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Abstract. This paper describes the results of mathematical 
modelling of hydrodynamic processes on the basis of generalized 
equations. The hyperbolic heat conduction equation, hyperbolic 
modification of Burgers equation and finite dimensional systems of 
Lorentz's type are considered. We discuss blow-up solutions, so
lutions with decreasing length and some· unusual types of chaotic 
behavior. Applications to combustion, turbulence and heat conduc
tion are described. The problems of correct numerical simulation 
are also considered. 
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1. Introduction 

In the vast fields of investigations devoted to heat and mass transfer processes in 
extended systems, the models for such phenomena are mainly based on parabolic 
equations of heat and mass transport. These equations are derived from the lo
cal equilibrium assumptions and phenomenologicallaws, which reflect the local 
correspondence in space and time between the thermodynamic flux and forces 
(such as Fourier's law, etc.). In such a case the local state of a medium is de
scribed by the governing equations, which do not depend upon gradients. In 
many models the kinetic transport coefficients are assumed constant . Parabolic 
equations with constant coefficients admit physically irrelevant solutions with 
infinitely large speed of propagation and infinite streams in the initial moment. 
In spite of such peculiarities these equations describe well enough many experi
mental results in nature. But these equations lose their applicability in extended 

1This paper was partially supported by State Science and Technology Committee of 
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media description for fast processes when gradients are changing during corre
lation time and inside the correlation length. In this case essential dispersive 
effects take place. The hypothesis of local equilibria fails and one needs to take 
the nonlocality and memory effects into account. 

There are a number of investigations on the derivation of fluid motion equa
tions from first principles in the situation when the hydrodynamic level of de
scription is valid. Certain basic variables such as stress, velocity and tempera
ture are on such a level in general. Investigations show that far from equilibrium 
in such circumstances the equations of motion have universal form, and consti
tutive equations have rather general form - Picirelli (1968), Zubarev and Tish
cenko (1972), Resibois and De Lener (1980), Jou, Perez-Garcia, Garcia-Colin 
at al (1985) . For example the equation which connects the stress and strain in 
the unidimensional case takes the form 

a(x, t) =- ./:oo dt ./ dxK(x, x'; t't')oV fox 

where a is stress and V denotes strain. For the temperature there is a similar 
state equation 

q(x,t) = -Ltoo dt./dxK1(x,x';t,t')8Tjox 

where T is temperature, q is heat flux. Such expressions take into account the 
influence of prehistory of processes. This is called memory effects (or relaxation 
or, in some cases, the dispersion) . Nonlinearity and space nonlocality are also 
taken into account. 

The above mentioned expressions are postulated in another well defined 
theory, namely in the rational thermodynamics of media with memory - Gurtin 
and Pipkin (1968), Coleman and Noll (1960), Nunziato (1971), Day (1974), 
Joseph and Preziozi (1989). Note that an expression of the above form often 
takes place in experiments in many fields of science and technology- for example 
in neutron scattering in liquids, in turbulence, in motion of visco-elastic fluid, 
in heat conduction and in many other cases. 

In addition, the equations for strongly nonequilibrium processes are integro
differential in the general case. Particular types of equations can be obtained 
under the particular choice of kernels in such equations (cf. Makarenko, 1987; 
Danilenko, Korolevich, Makarenko and Christenuk, 1992; Makarenko, 1994) . In 
many cases the integro-differential equation kernels are close to the equilibrium 
ones. This implies that the characteristic relaxation time and nonlocality scales 
arc relatively small. Then, after the reduction of integro-differential equations 
to the differential one, they take the form of a parabolic equation, which is com
pleted by the high derivatives both in time and space, but with small parameters 
(singularly perturbed equations). The simplest examples are obtained with the 
exponential kernels exp( -tjT). The parameter Tin this kernel is the so called 
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relaxation time. Relaxation time is the characteristic time of fading processes 
in systems, Kaliski (1965), Luikov (1965), Joseph and Preziozi (1989). The 
values of relaxation times can vary from 10 to 10-13 sec. in solids, 10 to 10-8 

sec. in liquids to 103 in turbulent liquids and polymers. The simplest examples 
obtained with exponential kernels are the hyperbolic equation of heat conduc
tion and the generalized hydrodynamics with memory effects. The generalized 
hydrodynamics also gives the generalization of the Lorentz type systems by the 
usual Galerkin-type procedure. 

