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Abstract. In this paper we briefly summarize some of the most 
important algorithms for the parallel solution of Almost Block Diag­
onal linear systems. Then, we present a parallel algorithm based on 
the cyclic reduction, which is quite competitive, especially when sys­
tems with additional corner blocks are considered. Numerical tests 
carried out on a distributed memory parallel computer are reported 
and analyzed. 

Keywords: almost block diagonal systems, parallel computers 

1. Introduction 

Since the 1970's a number of publications studying solution methods for Al­
most Block Diagonal (ABD) linear systems appeared. These systems arise in 
various mathematical applications such as Chebyshcv spectral decomposition 
on rectangular domains, orthogonal splinc collocation for elliptic problems and 
various discrctizations of boundary value ordinary differential equations (BVP 
ODE's) . We arc primarily interested in the latter application . The sequential 
solution methods can be traced back first to the SOLVEBLOCK package by de 
Boor and Wciss (1980), and, second , to the alternate row and column elimi­
nation algorithm due to Varah (1976), later studied by Diaz, Fairweather and 
Keast (1983) and implemented using level 3 BLAS primitives by Paprzycki and 
Gladwell (1991). 

There exist a number of approaches to the parallel solution of ABD systems . 
It was observed that there arc two basic parameters that influence the possible 
solution methods. When the size of each block is large (as in the case of spectral 
decompositions , generating a relatively small number of large blocks) the level 3 
BLAS based approach can be applied (parallelism is introduced inside the BLAS 
kernels). Gladwell and Paprzycki (1993) have experimented with this approach 
on shared memory computers and reported satisfactory performance. When 
a number of blocks is large and their individual sizes are small, tearing-type 
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Figure 1. Structure of an ABD matrix with additional corner blocks. 

methods can be applied. Ascher and Chan (1991) and Jackson and Pancer 
(1991) have formed normal equations and suggested applying tearing to the 
resulting block tridiagonal system. A different tearing-type algorithm has been 
proposed by Paprzycki and Glad well (1991), where the tearing process is applied 
to the ABD system; this approach has been later improved by Amodio and 
Paprzycki (1996) . Yet another tearing method was proposed by K. Wright 
(1993). He applies tearing to the block bidiagonal system obtained by ignoring 
the boundary condition blocks, and reintroduces these blocks only in the final 
step of the solution process. While the method proposed in Paprzycki and 
Gladwell (1991) and in Amodio and Paprzycki (1996) can be applied on the 
message passing as well as shared memory computers, the method presented in 
K. Wright (Hl93) can be used only on shared memory computers. 

All these algorithms deal with the solution of the ABD system arising from 
the discretization of BVP ODE's with separated boundary conditions. In case of 
non-separated boundary conditions additional corner blocks arise (see Figure 1) 
and no known sequential algorithm exists. S. Wright (1992, 1994) introduced 
two parallel methods (similar to the approach of K. Wright) that can deal with 
these additional blocks and can be used on shared memory as well as message 
passing parallel computers. The aim of this paper is to present a different, cyclic­
reduction based approach to the solution of ABD systems with separated as well 
as non-separated boundary conditions. In Sections 2-3, the proposed algorithm 
is summarized (in Section 3 a slightly modified version is proposed) while in 
Section 4, the results of numerical experiments are presented and discussed. 
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[[] 
Figure 2. Structure of an ABD matrix with additional corner blocks after the 
decomposition. 

2. The cyclic reduction approach 

The cyclic reduction algorithm is one of the most interesting algorithms for the 
solution of tridiagonal and block tridiagonallinear systems on parallel comput­
ers (see, for example, Amodio et al. (1993)). Several implementations have 
been proposed and have been used to optimize the solution process on different 
computer architectures. To derive a generalization of the cyclic reduction algo­
rithm for the factorization of ABD matrices let us represent the ABD matrix 
M in the following form (see Figure 2 and compare with Figure 1): 

A2,o D2,o o1,o B1,0 

D1,1 A1,1 B2,1 02,1 
01,1 B1 ,1 A2,1 D2,1 

D1,2 A1,2 B2,2 02,2 

M= 01 ,2 B1,2 A2,2 D2,2 (1) 

D1,m A1,m B2,m 02,m 
ol ,m B1,m A2,m D2,m 

B2,m+l 02,m+l D1 ,m+l Al,m+l 

where blocks A,1 are square and any generic block j from Figure 1 (except the 
corner blocks) is expressed by the following 2 x 4 block matrix: 

n2 .. 1 
A2..1 

(2) 
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Notice that blocks in (1) may have different sizes. At this time the only re­
quirement is that blocks A;,.i be square and the size of the other blocks B; ,.i, C;,i 
and D;,_i be set accordingly (so, for example, B2,;, D1,i+1 and C1,i+1 have the 
same number of columns of A2,i and C2,;-1, D2 ,i- 1 and B 1 ,; have the same 
number of columns of A 1,;). Moreover each block may have some null row or 
column, or even zero size. For example, if a BVP ODE with separated boundary 
conditions is being solved, the size of blocks A2 ,; is typically chosen equal to the 
number of initial conditions and the size of blocks A1,; equal to the number of 
final conditions. 

