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Abstract. The dynamic equation of state, aimed at describing 
high-rate processes in relaxing media is proposed. Together with 
balance of mass and momentum equations it forms a closed system 
of nonlinear PDE. Invariant travelling wave solutions of this system 
are studied by means of qualitative theory methods, allowing to state 
the conditions that guarantee the existence of periodic, quasi periodic 
and soliton-like solutions. The results of qualitative investigations 
are confirmed by the numerical simulation. 
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1. Introduction 

In recent decades a new approach, called synergetics, has been developed, deal­
ing with the spontaneous creation of spatial and (or) temporal ordering in 
distributed parameter nonlinear systems. Starting with pioneering works by 
G lansdorff and Prigogine ( 1971), this approach has been successfully applied to 
the description of self organization phenomena in nonlinear media, simulated by 
parabolic-type equations (as given in Samarskij et al., 1987). These equations 
describe well enough processes of moderate intensity but lose their applicability 
in the cases where gradients are changing during correlation time and inside 
correlation length. In this case essential dispersive length effects take place and 
the nonlocality and memory effects have to be taken into account . 

The simplest equation of this type is the hyperbolic- type nonlinear telegraph 
equation (see Danylenko, Kudinov and Makarenko, 1984) which is a natural 
generalization of the mass- heat transport equation, taking into account the 
finite propagation velocity of perturbation. The telegraph equation was shown 
to possess families of quasiperiodic solutions, as well as solutions describing 
blow-up regimes. So it inherits the main features of nonlinear heat equations 

1 T his work was partly supported by the ISF, Grunt No IXVOOO. 
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(Samarskij et al., 1987), but, in contrast to them, predicts a finite value for the 
characteristic velocity. Another example of hyperbolic - type system, aimed 
at describing explosion mechanics problems for multicomponent relaxing media 
was studied by Danylenko, Sorokina and Vladimirov (1993) . 

In this work the investigations of the high-rate processes in multicomponent 
relaxing media are continued. In Section 2 we derive the dynamic equation 
of state, describing the medium with two relaxing processes and employ this 
equation, containing higher-derivative terms, to close the balance of mass and 
momentum system. In Section 3 we consider the system of ODE, obtained by the 
group-theoretical reduction (Ovsyannikov, 1982) of the PDE system, derived 
in previous section. This ODE system is investigated by means of qualitative 
theory methods that allow for obtaining critical sets in the space of parameters, 
corresponding to the loss of stability of the self- similar solutions. The analysis 
of the ODE system allows to classify the regimes created in vicinity of bifur­
cation set and to state the conditions, leading to the existence of limit cycles, 
toroidal attractors and other localized regimes. The qualitative investigations 
are confirmed by direct numerical simulations. 

2. Governing equation for the media with two relaxing 
processes 

The first model of viscoelastic continuum, based on the concept of relaxation 
has been proposed by J .C.Maxwell (1890) over one hundred years ago. Since 
then many sophisticated models have been constructed to describe the reacting 
and relaxing materials. Nevertheless the problem of constructing multicompo­
nent condensed media model adequately describing the structural relaxation, 
manifested in high- rate processes is actually far from being solved. The diffi­
culties arising in construction of a governing (constitutive) equation are mainly 
associated with ignorance of the mechanism controlling the process of relaxation. 

In this situation the deviation from the state of thermodynamical equilib­
rium is expedient to be described by internal variables .\1 , ... ,>-n (Vladimirov, 
Danylenko, Korolevich, 1990, and Danylenko, Sorokina, Vladimirov, 1993), sa­
tisfying chemical kinetics equations 

i = 1, ... n 

with unknown mechanism. Generally speaking, this approach does not give 
any advantage, yet it becomes very helpful if the processes under consideration 
are not far from equilibrium, for in this case the entropy growth law dS > 0, 
which is valid for any irreversible thermodynamical process can be written as 
dS = deS+ diS > 0, where deS is the entropy change due to reversible process, 
while diS > 0 is the entropy production due to the process of relaxation. In 
consistence with the nonequilibrium thermodynamics principles (Glansdorff and 
Prigoginc, 1971), entropy production is a multilinear function of generalized 
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thermodynamical forces Xk and fluxes Jk: dSi = 2: 6.Si = 2:~= 1 XkJk, while 
Xk and Jk are coupled by means of the well known Onsager reciprocity principle: 
Ji = l:k LikXk, Lik = Lki· 

In this work we restrict ourselves to the processes described by two indepen­
dent internal variables (.A, ry). If we identify d)..j dt, dryjdt with thermodynamical 
fluxes then the corresponding thermodynamical forces will be given by the affin­
ity of the relaxing processes A and B, which may be introduced by means of 
the second law of thermodynamics (De Groat and Mazur, 1962, Glansdorff and 
Prigogine, 1971): 