The present report is devoted to a brief review of our results for the cases 
when a strong difference emerges between the results of classical and generalized 
theories. Such phenomena take place in problems with collapsing (blow-up) 
solutions, travelling wave stability, chaos, etc., under strong nonequilibrium 
conditions. 

2. Hyperbolic heat conduction equation 

As we mentioned above, there can be a large difference from classical description 
in regions with fast variation. A typical example is that of blow-up solutions 
(see for example Samarsky, Galaktionov, Kurdumov and Michailov, 1987, and 
references in it) . This solution has the interpretation of nonstationary dissipa
tive structures. In such structures solutions grow with increasing rate. Such 
nonstationary structures were investigated mainly by parabolic equations. It 
was found that solutions blow-up when the amplitude is increased to infinity in 
finite time because of nonlinear source, and boundary regimes collapse when the 
value on the boundary is increased to infinity in finite time. In this part there 
is a very brief description of some results for blow-up solutions for hyperbolic 
heat conduction equation. 

2.1. Blow-up solutions 

The typical mathematical problem is to find a solution to the problem 

a2T aT a2T 
T at2 + at = ax2 + f(T), (1) 

T(x,O) = cp(x), aTjat(x,O) = '1/;(x), X En (2) 

for initial-value problem (if n = (-oo, +oo)), plus 

T(aD)=w(t,x) (3) 

for initial-boundary problems (0 = [-a, +a]). 
For the sources of increasing type (f(T) = Tm , m> 1, (f(T) = exp(T) and 

so on) there are some purely mathematical theorems in which the existence of 
blow-up solutions is connected with the nonexistence of global in time classical 
or generalized solutions (Danilenko, Kudinov and Makarenko, 1983; Makarenko, 



624 A.MAKARENKO 

1990). The formulations of these theorems are long and include some integrals 
of initial values and nonlinear sources. Some interesting properties were also 
found. Let us indicate by t( T) the upper estimate of blow-up time. Then there 
are the following cases in problems (1)- (3): a) if 'ljJ(x) = 0 and Tin (1) tends 
to oo, then t(T1)jt(T2) = (Tl/T2) 112; b) if c/J, 'ljJ > 0 and T--+ oo then t(T)--+ oo; 
c) if T = c --+ 0 and there are blow-up solutions as in problems with T = 0 as 
with T =f. 0, then t(c)--+ t(O), c--+ 0. 

The numerical results confirm such properties. It is easy to see three stages of 
reorganization of blow-up solution from the graphics of numerical solutions: 1) 
slow reconstruction of profile, 2) slow growth of profile, 3) fast blow-up regime. 
There is also a dropping of structure which is impossible in the parabolic case. In 
our case, a one-humped initial distribution evolves on some stage to two-humped 
solution. For smaller initial data two travelling waves arose without blow-up 
solutions (see the graphics in Danilenko, Kudinov and Makarenko, 1983a, 1984b, 
1984a; Danilenko, Korolevich, Makarenko and Christenuk, 1992). 

2.2. Bou ndary blow-up regim es 

Such regimes are described by problems with infinite growth rate on the bound
ary in finite time. The simplest case is described by the problem (1) - (3) with 
D = [0, +oo) , f(T) = 0 and auxiliary condition 

T(O, t) = fL(t) , t ~ 0, 11(t)--+ +oo, t--+ T1 < + oo, tL(O) = 0. (4) 

with monotonically increased p.(t). A dependence on growth rate of fL was found 
before that for the parabolic case (T = 0) , amplitude profiles which evolve in 
regimes with diminishing, constant, or growing effective width, denoted respec
tively by LS , H , HS solution (Samarsky, Galaktionov, Kurdumov and Mikhailov, 
1987). 

