
Control and Cybernetics

vol. 25 (1996) No. 3

On the parallel solution of almost block diagonal systems

by
Pierluigi Amodio* and Marcin Paprzycki**

*Dipartimento di Matematica, Universita di Bari, Via Orabona 4, I-70125 Bari,
Italy, e-mail: na. pamodio@na...net. ovnl. gov

**Department of Mathematics, University of Texas of the Permian Basin, Odessa,
TX 79762, USA, e-mail: paprzycki...m@utpb. edu

Abstract. In this paper we briefly summarize some of the most
important algorithms for the parallel solution of Almost Block Diag­
onal linear systems. Then, we present a parallel algorithm based on
the cyclic reduction, which is quite competitive, especially when sys­
tems with additional corner blocks are considered. Numerical tests
carried out on a distributed memory parallel computer are reported
and analyzed.

Keywords: almost block diagonal systems, parallel computers

1. Introduction

Since the 1970's a number of publications studying solution methods for Al­
most Block Diagonal (ABD) linear systems appeared. These systems arise in
various mathematical applications such as Chebyshcv spectral decomposition
on rectangular domains, orthogonal splinc collocation for elliptic problems and
various discrctizations of boundary value ordinary differential equations (BVP
ODE's) . We arc primarily interested in the latter application . The sequential
solution methods can be traced back first to the SOLVEBLOCK package by de
Boor and Wciss (1980), and, second , to the alternate row and column elimi­
nation algorithm due to Varah (1976), later studied by Diaz, Fairweather and
Keast (1983) and implemented using level 3 BLAS primitives by Paprzycki and
Gladwell (1991).

There exist a number of approaches to the parallel solution of ABD systems .
It was observed that there arc two basic parameters that influence the possible
solution methods. When the size of each block is large (as in the case of spectral
decompositions , generating a relatively small number of large blocks) the level 3
BLAS based approach can be applied (parallelism is introduced inside the BLAS
kernels). Gladwell and Paprzycki (1993) have experimented with this approach
on shared memory computers and reported satisfactory performance. When
a number of blocks is large and their individual sizes are small, tearing-type

646 P. AMODIO, M . PAPRZYCKI

I

block 1

I block 2 I

block m- 1

block m

D
Figure 1. Structure of an ABD matrix with additional corner blocks.

methods can be applied. Ascher and Chan (1991) and Jackson and Pancer
(1991) have formed normal equations and suggested applying tearing to the
resulting block tridiagonal system. A different tearing-type algorithm has been
proposed by Paprzycki and Glad well (1991), where the tearing process is applied
to the ABD system; this approach has been later improved by Amodio and
Paprzycki (1996) . Yet another tearing method was proposed by K. Wright
(1993). He applies tearing to the block bidiagonal system obtained by ignoring
the boundary condition blocks, and reintroduces these blocks only in the final
step of the solution process. While the method proposed in Paprzycki and
Gladwell (1991) and in Amodio and Paprzycki (1996) can be applied on the
message passing as well as shared memory computers, the method presented in
K. Wright (Hl93) can be used only on shared memory computers.

All these algorithms deal with the solution of the ABD system arising from
the discretization of BVP ODE's with separated boundary conditions. In case of
non-separated boundary conditions additional corner blocks arise (see Figure 1)
and no known sequential algorithm exists. S. Wright (1992, 1994) introduced
two parallel methods (similar to the approach of K. Wright) that can deal with
these additional blocks and can be used on shared memory as well as message
passing parallel computers. The aim of this paper is to present a different, cyclic­
reduction based approach to the solution of ABD systems with separated as well
as non-separated boundary conditions. In Sections 2-3, the proposed algorithm
is summarized (in Section 3 a slightly modified version is proposed) while in
Section 4, the results of numerical experiments are presented and discussed.

Parallel solution of ABD systems 647

[[]
Figure 2. Structure of an ABD matrix with additional corner blocks after the
decomposition.