TdS = dE+ pdV +Ad>.. + Bdry, (1) 

where V is the specific volume, p denotes pressure, S is the entropy, T is the 
temperature and E = E(p, V,>., ry) is the internal energy per unit mass. For 
weakly nonequilibrium processes the governing equations for ).. and ry can be 
written in the form (De Groat and Mazur, 1962): 

d)..jdt = aA(p, T, >..) , dryjdt = bB(p,T,ry). (2) 

Equations (1) and (2) can be chosen to close the system of balance equations 
for mass and momentum that are valid regardless of the detailed mechanism of 
relaxing processes. 

Let us assume that equation (1) (with function E(p, V,>..,ry) defined in an 
explicit form) possesses the first integral that can be expressed in the following 
form: 

V= v(p, T, >.., ry; C). (3) 

It is possible to expand functions A, B and v near the equilibrium state 
A(po ,To, >..o) = B(po ,To,ryo) = 0 into the power series: 

A (Ar)p>-(T- To)+ (Ap)n(P- Po) + (A.A)pr(>..- >..o) + ... (4) 

B (Br)pry(T- To)+ (Bp)Try(P- Po) + (Bry)pT("l- "lo) + ... (5) 

V-Vo (vr)p>-ry(T- To)+ (vp)TAry(P- Po) + (v>-)pTry(>..- >..o) 
+(vry)pn(ry- ryo) + ... (6) 

where Vo = v[poTo>..(poTo), ry(poTo)] = V(po, To) is the specific volume in the 
equilibrium state. In what follows we shall neglect higher-order terms in the 
power series (4)- (6). Taking the derivatives of (6) with respect to time and 
using equations ( 4) and (5), it is possible to exclude the internal variables >.. , ry 
from the equation of state and to present it in the following form: 
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(7) 

where()= d(.)/dt, () = d2(.)/dt2 , (Tf,y)- 1 = -aoA(x, y, >.)joA, (T!,11 )-1 = 
-boB(.rc,y,rJ)/orJ, (x,y) is any pair of external variables, different from (p,T) 
(we omit lower indices in this case). In accordance with De Groot and Mazur 
(1962) and Danevych, Danylenko et al. (1992), T:,Y and T!,Y are called relaxation 
times. 

A passage from p, T, V top, S, V variables can be easily performed in (5) if 
one uses the representation 

T = To(V/Vo)-rvooexp{(Se- So)/cvoo}, (8) 

which is valid for weakly nonequilibrium processes (Danevych, Danylenko et al., 
1992). Here fvoo is the isochoric Gruneisen coefficient (Danevych, Danylenko 
et al., 1992), cvoo is the thermal capacity for constant volume in the state of 
frozen equilibrium. In what follows we shall restrict ourselves to consideration 
of adiabatic processes, where Se = const. In this case, using the representation 
(8), one obtains the governing equation containing only p, V variables and their 
time derivatives. The equation obtained after the substitution of (8) into (7) is 
rather difficult to analyse. It becomes simpler if fvoo << 1 or if fvoo >> 1. 
In these cases the constitutive equation together with the balance equation for 
mass and momentum, taken in hydrodynamical approximation, gives a closed 
systein of the following form: 

_dfl. op ex dp _ofl, O 
P-= + - = :s -= + p- = 

dt ox dt ox 

(
dp dp) -n _ {d

2
p [2 (dp) 2 d2pl} T --= - CJ--= = Kp - p- b J"2 + - --= - ~ , 

dt dt dt p dt dt 
(9) 

where 8' is the mass force, [ = t/To, To is the characteristic time of the process, 
x = xj(ToCroo) is the dimensionless spatial variable, p = Vo/V is the dimpn­
sionless density p = (p- Po)/(poC'!;

00
) + K, , fl, = u/Croo is the dimensionless 

velocity n = 1 + fvoo, djd[ = ojot +fiB/ox, Cro and Croo are the isothermal 
sound velocities in the states of complete and frozen equilibrium, respectively, 
K,, b, CJ and T are dimensionless parameters, depending on sound velocities and 
relaxation times. In the case where fvoo < < 1 they can be expressed as follows: 
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So, we have obtained the system describing compressible media with two relax­
ation processes in hydrodynamical approximation and containing parameters 
that can be estimated experimentally. It was shown in our previous works 
(Vladimirov, Danylenko, Korolevich, 1990, Danevych, Danylenko et al., 1992) 
that system (9) can be employed, under certain conditions, to describe shock 
wave propagation in multicomponent relaxing media. Note that in the case 
where b << 1, the third (constitutive) equation of system (9) becomes identical 
with Lyakhov's equation for multicomponent media with one relaxing compo­
nent (Lyakhov, 1982) , while in the limiting case where T << 1, b << 1 it 
becomes identical with the so called Tait equation of state, used in the absence 
of relaxation processes. 