The hyperbolic and parabolic cases are essentially different. First of all , we 
can sec from theorems that in the first case there is only LS boundary blow-up 
regime. The case 0 < T = c < < 1 is especially interesting. A bounded classical 
solution was constructed in Danilenko, Kudinov and Makarenko (1983 b) by 
Vishik - Lusternik asymptotic method. There is a hyperbolic boundary layer 
near the moment t = 0. Divergence from the solution of the parabolic equation 
is large in this layer. Then after t > c , the solution tends to the solution of 
the parabolic equation. Blow-up cases arc principally different from bounded 
cases. At first there exists a hyperbolic boundary layer , then the solution tends 
to a solution of the parabolic equation. Then, with the growth of solution, the 
difference became large. In the case with T < < 1 this difference concentrates on 
times it- T1 1 < T. Therefore in this strip there is a new mathematical object, 
a second boundary layer in time (first layer has been near 0). There are also 
some connections of blow-up regimes with the theory of generalized functions 
and operator theory, Kudinov and Makarenko (1985), Makarenko (1994). Since 
for t --+ T1 the solution becomes infinitely large and is not classical, it is natural 
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to consider the limit profile as a generalized function. The problem can also 
be reformulated with the selfadjoint extension of operators with exit from the 
space. 

3. Model equations for generalized hydrodynamics with 
the memory effects 

The standard object of many mathematical investigations in hydrodynamics are 
Navier-Stokes systems. However, this system has a drawback which was men
tioned in the introduction. It consists of the motion equations and constitutive 
equation connecting the stress and strain in Newtonian fluid. There are a great 
number of investigations on the derivation the equations from the first princi
ples in the situation when the hydrodynamic level of description still is valid. 
The general constitutive equations have an integral form . The application of 
exponential kernels leads to the hydrodynamic equations of visco-elastic fluids 
(see references to part 1). In other methods one investigates Navier-Stokes and 
generalized hydrodynamic systems, for example, and applies model equations. 

As it is known in many cases a good model equation for the Navier- Stokes 
systems is the Burgers equation. The more general case with exponent-type ker
nels leads to the so called hyperbolic modification of Burgers equation , Pya tkov, 
Rudyak and Smagulov (1982), Makarenko and Moskalkov (1992), Makarenko 
and Levkov (1993): 

(5) 

If T = 0, then we have Burgers equation. In this section we briefly describe the 
properties of solutions to (5). Some can be derived from the linearized version 
with the term a{)v,jox, a= const instead of vBv.ja.T. Let us call the quantity 
M = lal /c, c = .;;F the Mach number. The analysis with the assistance of 
harmonics shows that when M < 1 the linearized equation does not have the 
growth solutions. When M > 1 there is a branch of growing harmonics with 
exponential growth. The linearized equation also has exact solutions constructed 
by use of Bessel functions. There is much information about the eq11ation in 
such a solution. When M > 1 there is growth with the rate proportional to 
T- 112 and oscillations of solutions of wave packet type. This form of solutions 
follows from Bcssel function properties. Characteristic lengths of oscillations is 
determined by zeros of Bessel functions and is equal approximately 

).. '::::'. 2.5/JC, 1 ( 1 a
2

) C=- --- , 
T 4T 411 

(6) 

We can see from (6) that when c---> - oo the number of oscillations per unit 
length increases (the dropping or nucleation of length scale). The nonlinear 
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equation (5) has a set of travelling wave solutions of the form v.(x, t) = v.(p), 
p = x- Dt. For this solution we have (for the particular case T = v = 1) 

(7) 

The equation (7) has solution with IDI >M and 1/(x-.7:0 ) type singularity. 
There are some types of comparison theorems for equation (5) (Makarenko and 
Moskalkov, 1992) where the solutions of (7) with singularities can serve as" lower 
solutions" in comparison theorems. This can lead to the existence of blow-up 
(or collapse) solutions for (5) in some cases. This conclusion was confirmed 
by numerical computations with initial data of hump type. There are also 
some oscillations in solutions of wave packet type, Makarenko and Moskalkov 
(1992), Danilenko, Korolcvich, Makarcnko and Christenuk (1992), Makarenko 
and Levkov (1993). In these papers also model systems for two- dimensional 
flows are described. For the case with a vortex as initial condition and M > 1 the 
blow- up of vorticity with generation of new vortex with smaller characteristic 
lengths was described. 

4. Finite-dimensional systems of O.D.E. of Lorentz type 

One of the approaches to the investigation of hydrodynamic equations (for ex
ample Navier-Stokes equations) is the Galerkin method. By this method it is 
easy to construct a low-dimensional dynamical system. For example, the well 
known Lorcntz system arises from the Navier-Stokes equations. 