2. The cyclic reduction approach

The cyclic reduction algorithm is one of the most interesting algorithms for the
solution of tridiagonal and block tridiagonallinear systems on parallel comput­
ers (see, for example, Amodio et al. (1993)). Several implementations have
been proposed and have been used to optimize the solution process on different
computer architectures. To derive a generalization of the cyclic reduction algo­
rithm for the factorization of ABD matrices let us represent the ABD matrix
M in the following form (see Figure 2 and compare with Figure 1):

A2,o D2,o o1,o B1,0

D1,1 A1,1 B2,1 02,1
01,1 B1 ,1 A2,1 D2,1

D1,2 A1,2 B2,2 02,2

M= 01 ,2 B1,2 A2,2 D2,2 (1)

D1,m A1,m B2,m 02,m
ol ,m B1,m A2,m D2,m

B2,m+l 02,m+l D1 ,m+l Al,m+l

where blocks A,1 are square and any generic block j from Figure 1 (except the
corner blocks) is expressed by the following 2 x 4 block matrix:

n2 .. 1
A2..1

(2)

648 P. AMODIO, M. PAPRZYCKI

Notice that blocks in (1) may have different sizes. At this time the only re­
quirement is that blocks A;,.i be square and the size of the other blocks B; ,.i, C;,i
and D;,_i be set accordingly (so, for example, B2,;, D1,i+1 and C1,i+1 have the
same number of columns of A2,i and C2,;-1, D2 ,i- 1 and B 1 ,; have the same
number of columns of A 1,;). Moreover each block may have some null row or
column, or even zero size. For example, if a BVP ODE with separated boundary
conditions is being solved, the size of blocks A2 ,; is typically chosen equal to the
number of initial conditions and the size of blocks A1,; equal to the number of
final conditions.

To emphasize a block tridiagonal structure, let us now rewrite (1) as:

[
D-o Ao ro

) r1 D-1 (3)
Am- 1

Am rm D. m

where

f; = (
C1,i B1,i

) ' D.;= (
A2,i D2,i

) 'A;= (
0 0)· 0 0 D1,i+1 A1,i+1 B2,i+1 C2,i+1

(4)

We may now apply the odd-even cyclic reduction (similar to that proposed in
Amodio and Mazzia (1994)) to the matrix (3). In order to preserve the sparsity
structure it is required that the first and the last row of (3) are treated as even
rows (the first row is considered as row 0, and m must be even). The first step
of the algorithm reduces matrix (3) to the following one (which has half the
number of blocks of the original system):

Ao Ao ro

r2 .6.2 1\.2

r4 .6.4 (5)

Am-2
rm Am

where

(6)

Parallel solution of ABD systems 649

Note that during the factorization of blocks ..0.; row pivoting can be applied.
Blocks A; and f; have some null rows, and thus A2;.6.2i~ 1 and f2;.6.2i~ 1 have

zeroes in the same rows and therefore blocks f'2i and A2; maintain the same
sparsity structure as the corresponding f 2; and A2;. Moreover, observe that in
the matrix (5) the blocks Am and fo as well as rows corresponding to the first
and the last row of (1) remain unchanged. This means that the corner blocks
(the blocks containing the boundary conditions, if a BVP ODE is solved) are
not changed during the reduction process.

The same approach is being repeated and applied to (5) and after log2 (m)
steps (assuming m is a power of 2) a 2 x 2 block matrix (or a 4 x 4 block matrix,
if expressed in terms of Aj,i, Bj,i , Cj,i and Dj,i) is obtained and factorized using
Gaussian Elimination with partial pivoting.

3. The stabilized cyclic reduction approach

Since blocks ..0.; in (3) may be ill conditioned or even singular, the algorithm
proposed above may be unstable. Moreover, even if for a given ABD matrix we
choose the initial decomposition (1) such that each block on the main diagonal
of the original matrix (3) is non-singular, it is quite difficult to prove that blocks
obtained in the cyclic reduction process remain non-singular. To overcome this
problem, we can modify the previous algorithm slightly and thereby ensure
stability.

Consider the first step of reduction and let n; be the number of columns of

(7)

This means that block ..0.; in (3) is n; x n;. Observe that since the original
matrix (1) is nonsingular, it is possible to extract from (7) a nonsingular n; x n;

matrix. Then by applying row permutations inside blocks i and i + 1 (see (1)
and (2)), we may derive a new decomposition

(8)

where block Ji; (defined as ..0.; but with blocks A2,i, D2,;, Dl,i+l and Al,i+l in
(8)) is nonsingular. This can be achieved by applying Gaussian Elimination with
partial pivoting to block (7) and then row permutations in order to insert the
pivotal elements in the rows of rh,i and A.l,i+l· Obviously with this approach

650 P. AMODIO, M. PAPR.ZYCKI

blocks ih,i, 62,i, ... have no longer the same size of B2,i, c2,i, ... , but Ai is still
nix ni.

