed problem 
(1.1) we shall associate the corresponding boundary homogeneous problem on 
(0, T) X (0, Po): 

{ 

e e (1 + v) , 
Utt + RVtt- L(v.)- RL(v) + -R-w 

e , e , (1+v) , 2(1+v) 
Wtt- p[vup] + -p[L(v)p] - -----;;R(vp) + R 2 w 

0· 
' (1.2a) 

0· 
' 

(1.2b) 

v. , v.' v. 
v = R + w; L(u) = v." + p- p2 ; po = RBo, (1.2c) 

where the prime symbol' denotes differentiation with respect to p, along with 
the initial conditions at t = T: 

u(T, · ) = v.o, Ut(T, ·) = u1; w(T, ·) = Wo, Wt(T, ·) = W1, (1.2d) 
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and the following homogeneous boundary conditions at p = 0: 

u=w'=L(v)=O, p = 0, t > 0, 

and the following dissipative boundary conditions at p = p0 : 

l 
v/- (1 + v) w + v3!:_ + v. = 

R Po 

ev' - 0; 

eL(v)- evu 

O· 
' 

p = po, t > 0, 

o· 
' 

555 

(1.2e) 

(1.2f) 

(1.2g) 

(1.2h) 

which is, in fact, the adjoint problem corresponding to (1.1). (Since the equa
tions are time-reversible, one may equivalently consider the initial conditions at 
t = 0, without affecting regularity properties.) 

1.2. The homogeneous problem (1.2) is conservative 

With system (1.2) we associate the energy functional 

E(t) = Ek(t) + Ep(t) = E(t; u, w); 

2Ek(t) = 1Po [v.; + w; + evtJpdp 

2Ep(t) = e 1Po [ (v') 2 p + v:J dp 

ro [ ( w ) 2 ( 'U w ) 
2 l +(1-v) Jo u'- R p+ ~- R p dp 

+ .iPo [ ( v.'- ~) ~ + (*- ~) ~r dp + v?(po)Po· 

We then have problem (1.2) is conservative: 

E(t) = E(O), t ER. 

(1.3) 

(1.4) 

(1.5) 

(1.6) 

The proof of (1.6) is given in Lasiecka, Triggiani and Valente (1996), Theorem 
1.3(iii); Section 6. 

1.3. Regularity and exact controllability of problem (l.la-h) 

References Lasiecka and Triggiani (1996a), Lasiecka, Triggiani and Valente (1996) 
studied (i) the well-posedness and (ii) the uniform stabilization problem of the 
corresponding (closed loop) boundary feedback dissipative system, which is ob
tained from (1.1a-h) by setting 

(1.7) 
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is a natural finite energy space. This turns out to be the space £ = [U~ x 
w;J x V~ recalled below in (1.15), which is norm equivalent to the finite energy 
space, see (1.18). It was explicitly noted in Lasiecka, Triggiani and Valente 
(1996), Corollary 1.5 and Remark 1.1, that the obtained uniform stabilization 
of the closed-loop problem (1.1a-h), (1.7) implies a-fortiori a corresponding 
exact controllability result for the open-loop problem (1.1a-h), on the same 
state space £ and with L 2(0, T)-controls gi, i = 1, 2, 3. Here T is larger than 
a suitable To > 0 which depends on the finite speed of propagation of the two 
hyperbolic equations (1.1a) and (1.1b). Indeed, such implication may go in 
two ways: (i) either by invoking a well-known (constructive) general result in 
Russel (1974), according to which uniform stabilization of conservative problems 
implies exact controllability on the same state space on a sufficiently large time
interval; or else (ii) by specializing the energy estimates analysis, carried out 
in Lasiecka, Triggiani and Valente (1996) for the closed-loop feedback problem 
(1.1a-h), (1.7), to the corresponding homogeneous problem (1.2a-h). 

1.4. Goal 

We can now state the three-fold goal of the present note: 

(a) to carry out the strategy in (ii) above and provide a direct proof of the 
exact controllability problem of (1.1a-h), without passing through uniform 
stabilization as in Russel (1974); 

(b) to provide the complementary result of optimal regularity of the open-loop 
problem (1.1a-h) on the same space£, with controls gi E L 2 (0, T); 

(c) to extend to problem (1.1a-h) the optimal control theory with quadratic 
cost over an infinite time horizon, and corresponding algebraic R iccati 
equation, as developed abstractly in F landoli , Lasiecka and Triggiani (1988), 
sec also Lasiecka and Triggiani (1991), Lasiecka and Triggiani (1996c), as a 

consequence of exact controllability and regularity on the same (optimal) 
space£. 