To emphasize a block tridiagonal structure, let us now rewrite (1) as: 

[ 
D-o Ao ro 

) r1 D-1 (3) 
Am- 1 

Am rm D. m 

where 

f; = ( 
C1,i B1,i 

) ' D.;= ( 
A2,i D2,i 

) 'A;= ( 
0 0 )· 0 0 D1,i+1 A1,i+1 B2,i+1 C2,i+1 

(4) 

We may now apply the odd-even cyclic reduction (similar to that proposed in 
Amodio and Mazzia (1994)) to the matrix (3). In order to preserve the sparsity 
structure it is required that the first and the last row of (3) are treated as even 
rows (the first row is considered as row 0, and m must be even). The first step 
of the algorithm reduces matrix (3) to the following one (which has half the 
number of blocks of the original system): 

Ao Ao ro 

r2 .6.2 1\.2 

r4 .6.4 (5) 

Am-2 
rm Am 

where 

(6) 
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Note that during the factorization of blocks ..0.; row pivoting can be applied. 
Blocks A; and f; have some null rows, and thus A2;.6.2i~ 1 and f2;.6.2i~ 1 have 

zeroes in the same rows and therefore blocks f'2i and A2; maintain the same 
sparsity structure as the corresponding f 2; and A2;. Moreover, observe that in 
the matrix (5) the blocks Am and fo as well as rows corresponding to the first 
and the last row of (1) remain unchanged. This means that the corner blocks 
(the blocks containing the boundary conditions, if a BVP ODE is solved) are 
not changed during the reduction process. 

The same approach is being repeated and applied to (5) and after log2 (m) 
steps (assuming m is a power of 2) a 2 x 2 block matrix (or a 4 x 4 block matrix, 
if expressed in terms of Aj,i, Bj,i , Cj,i and Dj,i) is obtained and factorized using 
Gaussian Elimination with partial pivoting. 

3. The stabilized cyclic reduction approach 

Since blocks ..0.; in (3) may be ill conditioned or even singular, the algorithm 
proposed above may be unstable. Moreover, even if for a given ABD matrix we 
choose the initial decomposition (1) such that each block on the main diagonal 
of the original matrix (3) is non-singular, it is quite difficult to prove that blocks 
obtained in the cyclic reduction process remain non-singular. To overcome this 
problem, we can modify the previous algorithm slightly and thereby ensure 
stability. 

Consider the first step of reduction and let n; be the number of columns of 

(7) 

This means that block ..0.; in (3) is n; x n;. Observe that since the original 
matrix (1) is nonsingular, it is possible to extract from (7) a nonsingular n; x n; 

matrix. Then by applying row permutations inside blocks i and i + 1 (see (1) 
and (2)), we may derive a new decomposition 

(8) 

where block Ji; (defined as ..0.; but with blocks A2,i, D2,;, Dl,i+l and Al,i+l in 
(8)) is nonsingular. This can be achieved by applying Gaussian Elimination with 
partial pivoting to block (7) and then row permutations in order to insert the 
pivotal elements in the rows of rh,i and A.l,i+l· Obviously with this approach 
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blocks ih,i, 62,i, ... have no longer the same size of B2,i, c2,i, ... , but Ai is still 
nix ni. 

To better understand the difference between the two algorithms observe 
now what happens if they are applied to an ABD matrix with D 1,.i = B 1 ,.i = 
In and A1,.i = C1,i = A2,1 = B2,1 = C2,.i = D2,.i = On. This matrix is 
obviously nonsingular (it is a permutation of the identity matrix) and may also 
be derived from a simple linear BVP ODE (with M = Ahn in (9) and by 
selecting an appropriate value of the stepsize h, and an appropriate number of 
initial conditions). 