To better understand the difference between the two algorithms observe
now what happens if they are applied to an ABD matrix with D 1,.i = B 1 ,.i =
In and A1,.i = C1,i = A2,1 = B2,1 = C2,.i = D2,.i = On. This matrix is
obviously nonsingular (it is a permutation of the identity matrix) and may also
be derived from a simple linear BVP ODE (with M = Ahn in (9) and by
selecting an appropriate value of the stepsize h, and an appropriate number of
initial conditions).

If we use the cyclic reduction, then /:),i = (~: g:) is singular and the

algorithm stops at the first step of reduction.
If we use the stabilized algorithm, then Gaussian Elimination with partial

pivoting is applied to blocks of the form (~::·) . The permutations will result

in A2 ,i, ih,i, Cl,i+l, and Ih,i+l having zero rows, A.l ,i+l and C2,i being 2n x 2n
and bl,i+l and Ih,i being 2n x 0. Then Ai = I2n is nonsingular and the
algorithm calculates the solution.

Summarizing, the main (substantial) difference between the two algorithms
is that in cyclic reduction the size of the blocks Ai,i, Bi,.i, . .. , is a priori fixed
while in the stabilized cyclic reduction it is variable (it changes at each step
of reduction) and depends on the factorization process (the pivoting elements
during the factorization). The main advantages of the stabilized algorithm is
that the factorization always exists and is stable. Moreover, the computational
cost is the same as that of the cyclic reduction algorithm of the previous sec­
tion , even if the execution time will be greater because additional permutations
are performed . At the same time our numerical experiments suggest that the
possibility for an ABD matrix to have a singular block /:),i is very small (see
below and Amodio and Paprzycki 1995) so the stabilized algorithm needs to be
used only if the standard algorithm fails.

4. Numerical tests

Numerical tests were performed on a distributed memory parallel computer Mi­
cro Way Multiputer with 32 processors. Each processor is a T800 transputer and
has a local memory of 1 Mbyte. The sequential tests were performed on a single
transputer with 16 Mbytes of local memory. The implementation details can
be found in Amodio and Paprzycki (1995). We have tested the two sequential
algorithms:

• SOLVEBLOCK routine by De Boor and Weiss (1980);
• SGEABD routine by Cyphers, Paprzycki and Gladwell (1992);

and two parallel algorithms introduced in the previous sections:

• ABDCR cyclic reduction;

Parallel solution of ABD systems

Table 1. Sequential execution times for the Problems 1-5 and m = 32

Probl. 1 Probl. 2 Probl. 3 Probl. 4 Probl. 5
SOLVEBLOCK

SGEABD
ABDCR

SABDCR

399 722 2270 7819 13912
828 1267 2749 6557 11016
775
963

1495
1904

4031
4585

11453
12857

19537
21833

• SABDCR stabilized version of the cyclic reduction.

651

All the considered test problems arise from the numerical solution (by using
finite differences) of a general boundary value problem:

y'=My+q(t) tE [a,b],
Bay(a) + Bby(b) =dE ~n.

(9)

where M is a random n x n matrix, for n = 2, 3, 5, 8, 10. The following five test
problems have been experimented with:

• Problem 1: system of two first-order BVP's - internal blocks of size 2 x 4;
• Problem 2: system of three first-order BVP's - internal blocks of size

3 X 6;
• Problem 3: system of five first-order BVP's- internal blocks of size 5 x 10;
• Problem 4: system of eight first-order BVP's - internal blocks of size

8 X 16;
• Problem 5: system of ten first-order BVP 's - internal blocks of size 10 x 20.

In all cases q(t) has been selected in such a way to have all the components of
the solution behave as et. In order to compare the performance of the proposed
algorithms with that of SOLVEBLOCK and SGEABD, separated boundary
conditions have been selected (both these codes are designed for ABD matrices
without additional corner blocks). Then, in a separate experiment, we have
applied the new algorithms to the same BVP's with non-separated boundary
conditions. The timings of the parallel solutions of problems with separated
as well as non-separated BC's were exactly the same, in agreement with the
arithmetical complexity functions of the proposed algorithms derived in Amodio
and Paprzycki (1995).