In synthesis: the mixed problem (1.1a-h) for the thin, shallow spherical shell 
can be rewritten abstractly as the operator equation (see Section 3 below), 

~=.A~+ Bg E [D(.A*) ]' , ~(O)=~oE£, (1.8) 

,A-1B E £(U,£), U = R~0 , the Euclidean 3-space with weight po, where~= 
[x,y,.xt,Yt] and g = [g1 ,g2 ,g3 ], and .A* is the £-adjoint of .A. It is established 
directly in the present paper that the following two inequalities hold true for 
the model (1.8) of the spherical shell (1.1): 

(i) (abstract trace regularity) for any 0 < T < oo, there exists Cr = CT > 0, 
such that 

.loT IIB*eA* t~~~: dt ~ Crll~ll~, ~ E £; (1.9) 
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(ii) (abstract continuous observability inequality) for all T > some T0 > 0, 
there is c > 0 such that 

.iT IIB*eA't~~~: dt ~ C(T- To)ll~ll~, ~ E £. (1.10) 

According to Section 3 below, inequalities (1.9) and (1.10) are the abstract ver
sions of the P.D.E. inequalities (1.19) and (1.20) below, respectively, concerning 
the homogeneous problem (1.2) (possibly, with initial conditions at t = 0). This 
is analyzed in Sections 3 and 4. Thus, (1.9) and (1.10) fulfil! for the shell prob
lem (1.1) the two basic assumptions (regularity and Finite Cost Condition) of 
the abstract treatment of the optimal quadratic cost problem on an infinite 
time horizon, as developed in Flandoli, Lasiecka and Triggiani (1988), see also 
Lasiecka and Triggiani (1991), Lasiecka and Triggiani (1996c). 

1.5. Function spaces 

Well-posedness, regularity, exact controllability, and stability results pertaining 
to the shell model (1.1) require the introduction of the following weighted spaces 
(Lasiecka, Triggiani and Valente, 1996) 

(i) L~(O,pa)'=={u: uJPELz(O,po)}, (l.lla) 

( ii) 

with norm 

{j·Po }~ 
lluiiL~ = 

0 
v?pdp ; (l.llb) 

U~(O,p0 ) = { u: ~' u'JP E Lz(O,pa), u(O) = 0}, (1.12a) 

with norm 
1 

llullut = {1Po [ :
2 

+ (u') 2p] dp} 
2

, (1.12b) 

where we note that fo' u'.JP E L2 (0,po), hence uu' E L1 (0,po) , makes 
the function 

v.Z(p) = u2 (p0 ) + -(u2 )dr = u2 (po) + 2 uu'dr j ·p d 1p 
PO dr Po 

(1.12c) 

absolutely continuous, so that the condition u(O) in (1.12a) is well-defined; 

(iii) w;(O,po) = {w: wJP E Lz(O,po), w' E U~(O,po)} (1.13a) 
with norm 

1 

llwllw~ = {1Po w2pdp + llw'll~t} 
2 

(1.13b) 

where w.JP, 1, E L2 (0,p0 ), as in the definition ofW;(O,po), hence ww' E 

L1 (0, p0 ), makes- as in (1.12c)- w 2 (p) absolutely continuous; 
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(iv) V~(O,po) = { (n,w) E L~(O,po) x L~(O,po): 

v = ~· +w' E L~(O,po) or, equivalently, w' E L~(O,p0 )} 
with norm 

1 

ll(n,w)llv1 = {llnlliP + llwlliP +ellvlliP}
2

; 
p 2 2 2 

( v) the state space will be shown to be 
£ = [U~ x w;J x V~; 

ll{n,w,nl,wdll~ = llnll~l + llwll~2 + ll[nl,wl]ll~l · 
p p p 

1.6. Statement of main results for problem (1.1) 

(1.14a) 

(1.14b) 

(1.15) 

Regarding the mixed problem (1.1), the main results of the present paper are 
as follows. 