If we use the cyclic reduction, then /:),i = ( ~: g: ) is singular and the 

algorithm stops at the first step of reduction. 
If we use the stabilized algorithm, then Gaussian Elimination with partial 

pivoting is applied to blocks of the form ( ~::· ) . The permutations will result 

in A2 ,i, ih,i, Cl,i+l, and Ih,i+l having zero rows, A.l ,i+l and C2,i being 2n x 2n 
and bl,i+l and Ih,i being 2n x 0. Then Ai = I2n is nonsingular and the 
algorithm calculates the solution. 

Summarizing, the main (substantial) difference between the two algorithms 
is that in cyclic reduction the size of the blocks Ai,i, Bi,.i, . .. , is a priori fixed 
while in the stabilized cyclic reduction it is variable (it changes at each step 
of reduction) and depends on the factorization process (the pivoting elements 
during the factorization). The main advantages of the stabilized algorithm is 
that the factorization always exists and is stable. Moreover, the computational 
cost is the same as that of the cyclic reduction algorithm of the previous sec­
tion , even if the execution time will be greater because additional permutations 
are performed . At the same time our numerical experiments suggest that the 
possibility for an ABD matrix to have a singular block /:),i is very small (see 
below and Amodio and Paprzycki 1995) so the stabilized algorithm needs to be 
used only if the standard algorithm fails. 

4. Numerical tests 

Numerical tests were performed on a distributed memory parallel computer Mi­
cro Way Multiputer with 32 processors. Each processor is a T800 transputer and 
has a local memory of 1 Mbyte. The sequential tests were performed on a single 
transputer with 16 Mbytes of local memory. The implementation details can 
be found in Amodio and Paprzycki (1995). We have tested the two sequential 
algorithms: 

• SOLVEBLOCK routine by De Boor and Weiss (1980); 
• SGEABD routine by Cyphers, Paprzycki and Gladwell (1992); 

and two parallel algorithms introduced in the previous sections: 

• ABDCR cyclic reduction; 
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Table 1. Sequential execution times for the Problems 1-5 and m = 32 

Probl. 1 Probl. 2 Probl. 3 Probl. 4 Probl. 5 
SOLVEBLOCK 

SGEABD 
ABDCR 

SABDCR 

399 722 2270 7819 13912 
828 1267 2749 6557 11016 
775 
963 

1495 
1904 

4031 
4585 

11453 
12857 

19537 
21833 

• SABDCR stabilized version of the cyclic reduction. 
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All the considered test problems arise from the numerical solution (by using 
finite differences) of a general boundary value problem: 

y'=My+q(t) tE [a,b], 
Bay(a) + Bby(b) =dE ~n. 

(9) 

where M is a random n x n matrix, for n = 2, 3, 5, 8, 10. The following five test 
problems have been experimented with: 

• Problem 1: system of two first-order BVP's - internal blocks of size 2 x 4; 
• Problem 2: system of three first-order BVP's - internal blocks of size 

3 X 6; 
• Problem 3: system of five first-order BVP's- internal blocks of size 5 x 10; 
• Problem 4: system of eight first-order BVP's - internal blocks of size 

8 X 16; 
• Problem 5: system of ten first-order BVP 's - internal blocks of size 10 x 20. 

In all cases q(t) has been selected in such a way to have all the components of 
the solution behave as et. In order to compare the performance of the proposed 
algorithms with that of SOLVEBLOCK and SGEABD, separated boundary 
conditions have been selected (both these codes are designed for ABD matrices 
without additional corner blocks). Then, in a separate experiment, we have 
applied the new algorithms to the same BVP's with non-separated boundary 
conditions. The timings of the parallel solutions of problems with separated 
as well as non-separated BC's were exactly the same, in agreement with the 
arithmetical complexity functions of the proposed algorithms derived in Amodio 
and Paprzycki (1995). 

Tables 1- 2 contain the sequential execution times in ticks (1 tick = 64 · 10-6 

seconds) of the proposed solvers for m = 32 and 256 internal blocks. It can be 
observed that for both values of m SOLVEBLOCK outperforms the remaining 
solvers for the first three problems while time ratio between SOLVEBLOCK and 
SGEABD decreases as the size of the internal blocks increases. For Problems 4 
and 5 the situation reverses and SGEABD outperforms SOLVEBLOCK. This 
can be explained by the fact that the BLAS kernels used were not specially tuned 
for the Transputers. In such a case, for small blocks, level 1 and 2 BLAS based 
SOLVEBLOCK can outperform level 3 BLAS based SGEABD. Interestingly, 
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Table 2. Sequential execution times for the Problems 1- 5 and m. = 256 