Tables 1- 2 contain the sequential execution times in ticks (1 tick = 64 · 10-6

seconds) of the proposed solvers for m = 32 and 256 internal blocks. It can be
observed that for both values of m SOLVEBLOCK outperforms the remaining
solvers for the first three problems while time ratio between SOLVEBLOCK and
SGEABD decreases as the size of the internal blocks increases. For Problems 4
and 5 the situation reverses and SGEABD outperforms SOLVEBLOCK. This
can be explained by the fact that the BLAS kernels used were not specially tuned
for the Transputers. In such a case, for small blocks, level 1 and 2 BLAS based
SOLVEBLOCK can outperform level 3 BLAS based SGEABD. Interestingly,

652

30

25

20

15

10

5

0

P. AMODIO, M. PAPRZYCKI

Table 2. Sequential execution times for the Problems 1- 5 and m. = 256

Probl. 1 Probl. 2 Probl. 3 Probl. 4 Probl. 5
SOLVEBLOCK

SGEABD
ABDCR

SABDCR

3142 5699 17977 62125 110497
6456 9944 21617 51915 87639
6124 11811 31709 91170 155211
7634 15184 36416 103559 174586

32 procs

16 procs

8 procs

number of blocks

Figure 3. Speedup of the ABDCR solver.

the ABDCR routine outperforms SGEABD for the Problem 1, but as the sizes
of the individual blocks increase SGEABD becomes faster. The time ratio of
ABDCR to SOLVEBLOCK decreases for larger block sizes. This shows once
more the advantage of level 3 BLAS kernels which were used to implement
ABDCR. In all cases the stabilized SABDCR routine is the slowest.

Figure 3 represents the speed up (ratio between the sequential and the parallel
execution time) of the ABDCR algorithm for p = 8, 16 and 32 processors for
the increasing value of m. For each number of processors the five lines represent
speedup of the five test problems. Figure 4 contains similar results for the
stabilized algorithm SABDCR. In both cases the best speedups were obtained
for the Problem 5, the worst for Problem L It should be observed that when
compared internally both algorithms perform well. For large n an almost linear
speedup is observed.

Tables 3 and 4 address the scalability of the proposed algorithms. The
execution times of ABDCR and SABDCR for all three problems are presented

Parallel solution of ABD systems 653

30 32 procs

25

20

15 16 procs

10

5

0

number of blocks

Figure 4. Spee'dup of the SABDCR solver.

Table 3. Scalability of the ABDCR solver (m= 32p).

p=1 p=2 p=4 p=8 p = 16 p = 32
Problem 1 775 824 883 967 1104 1338
Problem 2 1495 1567 1654 1768 1946 2218
Problem 3 4031 4173 4345 4560 4864 5319
Problem 4 11453 11848 12281 12787 13443 14348
Problem 5 19537 20210 20934 21779 22782 24181

in ticks for p = 1, 2, 4, 8, 16 and 32 processors while the size of the problem
(number of blocks rn) increases as the number of processors increases and is
equal to 32 * p (32 blocks per processor).

It can be observed that the algorithms do not scale too well. The best scala­
bility (for both algorithms) has been observed for Problem 5. This result should
be viewed together with the fact that the best speed up has been also observed for
Problem 5. It can be explained by the fact that Problem 5 is characterized by the
largest sizes of the blocks thus leading to the best calculation-to-communication
ratio. The ABDCR algorithm is not only faster and has better speedup, but
has also better scalability than its stabilized version.

Figure 5 presents time ratio of the best sequential algorithm for a given
problem (SOLVEBLOCK for Problems 1-3 and SGEABD for Problems 4- 5)
to the faster of the parallel algorithms (ABDCR) for the increasing number of

654 P. AMODIO, M. PAPR.ZYCKI

Table 4. Scalability of the SABDCR solver (m= 32p).

p=1 p=2 p=4 p=8 p = 16 p = 32
Problem 1 963 1042 1152 1373 1731 2547
Problem 2 1904 2016 2167 2410 2771 3557
Problem 3 4585 4771 4992 5330 5783 6613
Problem 4 12857 13206 13871 14449 15244 16292
Problem 5 21833 22563 233745 24351 25558 27205

32 procs

15

10
16 procs

5 8 procs

0

number of blocks

Figure 5. Time ratio of the best considered scalar solver (SOLVEBLOCK for
the first three problems and SGEABD for the remaining two) and the ABDCR
solver.

blocks rn. This data represents the absolute speed up of the proposed algorithm.
It can be observed that this time the performance gain is not as large as shown
in Figures 3-4. As previously, Problem 5 is characterized by the best speedup
and for large m reaches efficiency of 53%.