THEOREM 1.1 (wELL-POSEDNESS OF (1.1)) Let the initial and bov.ndary data 
satisfy 

for any 0 < T < oo. Then, the unique solv.tion of problem (1.1a-h) satisfies 

{.1:(t), y(t), Xt(t), Yt(t)} E C([O, T]; £). (1.17) 

We shall also provide a direct proof of the following result. 

THEOREM 1.2 (EXACT CONTROLLABILITY) The mixed problem (1.1a-h) is ex
actly controllable on the space£ defined in (1.15) within the class of bov:ndary 
controls as in (1.16), for all T >some sv.fficiently large To> 0: i.e., given 

{.To,yo,xl,Yd E £ = [U~ X w;J X V~, 

and T > To, there exist bonndary controls gi E Lz(O, T), i = 1, 2, 3, such that 
the corr·esponding solv.tion of problem (1.1 a-h) satisfies: 

x(T, · ) = y(T, · ) = .Tt(T, ·) = Yt(T, ·) = 0. 

As a consequence of Theorems 1.1 and 1.2, we obtain 

THEOREM 1.3 The theory of the optimal control problem with qv.admtic cost 
over an infinite time horizon, as developed abstr-actly in Flandoli, Lasiecka and 
Triggiani (1988), Lasiecka and Triggiani (1991), see also Lasiecka and Triggiani 
(1996c) holds true and is applicable to the mixed problem (1.1a-h). 
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1.7. Statement of main results for problem (1.2) 

As usual, the most direct proof of Theorems 1.1 and 1.2 is by duality, and hence 
it hinges on the following equivalent results for problem (1.2a-h). Before stating 
them, we recall that the finite energy space defined via (1.3) coincides with the 
space £ in (1.15) under equivalent norms; more precisely (Lasiecka, Triggiani 
and Valente, 1996, Proposition 2.1, Eqn. (2.4)): 

E(u,w) is equivalent to ll{[u,w],[ut ,wt]} ll~ · (1.18) 

THEOREM 1.4 (TRACE REGULARITY INEQUALITY OF (1.2)) With reference to 
pmblern (1.2} (possibly, with initial data at t = 0}, the following inequality holds 
tr-ue for any 0 < T < oa: there is a constant Cr = CT > 0, sv.ch that 

/T [u;(t, p0) + wl(t, po) + ev;(t, po)]dt ~ CrE(O). 
.fo 

Conversely, we have 

(1.19) 

THEOREM 1.5 (cONTINUOUS OBSERVABILITY INEQUALITY) (a) Pmblern (1.1} 
is exactly contmllable on [0, T] in the sense of Theorem 1. 2 if and only if 
pr-oblem ( 1. 2) (with possibly initial data at t = 0) satisfies the following 
inequality: ther-e is Cr > 0 sv.ch that 

j
·T 

[v.;(t,po) + w;(t,po) + evl(t,po)]dt 2 CrE(O). 
.o 

(1.20) 

(b) There exists To > 0 such that, for- all T > To, inequality ( 1. 20) holds tr-v.e 
with Cr = C(T- T0 ), and so pmblem (1.1} is indeed exactly controllable 
in the sense of Theor-em 1.2. D 

Putting together Theorems 1.4 and 1.5 and with reference to problem (1.2), we 
obtain that forT > To, the following equivalences hold true: 

1 

{ .lT [u;,(t, Po) + w;(t, Po) + evl(t, Po)] dt} 

2 

equivalent toE! (0), 

in turn, equivalent to ll{[uo, wo], [v.1, w1]}llc:. (1.21) 

REMARK 1.1 In the case of the wave equation (or-, more gener-ally, of a second
order- hyperbolic equation} with L2(0, T; L2(f) )-contml fu.nction in the Neumann 
boundar-y condition, the space of exact contmllability is H 1 ( 0,) x L2 ( 0,), while 
the space of regv.larity is H 1 (0.) x L2(f2) only for· dim 0, = 1 (indeed, for- dim 
0, 2 2, the space of sharp regv.larity is H"'(0.) x H"'- 1 (0.), a~~ and depending 
on 0, (Lasiecka and Triggiani, 1990, Lasiecka and Tr-iggiani, 1994}. A similar
sitv.ation ar-ises for· Kir-choff equations with contml functions in high boundar-y 
conditions, of the second- and thir-d-or·der (moments and shear for-ces): in dim 
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n 2 2, the space of regularity is larger (with weaker topology) than the space 
H 2 (D) x H 1 (D) of exact controllability (Lagnese, 1989) . On the other- hand, 
the spher-ical shell model (1.1) consists of the wave equation (1.1a) in x with 
Nev.mann contml in (1.1f), highly coupled with the Kir-choff equation (1 .1b) in 
y with control in moments and shear forces, (1.1g) and (1.1h), both in one 
dimension. Because of the one-dimensionality, the r-esults of Theor-em 1.1 and 
1. 2, where r-egularity and exact controllability are achieved on the same state 
space E ar-e to be expected (i.e., the map 