In the following section we shall analyse the influence of relaxation effects 
as well as spatial inhomogeneity on the properties of travelling wave solutions 
of system (9). 

3. Reduced system and pattern formation 

It is well' known that symmetry properties of a given system of PDE can be 
used to reduce the number of independent variables (Ovsyannikov, 1982). In 
the case of one spatial variable this procedure gives rise to an ODE system. By 
straightforward caiculation one can check that system (9) is invariant under the 
Galilei algebra AG(1, 1) , spanned by the following operators: Po =a/at, P1 = 
a fox, G =tO/ox+ ajav.. If ~ = lP and n = 1 (rvoo << 1), the system (9) 
admits an extra one-parameter group, generated by the operator~= pajap + 
pajap. In this work we shall use the following ansatz 

v, = D + U(w) p = exp[~t + S(w)] p = pZ(w) w = x- Dt, (10) 

connected in the standard way (Ovsyannikov, 1982) with the symmetry group, 
generated by the operator A= Po + DP1 + ~~. The expression (10) describes 
a travelling wave, moving with a constant velocity D. The parameter ~ turns 
out to be connected with spatial inhomogeneity ahead of the wave front . To 
demonstrate it, let us formulate the initial value problem for system (9). So, 
we look for the conditions leading to the existence of self-similar solutions de­
scribing shock wave propagation. The initial value problem will be self-similar 
provided that both states of the medium ahead of and behind the shock front 
are expressed by the formula (10). Assuming the state ahead of the front to be 
independent of time we obtain 

P1 = exp{~x/D+So}, P1 = ZoPl, 

where S0 , Z0 are constant parameters. These functions will satisfy the initial 
system if Z0 = K and 1 = KefD. Now let us use the ansatz (10). In order to 
simplify further analysis we shall assume from now on that Trv = Trp and To = 
TA+ TB. Inserting (10) into the equation (9) we obtain an ODE system, cyclic 
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with respect to variableS. If one introduces the new variable W = dUI dW = U, 
then the following dynamic system is obtained: 

UU = UW, UZ = "fU +~Z + W(Z- U2
) = cp, 

uw = [(3(1- U2)r1{Mc/J + z- K. + W[1- MZ]}- W 2
, (11) 

where (3 = -b < O,M = 1- (3~. 

The only critical point of system (11) belonging to the physical parameter 
range (i.e. lying in the half-space Z > 0 beyond the manifold U (3(1 - U2 ) = 0) is 
the point having the following coordinates: Uo = -r;,~l"f = -D, Zo = r;,, W 0 = 0. 
Let us introduce new variables X= U- Uo, Y = Z- Z0 and separate the linear 
part of the system (11) from the nonlinear terms: 

d ( X ) ( 0, 
dJj ;; 2~, 

0, 
(, 

L~ + K- 1 , 

(12) 

where d(-)ld/1 = Ud(·)l&u,L = MIK,K = (3(1- U:f),~ = K.- U:f,a = (1-
MD2)1K, and 

H2 = W[Y - X(X + 2Uo)] 

H3 = (3 [2UoX + (1 + 4(3Uo 2 I K)X2](L"fX + L~Y + aW)I K 

-W[2UoLX + W + LX2 (1 + 4U0
2(31K)] 

+O(IXIIYIIWI) 3
. (13) 

We are going to formulate conditions that assure the existence of periodic 
and quasiperiodic solutions of system (12). This can be done by analytical 
means if the matrix M standing in the RHS of equation (12) has one zero and 
two pure imaginary eigenvalues. It is so if the following conditions are satisfied: 

D 2 = 1 + (3~ 

"f ="'~ID= 0, 

(L( + K- 1 )D2 
- e = 0 2 > 0 

(14) 

(15) 

(16) 

The only way to satisfy (14)-(16) is to take K. equal to zero. Strictly speaking, 
this is impossible, but there will be no contradiction in assuming that "' < < 1. 
So we put K. = 0 for a while and then introduce it into the equation as a small 
perturbation. 