Probl. 1 Probl. 2 Probl. 3 Probl. 4 Probl. 5 
SOLVEBLOCK 

SGEABD 
ABDCR 

SABDCR 

3142 5699 17977 62125 110497 
6456 9944 21617 51915 87639 
6124 11811 31709 91170 155211 
7634 15184 36416 103559 174586 

32 procs 

16 procs 

8 procs 

number of blocks 

Figure 3. Speedup of the ABDCR solver. 

the ABDCR routine outperforms SGEABD for the Problem 1, but as the sizes 
of the individual blocks increase SGEABD becomes faster. The time ratio of 
ABDCR to SOLVEBLOCK decreases for larger block sizes. This shows once 
more the advantage of level 3 BLAS kernels which were used to implement 
ABDCR. In all cases the stabilized SABDCR routine is the slowest. 

Figure 3 represents the speed up (ratio between the sequential and the parallel 
execution time) of the ABDCR algorithm for p = 8, 16 and 32 processors for 
the increasing value of m. For each number of processors the five lines represent 
speedup of the five test problems. Figure 4 contains similar results for the 
stabilized algorithm SABDCR. In both cases the best speedups were obtained 
for the Problem 5, the worst for Problem L It should be observed that when 
compared internally both algorithms perform well. For large n an almost linear 
speedup is observed. 

Tables 3 and 4 address the scalability of the proposed algorithms. The 
execution times of ABDCR and SABDCR for all three problems are presented 
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Figure 4. Spee'dup of the SABDCR solver. 

Table 3. Scalability of the ABDCR solver (m= 32p). 

p=1 p=2 p=4 p=8 p = 16 p = 32 
Problem 1 775 824 883 967 1104 1338 
Problem 2 1495 1567 1654 1768 1946 2218 
Problem 3 4031 4173 4345 4560 4864 5319 
Problem 4 11453 11848 12281 12787 13443 14348 
Problem 5 19537 20210 20934 21779 22782 24181 

in ticks for p = 1, 2, 4, 8, 16 and 32 processors while the size of the problem 
(number of blocks rn) increases as the number of processors increases and is 
equal to 32 * p (32 blocks per processor). 

It can be observed that the algorithms do not scale too well. The best scala­
bility (for both algorithms) has been observed for Problem 5. This result should 
be viewed together with the fact that the best speed up has been also observed for 
Problem 5. It can be explained by the fact that Problem 5 is characterized by the 
largest sizes of the blocks thus leading to the best calculation-to-communication 
ratio. The ABDCR algorithm is not only faster and has better speedup, but 
has also better scalability than its stabilized version. 

Figure 5 presents time ratio of the best sequential algorithm for a given 
problem (SOLVEBLOCK for Problems 1-3 and SGEABD for Problems 4- 5) 
to the faster of the parallel algorithms (ABDCR) for the increasing number of 
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Table 4. Scalability of the SABDCR solver (m= 32p). 

p=1 p=2 p=4 p=8 p = 16 p = 32 
Problem 1 963 1042 1152 1373 1731 2547 
Problem 2 1904 2016 2167 2410 2771 3557 
Problem 3 4585 4771 4992 5330 5783 6613 
Problem 4 12857 13206 13871 14449 15244 16292 
Problem 5 21833 22563 233745 24351 25558 27205 

32 procs 

15 

10 
16 procs 

5 8 procs 

0 

number of blocks 

Figure 5. Time ratio of the best considered scalar solver (SOLVEBLOCK for 
the first three problems and SGEABD for the remaining two) and the ABDCR 
solver. 

blocks rn. This data represents the absolute speed up of the proposed algorithm. 
It can be observed that this time the performance gain is not as large as shown 
in Figures 3-4. As previously, Problem 5 is characterized by the best speedup 
and for large m reaches efficiency of 53%. 

Finally, it should be pointed out that, for all problems reported here, as well 
for a number of additional tests that we have performed (some results have been 
reported in Amodio and Paprzycki 1995), the relative error with respect to the 
exact solution obtained by both ABDCR and SABDCR was the same and equal 
to the error given by the sequential algorithms. 
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5. Conclusion 

Two versions of cyclic reduction algorithm for the solution of Almost Block Di­
agonal Systems have been presented. The experimental results suggest that the 
standard cyclic reduction algorithm has good numerical properties and performs 
well on a distributed memory computer. The stabilized algorithm does not per­
form as well and its usage should be limited to the cases when it is known that 
the problem may have a badly conditioned matrix (or when the non-stabilized 
algorithm fails). 
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