(1.22) 

wher-e x(O) = y(O) = x 1 (0) = y1 (0) = 0 is continuous and sv:r.fective (onto): 
[L2(0, T)]3 :::? E.) 

In the sections below we shall provide proofs of the main results by ana
lyzing and complementing the technical development and energy estimates in 
Lasiecka and Triggiani (1996a) , Lasiecka, Triggiani and Valente (1996), which 
were carried out for the closed loop feedback problem (1.1a-h), (1.7). In order to 
follow the present paper, it is essential to have Lasiecka and Triggiani (1996a), 
Lasiecka, Triggiani and Valente (1996) at hand. 

As to the literature, we note that Geymonat, Loreti and Valente (1993) 
give an exact controllability result (i) for a simplified model with no rotational 
inertia terms (i .e., no term Ztt in (1.1a) and (1.1h)); (ii) with different boundary 
conditions (of Dirichlet type); (iii) and, above all, for R sufficiently large (or the 
opening angle 80 suitably small) as to have an easier case no lower order terms 
to be absorbed (so that arguments such as the ones in Lasiecka, Triggiani and 
Valente, 1996, Section 8 or Lasiecka and Triggiani, 1996b, are dispensed with); 
(iv) finally, with no regularity provided on the steering controls. Moreover, 
Geymonat, Loreti and Valente (1993) consider the hemispherical shell (80 = 
1r /2) and give an exact controllability result via harmonic analysis, by using the 
explicitly computed eigenvalues and eigenfunctions in this case. 

2. (Direct) Proof of Theorem 1.4 and Theorem 1.5(b) 

We shall heavily rely on the computations in Lasiecka, Triggiani and Valente 
(1996) for the closed loop feedback problem (1.1a-h), (1.7), which we will spe
cialize to the homogeneov.s problem (1.2). In order to follow the analysis below, 
it is essential to have paper Lasiecka, Triggiani and Valente (1996) at hand. 

Proof of Theorem 1.5(b). Step 1. Theorem 7.1, Eqn. (7.1), in Lasiecka, 
Triggiani and Valente (1996) simplifies to the following identity 

~ /T [ilull~l + eilvll~l + llutllip + 3llwtlliP + llvtllip] dt 2 ./
0 

p p 2 2 2 

+(EnT)'[; +IT+ ET= O, (2.1) 
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where the end terms (EnT)'{; and the interior terms IT are as in Lasiecka, 
Triggiani and Valente (1996, Eqns. (7.2) and (7.3)), and satisfy respectively, 

i(EnT)ifi:::; c[E(O) + E(T)]; (2.2) 

IITI :=:; E /T llull~tdt + cE j·T j'Po w2pdpdt, 
.fo P o o 

(2.3) 

while the boundary terms BT in Lasiecka, Triggiani and Valente (1996, Eqn. (7.4)) 
now simplify to the following expression, 

BT = -~.faT [v.t(t , po)+wt(t,po)+evt(t,po)]p6dt 

-~ lT [(u'(t,p0 ))
2 p6 +u'(t , po)u(t,po)Po] dt 

.fo 

1 ~·T +- [u2 (t, po) + ev2 (t, po)] dt 
2. 0 

(1+v)j·T (1+v)1T 2 2 - . v.(t, po)w(t, po)Po dt + -R2 w (t, po)p0dt, 
2R o o 

(2.4) 

for problem (1.2a-e) after the use of the B.C. (1.2g) and (1.2h) (and with no 
use of the B.C. (1.2f) yet). Four terms within the brackets { } in Lasiecka, 
Triggiani and Valente (1996, Eqn. (7.17)) vanish now. 