By virtue of (14) and the previous definitions, K = -~(32 , and inequality 
(16) takes on the form 

(17) 
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Our further step will be as follows. If "' = 0, D 2 is expressed by (16) and in­
equality (17) is satisfied, then matrix M is doubly degenerated, having one zero 
and two pure imaginary eigenvalues. A general analysis of (0, ±iD) bifurcation 
given e.g., by Guckenheimer and Holmes (1984) provides the conditions leading 
to the existence of periodic and quasi periodic solutions arising after the removal 
of degeneracy. Although the classification scheme of Guckenheimer and Holmes 
(1984) cannot be applied to the system (12), the canonical form technique pre­
sented there turns out to be useful. It allows for stating similar results in the 
case under consideration. 

The possibility of passing to a very simple canonical form is directly linked 
with the degeneracy of the linear part of dynamical system (12). To obtain the 
canonical form, we first use the transformation 

0, 
0, 

DD2 , 

e, 
~D, 

-(L~ + K- 1)D2 , 

(18) 

leading to the system with the quasidiagonal linearization matrix M: Mi.i 
D(8i28.i1 - 8i18j2)· Then we use the following local asymptotic transformation 

i '\:"ijk i 
X = L pikY y + y . 

j:5,k 

(19) 

The coefficients PJk can be chosen in such a way that variables y satisfy, up to 
O(lvl2), the system: 

I 
Y1 

y~ 

-Dy2 + y3(M1Y1 + S1y2), 

Dy1 + y3(S2Y1 + M2y2), 

Y~ N1 (YlYl + Y2Y2) + N2Y3Y3· 

(20) 

(for details see Christenyuk, Danylenko et al., 1993, Appendix 2). Using the 
transformation r = VYI + y~, e = arcsin{y2/ VYI + vn, followed by the av­
eraging over the "fast" variable ewe obtain the standard system (Guckenheimer 
and Holmes, 1984) 

I N 2 N 2 Y3 = 1r + 2Y3, (21) 

where 

a1 = D/K, (22) 

The singularity of coefficient N 2 makes it impossible to apply the classification 
scheme of Guckenheimer and Holmes (1984). Yet the system (21) is quite easy 
to handle. Note that the system 
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formally equivalent to (21), has a center if a 1N 1 < 0. This center remains after 
the unfolding, moreover, its origin may be replaced outside of the line r = 0 by 
a proper choice of the parameters. It follows from (22) that the only way to 
satisfy inequality a 1N 1 < 0 is to choose ~ < 0, since (3 = - b < 0. This allows 
to simplify the relation (17): 

1 +~((3+ 1) = 1 + 1~1(1!31-1) > 0 (23) 

Fulfillment of the above inequality assures the existence of the center which can 
obviously be destroyed by an arbitrary small perturbation, giving rise to various 
localized regimes of the original system (limit cycles, toroidal at tractors, etc.). 

The following family of small perturbations 

-D = Uo......., -(D+s), ,......., 8~/D+ry, K......., 8 + 0' > 0. (24) 

is introduced to remove the degeneracy of system (21). If ry = 0'~/D then the 
perturbed system takes on the form 

(25) 

with 

ILl = -(.\ + DD2s)/(KD2), p,2 = 2.\/(KD2), 

where .\ = -(DQry + ~8)/2, Q = 1 + 2lf3I(D2 + ~2 ). Unfortunately, system 
(25) does not give the complete information about the regimes arising after 
the unfolding, for it does not contain third-order terms. Without any loss of 
generality we can write down the canonical form up to O(lrl3, IY31 3) as follows 
(see Guckenheimer and Holmes, 1984, Ch. VII): 

(26) 

Although the expression for f is available in Danylenko and Vladimirov (1995), 
it is too complicated for the analytical treatment. Nevertheless, it is still pos­
sible, based on the representation (26), to identify the regimes that are certain 
to arise after the unfolding. 

System (26) will have a critical point belonging to the half-plane r > 0 
provided that the following inequality holds: 

/1,1 (IL2 + z6f) < 0, (27) 

where z0 = -~LI/a1 . Assuming that condition (27) is satisfied we can rewrite 
system (26) in coordinates z1 = m(y3- zo), z2 = n(y3- zo) + eq(r- ro) as 
follows: 

( zz21 )' = ( 'ml/,~,' -mD ) ( z1 
) ( fzffm

2 
) 

H l/2 z2 + a1z1z2/m ' 
(28) 

where ro = V!Ll(IL2 + fz5)/(alNl), e2q = 2INI/all, l = 1L2 + 3zof, D2 = 
(a1r0eq) 2 = -2p,l(IL2 + fz5) > 0, n = - l/(20) and m= V1- n 2

. Note that 
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we have dropped the higher-order terms in the nonlinear part of the expression 
(28). 