Finally, it should be pointed out that, for all problems reported here, as well
for a number of additional tests that we have performed (some results have been
reported in Amodio and Paprzycki 1995), the relative error with respect to the
exact solution obtained by both ABDCR and SABDCR was the same and equal
to the error given by the sequential algorithms.

Parallel solution of ABD systems 655

5. Conclusion

Two versions of cyclic reduction algorithm for the solution of Almost Block Di­
agonal Systems have been presented. The experimental results suggest that the
standard cyclic reduction algorithm has good numerical properties and performs
well on a distributed memory computer. The stabilized algorithm does not per­
form as well and its usage should be limited to the cases when it is known that
the problem may have a badly conditioned matrix (or when the non-stabilized
algorithm fails).

Acknowledgements

The authors would like to express their gratitude to the anonymous referee for
the helpful comments that improved the paper, and to Katarzyna Paprzycka
for help with English.

References

AMODIO, P., BRUGNANO, L. AND POLITI, T. (1993) Parallel factorizations
for tridiagonal matrices. SIAM J. Nu.mer-. Anal. 30, 813- 823.

AMODIO, P. AND MAZZIA, F. (1994) Backward error analysis of cyclic reduc­
tion for the solution of tridiagonal systems. Math. Camp. 62, 601- 617.

AMODIO, P. AND PAPRZYCKI, M. (1995) A cyclic reduction approach to the
numerical solution of boundary value ODE's. Report n. 19/95 of the
Dipartimento di Matematica, Universita di Bari, Bari, Italy.

AMODIO, P . AND PAPRZYCKI, M. (1996) Parallel solution of almost block di­
agonal systems on a hypercube. Linear- Algebra Applic. (in press).

ASCHER, U.M. AND CHAN, S.Y.P . (1991) Ontheparallelmethodsforbound­
ary value ODE's. Com.pv.ting 46, 1-17.

CYPHERS, C., PAPRZYCKI, M. AND GLADWELL, I. (1992) A level 3 BLAS
based solver for almost block diagonal systems. SMU Software Report,
92-3.

DE BooR, C. AND WEISS, R. (1980) SOLVEBLOCK: A package for solving
almost block diagonal linear systems. AGM Tmns. Math. Softwar-e 6,
80- 87.

D IAZ, J.C., FAIRWEATHER, G. AND KEAST, P. (1983) FORTRAN packages
for solving certain almost block diagonal linear systems by modified al­
ternate row and column elimination. AGM Tmns. Math. Software 9,
358- 375.

GLADWELL, I. AND PAPRZYCKI, M. (1993) Parallel solution of almost block
diagonal systems on the CRAY Y-MP using level 3 BLAS. J. Compv.t.
Appl. Math. 45, 181-189.

JACKSON, K.R. AND PANCER, R.N. (1991) The parallel solution of ABD sys­
tems arising in numerical methods for BVP's for ODE's. Technical report

G5G P. AMODIO, M. PAPR.ZYCI<I

n. 255/01 of the Department of Computer Science, University of Toronto,
Toronto, Ontario, Cananda.

KREISS , H .O., NICHOLS, K. AND BROWN, D. (1986) Numerical methods for
stiff two-point boundary value problems. SIAM J. NurneT. Anal. 23,
325- 368.

PAPRZYCI<I, M. AND GLADWELL, I. (1991) Solving almost block diagonal sys­
tems on parallel computers. Pamllel Compv,t. 17, 133- 133.

VARAH, J.M. (1976) Alternate row and column elimination for solving certain
linear systems. SIAM J. N7LmeT. Anal. 13, 71-73.

WRIGI-IT, K. (1993) Parallel treatment of bloc:k-bidiagonal matrices in the so­
lution of ordinary differential boundary value problems. J. Cornpv.t. Appl.
Math. 45, 101- 200.

WRIGI-IT, S. (1992) Stable parallel algorithms for two-point boundary value
problems. SIAM J. Sci. Statist. Corn.pnt. 13, 742- 764.

WRIGHT, S. (1994) Stable parallel elimination for boundary value ODE's. Nv.­
rn.eT. Math. 67, 521- 536.

	Bez nazwy