Step 2. We next use the B.C. (1.2f) in (2.4), and thus express v.' in terms 
of wand u at p = p0 , and estimate readily to obtain the counterpart inequality 
of Eqn. (7.24) from Lasiecka, Triggiani and Valente (1996): 

11- ~ /'T [(v.'(t , po)) 2 p6+u'(t ,po)u(t,po)Po] dtll 
2 ./o 
:=:; c /'T [u2 (t, Po) + w2 (t , po)]dt . 

.fo 
(2.5) 

The remaining argument in Lasiecka, Triggiani and Valente (1996, Eqn. (7.25) 
through (7.32)) is unchanged, and the counterpart of Eqn. (2.3) from Lasiecka, 
Triggiani and Valente (1996) is now 

IBTI :::; j
·T 2 j·T 

Eo 
0 

E(t)dt + ~0 
0 

[ut(t, Po) + wt(t, Po) + evt(t, Po)]dt 

/

·T j'Tj·Po 
+c [v.2 (t,p0 ) +w2 (t,p0 )]dt+ w2 pdpdt. 

. 0 0 0 
(2.6) 

Step 3. We return to identity (2.1). On its left-hand side, we use property 
(p.5) in Eq. (1.27) of Lasiecka, Triggiani and Valente (1996) 

c [llwll~l + llwll~z] - a2 llw lliP :=:; llv·ll~l + ellvll~l :=:; C [llv· ll~t + llwll~2] , (2.7) 
p p 2 p p p p 
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and (1.14b) 

llv.tlllP + llwtlllp + eilvtll~p = ll{v.t,Wt}ll~l, 
2 2 2 p 

(2.8) 

as well as the norm equivalence (1.18), to obtain 

cE(t)- a. 2 ilwii~P ::; -
2

1 [ilv.ll~l + eiivll~l + llv.tii~P + 3llwtlllp + eiivtii~P] 
2 p p 2 2 2 

::; cE(t). (2.9) 

From here, we obtain the same inequality as in Lasiecka, Triggiani and Va
lentc (1996, Eqn. (7.35)), 

.lT E(t)dt::; c[E(O) + E(T)] 

+C { .lT [v.;(t, pa) + w;(t, pa) + ev;(t, p)]dt + f.o.t.} (2.10) 

{ 
/T lTj·po } 

jf.o.t.j::;C .fa [v?(t,pa)+w2 (t , pa)]dt+.Ja a w2 pdpdt, (2.11) 

where now, however, E(t) = E(O) by (1.6). Using this constant energy in (2.10) 
yields 

(T- c)E(O) ::; C { .lT [v.;(t, pa) + w;(t, pa)] + ev;(t , pa)] + f .o.t .} , (2.12) 

which is the desired continuous observability inequality (1.20) , save for the lower
order terms. These can then be absorbed by compactness/uniqueness, where the 
delicate uniqueness result (Lasiecka, Triggiani and Valente, 1996, Theorem 8.1, 
Lasiecka and Triggiani, 1996b), based on Carleman estimates is used. This way 
we obtain the desired inequality (1.20) from (2.12) . Theorem 1.5(b), Eqn. (1.20) 
is proved. D 

Proof of Theorem 1.4. We rewrite identity (2.1) explicitly by (2.2) as 

+! /T [(v.'(t, pa)) 2p~ + v.'(t, pa)v.(t, pa)Pa] dt 
2 .fa 
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(1 + v) ;·T (1 + v) j·T 2 2 +~ u(t, Po)w(t, Po)podt- -w w (t, Po)p0dt 
. 0 0 

~ lT [u;(t, Po) + w;(t, po) + ev;(t, Po)]p6dt. (2.13) 

Recalling (2.7), as well as the estimates (2.2) and (2.3) for I(EnT)ifl and 
IITI , we readily obtain inequality (1.19) from (2.13). Thus, Theorem 1.4 is 
proved. D 

3. The adjoint of the input-solution operator of problem 
(l.la-h) 

The following issue will be relevant, in Section 4, in the proof of Theorems 
1.1 and 1.2: with reference to the mixed problem (1.1a-h), with zero initial 
conditions x0 = y0 = x 1 = y1 = 0, let LT be the operator defined by 

x(T) 

y(T) 

Xt(T) 

Yt(T) 

(3.1) 