System (28) will possess a limit cycle provided that \l/21 << \mDI and 
Re >.1 ,2 Re C1 < 0, where >-1, 2 are complex eigenvalues of the system lineariza­
tion matrix, while C1 is the first Floquet index, that can be easily calculated by 
means of standard procedure (Guckenheimer and Holmes, 1984) : 

It is obvious that Re >. 1 ,2 = l/2, so the relation (27) together with the condition 
Re>. Re C1 < 0 forms the following system: 

(29) 

If f < 0 and \f.l1 , 112\ < < 1 this system has the solution 

f.l2 > 0, (30) 

while in the case f > 0 the solution is as follows 

Jl l > 0, f.l2 < 0. (31) 

The condition lf.l1 , f.l2\ < < 1 together with the condition f.l§ < < f.ll, assuring the 
validity of the above estimation can be rewritten in the form 

(32) 

where A= KD2f.l2/2 = -~[8 +a+ 2 I fJ I a(D2 + e)J/2. So the obtained result 
can be summarized as follows: 

THEOREM 3.1 Let~ < 0, D be expressed by the formv,la (14) and let ineqv.ality 
(28) hold. Then system {12) pertv.rbed in the way described by the foTmv,la (24) 
possesses toroidal attmctor- if ineq11alities (.'32) aTe satisfied and either- f < 0 and 
Telations (.'30) hold, OT f > 0 and conditions (81) aTe fv.lfilled. 

It is easy to sec that in both cases a proper choice of the parameters f.ll, 
J.L 2 will lead to appearance of periodic solutions, corresponding to the critical 
points of the equations (26), lying in the half-plane T > 0. Note that only in 
the case if f < 0 these solutions are stable, while f > 0 corresponds to unstable 
periodic and quasiperiodic motions, as can be deduced from the behavior of the 
canonical system (26) under the time reversal transformation. 

Numerical solutions of system (11) have been obtained for the values of 
the parameters that satisfy the conditions of the above theorem. For b = 

-0.8, ~ = -1.25, c: = 0.052, 8 = 0.004 and 0.005 < a < 0.1 a stable 
quasiperiodic movements were observed (Fig. 1), while for b = -0.8, ~ = 
-1.25, c: = -0.02, 8 = 0.01 and -0.2 < a < -0.03 unstable toroidal attrac­
tors were obtained. 
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For b = -0.95, ~ = 0.2, E = 0.065, 8 = 0.2 and a = -0.00255 a 
homoclinic loop was observed, corresponding to the soliton-like solution of the 
initial PDE system (Fig. 2). This regime turns out to be extremely sensitive 
to small changes of the parameters values. These changes result in creation of 
transient chaotic trajectories near the origin. A Rossler-type strange attractor 
was also observed for b = -0.8, ~ = -1.25, E = 0.02, 8 = 0.012 and 
- 1.2755 < a< -0.6 (Fig. 3). 

4. Concluding remarks 

In this paper a system of PDE aimed at' describing high-rate processes in multi­
component relaxing media has been proposed. Based on the concept of internal 
variables we have obtained governing equations, containing physically measur­
able quantities that characterize multicomponent media with two relaxing pro­
cesses, in the case where the characteristic wavelength is large in comparison 
with the characteristic sizes of medium components and deviations from the 
state of complete equilibrium are not large (Vladimirov, Danylenko, Kor·ole­
vich, 1990, Danevych, Danylenko et al., 1992). 

The modelling system (9), obtained on the basis of the above governing 
equation and describing relaxing processes in single-velocity hydrodynamical 
approximation was studied by means of the qualitative theory methods. The 
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results of qualitative analysis as well as direct numerical simulations show that, 
in contrast to the classical hydrodynamical system, system (9) possesses families 
of periodic, quasi periodic, chaotic and soli ton-like self-similar solutions, allowing 
to describe self-organization phenomena widely observed in the nonequilibrium 
high-rate processes. The existence of the above regimes is possible due to com­
plex interaction of nonlinear terms with the terms describing relaxing and dissi­
pative properties of the medium. Of special interest is the fact that oscillating 
self-similar solutions of the dynamical system, considered here, correspond to 
the self-similar initial value problem of the system (9) if and only if stationary 
state ahead of the wave front is spatially inhomogeneous. For technical reasons 
the spatial inhomogeneity in this work was connected with the external force, 
but, generally speaking, it can be attributed to any other source (e.g., the wave 
moving in the opposite direction). 

So the spatial inhomogeneity plays creative role in pattern formation and 
one is able to control the shape of the shock wave by varying the slope of 
inhomogeneity ahead of the wave front. 
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