In this section of the paper we consider some results on the construction 
of low-dimensional analogs for generalized hydrodynamics with memory effects 
and compare them with the local equations under the same initial and boundary 
conditions. 

We note that in Boldrighini and Franceschini (1979) a five- dimensional sys
tem on a torus was described (we refer to it below as BF). We derived analogous 
systems for the generalized hydrodynamics under the same conditions. For ex
ample, the ten-dimensional system has the form 

Tdxd dt = ( -Xl - 2X6 + 4X7XS + 4XgXlO 

+4T(.T4X1Q + XgX5), 

Tdx2/ dt = (-x2 - 9x7 + 3.T6xs) + 3(xlxs + x5x3)T, 

Tdx3j dt = ( -x3 - 5xs - 7x6x7) - 7(xlx7 + .1:5x2)T + R, 

Tdx4j dt = ( -X4 - 5Xg - X5X10) - (x1X10 + X5X5)T, 

Tdx 5j dt = ( -x5 - x10 - 3x6xg) - 3(xlx9 + X5.1:4)T, 

dx6jdt = .1: 1 , dx7/dt = .1:2, dxs/dt = .1:3, d.Tgjdt = x4, 

d.TlO/dt = .7:5. 

(8) 

When T = 0 (no memory effects) the system (8) coincides with BF. In the case 
0 < T < < 1 it is a singular perturbation of it. We mention that in Makarenko 
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(1994) the systems of o.d.e. for generalized hydrodynamics with memory effects 
for three- dimensional flows with slip boundary conditions are considered. 

In Danilenko, Korolevich, Makarenko and Christenuk (1992), Makarenko 
(1994 a, b) some properties of such systems and results of computer simulation 
of them arc presented. The first distinction with respect to the case without 
memory is in the appearance of the neutrally stable oscillations. Another one 
concerns the types of chaotic behavior. In the case T = 0 the attractor of 
"butterfly's" type is typical as in Lorentz's system. With T -=1- 0, a complex 
behavior of new type arises. The trajectory fills densely some bounded volume 
("container") and has a broken form in many points (see Makarenko, 1994). 
Visually that behavior is similar to the one in two- dimensional mappings with 
hornoclinic tangency and quasi-attractors described in Gonchenko, Shilnikov 
and Turaev (1993). The first results of our continued investigations on bifur
cation points of a system (creation of the pairs of conjugate roots of Jacobian) 
and on existence of neutrally stable oscillations support the possibility of such 
a mechanism. 

5. Conclusions 

In the above we considered some results concerning a more correct description of 
heat and mass transfer for nonequilibrium processes taking into account memory 
effects . Three types of model equations and some results on blow-up solutions, 
oscillations and chaos have been described. These results also have a real range 
of applications. For example, in Danilenko, Kudinov and Makarenko (1983 c, 
1984 b), there are some problems from combustion theory. In Makarenko and 
Levkov (1992), Makarenko, Moskalkov and Levkov (1995) some ideas of memory 
effects in turbulence are considered. Analogs of boundary blow-up regimes take 
place in fast energetic influence on the surfaces of specimen. Moreover, there 
arc many other phenomena which need a more correct description with memory 
and nonlocality effects (Davidenko, Kudinov and Makarenko, 1985; Joseph and 
Preziosi, 1989; Pcszynska, 1995 and so on). Note that the complex behavior 
described in section 4 can serve as a prototype of new possible type of chaos in 
the media with memory or in the media with finite speed of disturbances. 

The unusual form of heat and mass transfer equations and their solutions 
posed some problems with the computation and foundation of computation. 
Some results on the foundations for blow-up computations are presented in 
Makarenko (1983b, 1991). The problems of dispersion of numerical methods, 
fighting with nonphysical oscillations, and interpretation of numerical solutions 
in hyperbolic equations, are described in Makarenko and Moskalkov (1984), 
Makarenko (1982). The problem of complexity measure of solutions is discussed 
in Makarenko (1992), with the new definition and the properties of information 
and complexity of nonprobability objects included there. 

I am grateful for the collaboration in investigations to Danilenko V.A., Kudi
nov V.M., Levkov S.P., Moskalkov M.N. and others. 
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