Then, find .Cr : E ---) R~0 • In this section we identify the adjoint of LT more 
precisely with respect to a (natural) topology, E below in (3.4), equivalent to 
E. To this end, we shall rely heavily on the abstract operator model for prob
lem (1.1a-h), as developed in Lasiecka and Triggiani (1996a, Section 2) to the 
original model (1.1a-h). Actually, in such a reference, it was sufficient to con
sider a (mathematically) simplified version of model (1.1a-h), which left out a 
few lower-order terms: (l~v) y' from the x-equation (l.la); - (lP~) (xp)' from 

they-equation (l.lb); and (essentially) - (l~v) y from the boundary condition 
(l.lf). Perturbation theory then allows one to handle these lower-order terms 
and to transfer the desired well-posedness result. Indeed, these additional terms, 
viewed on the abstract second-order (in time) model, act as a continuous pertur
bation: u~ X w; ---) L~ XL~; consequently, these terms, viewed on the first-order 
(in time) model, act as a bounded perturbation E ---) E. This will be seen in 
Propositions 3.1 and 3.2 below. 

Step 1. Let M, A, B be the operators introduced and studied in Lasiecka 
and Triggiani (1996a, Section 2); in connection with the simplified model : 

M isomorphism V~ onto [V~]', positive self-adjoint on L~ x L~ 
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A 

(duality with respect to pivot space L~ x L~); 

positive self-adjoint on L~ x L~, 

bounded U~ X w; ---> [U~ X w;]' . 

E = V(A!) X V(M!) norm equivalent to£= [U~ X w;J X V~; 

r 

-v.(po) 1 
B* [ : ] = -v(po) : 'D(A!) = U~ x w;---> R~o· 

w(po) 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

The following results are needed in the sequel. They are a minor variation 
of those in Lasiecka and Triggiani (1996a, Section 2), which refer to the case of 
P=O. 

PROPOSITION 3.1 The abstr-act model ofpmblem (1.1a-h) is given by 

M [ ~tt ] + (A+ P) [ ~ ] - Bg = 0, 
Ytt .IJ 

wher-e P is a self-ad,_joint peTtv.r-bation on L~ x L~ , which satisfies 

p : continv.ov.s u~ X w; ____, L~ X L~. 

(ii) The cor·r-esponding fir-st-or-der- model is 

r 
X l r X l ~ y -A y 

dt Xt Xt 

Yt Yt 

+t3g; 

A=[ ~ l : E ::) V(A) ---> E 

V(A) = 

t3g- [ 0 l RP3o ____, ['D(A*)]'. 
. - M- 1Bg 

(3.6a) 

(3.7) 

(3.8a) 

(3.8b) 

(3.9) 



Regularity, controllability, and optimal quadratic cost for spherical shells 565 

(iii) The perturbation operator, 

[ 

UQ j p wo _ :: - [ O l [ :~ j = -M-1 p [ Uo ] , 
0 u1 wo 

w1 

(3.10) 

satisfies 

P: continuous E--+ E. (3.10a) 

Accor-dingly, since the operator Ao obtained from A in (3.8) by setting P = 0 
is the generator of a unitary grov,p onE [L-T, Section 2}, it follows that A= 
Ao + P in (3.8) is the generator of a s.c. grov.p on E . 

Step 2. It follows from Proposition 3.1 that an explicit representation 
formula for the operator LT defined by (3.1) is given by 

x(T) 

y(T) 

Xt (T) 

Yt(T) 

j
·T 

= £rg = 
0 

eA(T-t) Bg(t)dt : R~ --+ E. (3.11) 

Thus, the dual operator Lr: E--+ R~0 , (£rg, h)E = (g, Lrh)R~0 is given by 

{£rh}(t) = B* eA'(T-t)h, 0:::; t:::; T, hE E, (3.12) 

where B* is readily computed to be 

B*v = B* [ ~~ ] = -B*v2 E R~0 , v2 E D(At), (3.13) 

where we recall (3.5). In fact, for g E R3 , v E E, we compute via (3.9) and 

(3.4)' 

(Bg ,v)E -(M- 1 Bg, v2)'D(M!) = -(Bg, v2h~xL~ 

(g,-B*v2)R3 = (g,B*v)R3 , 
PO PO 

and (3.13) follows from (3.14). 
Step 3. 

(3.14) 

PROPOSITION 3.2 In P.D.E. terms, the dual operator- Lr expressed by (3. 12) 
is defin ed by 

[ 

Ut (t, Po) j 
{£rh}(t) = vt(t , Po) , 

-wt(t , Po) 

(3.15) 
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wheTe {v.,w} solves pToblem {1.2a-h), with initial conditions {1 .2d) at t = T, 
given by 

(3 .16a) 
(3.16b) 

so that, if rv denotes equivalence as usual, we obtain 

iihii~ rv ii{[v.o,wo], [v.l,wl]}ll~ rv E(O;u,w), 

wheTe E(O) = E(O;w,v.) is defined in {1.:3). 

(3.17) 

Proof. The group eA*(T-t) can be expressed, as usual, in terms of the corres
ponding cosine and sine operators C*(t) = C(t) and S*(t) = S(t) by 

eA*(T-t)h= [ ~(T-t) S(T-t) l [ hl]' hEE, 
AS(T- t) -C(T- t) h2 (

3
.
18

) 

where 

[ :~~~ ] = cp(t; c/Jo, c/J1) = C(t- T)c/Jo + S(t- T)cp1 (3.19) 

corresponds to the free dynamics m~+ (A+ P)cp = 0 or 

M [ ::.:. ] + (A+ P) [ : ] = 0, [ 
u(T) l [ Ut(T) l · = c/Jo; = c/J1, (3 .20) 
w(T) Wt(T) 

A+ P being self-adjoint, where A = -M- 1 (A + P) is the generator of the 
cosine operator C(t), so that (3.20) is the abstract version of the homogeneous 
problem (1.2a-h), with c/Jo = [v.o, wo], cp1 = [v.1, w1]. This justifies the notation 
[v., w] in (3.19). From (3.19) we obtain 

[ ::.~~~ ] = c/Jt(t; c/Jo, c/J1) = C(t- T)cp1 + S(t- T)( -Ac/Jo). (3.21) 

On the other hand, for h E E, (3.13) and (3.18) yield, since C( ·) is even and 
S( ·) is odd: 

B*eA*(T-t)h = -B*[C(t- T)(-hz) + S(t- T)(-Ah1)] 

and by (3.21) 

B*eA*(T-t)h- -B* [ Ut(t) ] 
, - Wt(t) ' 
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provided we take, comparing (3.22) with (3.21), 

[ 
uo ] • c/Jo = wo = h1 = V(Az); ifJl = [ v.1 

wl 
] = -h2 = V(M~). 

Thus, recalling (3.4) and (1.18), we obtain from (3 .24), 

llhiiE2 
= ll{h1, h-2}112 ~ ~ ~ ll{[uo, wo], [u1, w1]}ll~ ~ E(O; u, w). 

D(A2 )xD(M2) 

Moreover, (3.5) used in (3.23) yields via (3.12) 

[ 

Ut(t, Po) l 
{.Crh}(t) = B*eA*(T-t)h = vt(t,pa) . 

-wt(t, po) 

Thus, (3.25) and (3.26) prove (3.17) and (3.15), as desired. 

567 

(3.22) 

(3.23) 

(3.24) 

D 

4. Completion of the proofs of Theorem 1.1, Theorem 
1.5a, and Theorem 1.2 

Proof of Theorem 1.1. In light of Eqn. (3.15) of Proposition 3.2, with .C:Z, 
given by (3.12), the trace regularity inequality (1.19) already proved in Section 
2 can be reformulated as 

B*eA*t : continuous 

£ = [u; x w;J x v; = E = v(A~) x V(M~) _. [L2(o,rW, (4.1) 

which by duality (Flandoli, Lasiecka and Triggiani, 1988, Appendix) is equiva
lent to the regularity 

(.Cg)(t) = 1t eA(t-T) Bg(T)dT = [x(t), y(t), Xt(t), Yt(t)] 

continuous [L2 (0, TW -> C([O, T]; £), (4.2) 

for problem (1.1a-h) with initial conditions xo = Yo = x 1 = y 1 = 0, as desired. 

Proof of Theorems 1.5(a) and 1.2. In light of Proposition 3.2, Eqn. (3.15) 
and (3.17), the continuous observability inequality (1.20) already proved in Sec
tion 2 can be reformulated as 

(4.3) 

a condition which is then equivalent (Taylor and Lay, 1980, p. 235) to the 
surjectivity condition of .Cr: 

( 4.4) 

The latter is a restatement of exact controllability (from the origin). Theorems 
1.5(a) and 1.2 are proved. 
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