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Abstract. We deal with the infinite horizon optimal control 
problem for a nonlinear system of differential equations with con­
stant delay focussing our attention on its numerical approxima­
tion. Dynamic programming is used to get an approximation scheme 
based on the time discretization of the dynamics and of the pay-off. 
We prove that the resulting discrete-time approximation scheme 
converges to the value function of the continuous problem with 
rate 1. 
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1. Introduction 

The control of systems of differential equations with delay is a frequent problem 
in many applications in engineering and biological models. We consider this 
problem from the point of view of its numerical approximation and we establish 
a convergence rate for its discrete- time approximation obtained by applying a 
discrete version of dynamic programming. The proof of the a pr-ior-i estimate 
giving the rate of convergence of the scheme is based on direct control arguments. 

As it is well known, the dynamic programming approach leads to a charac­
terization of the value function v in terms of a Hamilton- Jacobi equation set in 
the space of initial conditions. For this characterization the choice of the space 
of initial functions ifJ for the dynamics is crucial. 

A general theory on delayed differential systems with initial conditions in 
C(([- T,O],IRN) or in the product space IRN x L 2 ([-T,O],IRN) and some appli­

·cations to control problems can be found in Bensoussan, Da Prato, Delfour and 
Mitter (1992) (sec also Delfour, Karrakchou, 1987, and Delfour, Mitter, 1972) . 
In particular, the linear- quadratic optimal control problem for hereditary dif­
ferential systems has been studied extensively from the theoretical and from the 
numerical point of view by applying Nedclec method and sernigroups techniques 
(see e.g. Delfour , 1977, and Delfour , Trochu, 1977). 
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Here we take the initial conditions in the space V = C([-T, 0]; JRN) essen­
tially because the result on the continuous dependence on the data in that case 
(see Lemma 2) is more precise and this is particularly useful when applying the 
dynamic programming principle to the fully nonlinear case. 

The drawback of this choice is that C([- T,0];1RN) is not an Hilbert space 
and that it does not satisfy the Radon-Nikodym property which is crucial in 
the theory of weak solutions in the "viscosity" sense developed in Crandall and 
Lions (1986) (see also Barbu and Da Prato, 1983, for a different notion of weak 
solution). We refer to Soner (1988) for the analysis of a control problem for a 
delayed system in the framework of viscosity solutions. 

Although the problem of defining a solution to the Hamilton-Jacobi equation 
is difficult in the general nonlinear case, we can still use dynamic programming 
to obtain convergence of an approximation scheme, if the scheme has a control 
interpretation. In fact, our scheme is constructed via a natural discretization 
in time of the original control problem which permits the interpretation of the 
approximate solution vh as the value function of a discrete-time control problem. 
In this respect our convergence result is an extension of the results in Capuzzo 
Dolcetta (1983), Capuzzo Dolcetta and Ishii (1984) and Falcone and Ferretti 
(1994) related to the approximation of the infinite horizon problem for systems of 
ordinary differential equations. Adding to the above mentioned approximation 
a discretization of the space V, e.g. with spline functions, one can finally get a 
finite dimensional problem which can be solved using the methods described in 
Falcone (1987). Although a detailed analysis for the space approximation will be 
developed in a forthcoming paper some directions and a numerical experiment 
can be found in Falcone and Rosace (1995). 

We should also mention that a different approximation of optimal control 
problems for systems with delay (or hereditary systems) has been previously 
developed by Banks and his co-authors at the end of the 70's. Their approach 
is different in two respects. They establish convergence results (without rates) 
mainly for linear hereditary systems, although some results have been extended 
to a particular class of nonlinear systems (see Banks, 1979) . Moreover, they 
write the linear functional differential equation as an abstract equation in a 
Banach space (the space of initial conditions) and use the Trotter-Kato ap­
proximation theorem for linear semigroups to establish the convergence of the 
approximate solutions to the value function. The interested reader can find the 
detail of this approach in Banks and Kappel (1979), Banks, Burns and Cliff 
(1979) and in the references therein. 

2. The optimal control problem 

Let us fix a constant delay T E 1R+. We consider the system 

{ 
y(t) = b(t, a(t), y(t), y(t- T)) 
y(t) = cj;(t) 

a.e. t > 0, 
in [- T, 0], 

(1) 
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where the initial function cp E V = C([-T, 0], IRN). Our set of admissible 
controls is 

A = {a : [0, oo) ---+ A, measurable,} (2) 

where 

A is a corn pact subset of IR M. (3) 

We suppose that the vector field b satisfies the following hypotheses 

1>(-,a,v,w) is measurable, \l(a,v,w) EA x IRN x IRN, (4) 

I b(t,a,v,w) I:::; Mb, \1 (t,a,v,w) E JR+ x A x IRN x IRN, (5) 

lb(t,a,x , y)- b(t,a,z,w)l:::; Lb(lx- zl + IY- wl) , for any a EA, (6) 

where Mb and Lb are positive real costants. 

THEOREM 1 Let (4) - (6) hold tTv.e. Then, joT any .fixed cp E V and a E A theTe 
exists a v.niqv.e j1mction yq, = yq,(t,a(t)) E ACloc([O,+oo),IRN) (the space of 
absolv.tely contimwv.s j1mctions) which satisfies (1) in the integml sense, i.e. 

yq,(t) = cp(O) + t b(s, a(s), yq,(s), yq,(s- T)) ds, \lt > 0. Jo 
(7) 

For the proof see Hale (1971) and Delfour, Mitter (1972). 
We choose V= C([-T, 0], IRN) so that we can obtain (by Gronwall's lemma) 

a precise estimate of the continuos dependence on the data for the system (1). 
This helps us when applying the dynamic programming principle to our problem. 
We will denote by 11 · lloo the sup norm in V. The proof of the following Lemma, 
obtained by adapting the arguments for systems without delay, can be found in 
Rosace (1994). 

LEMMA 2 Let (4) - (6) hold tTv.e and a EA be .fixed. Then for· any cp,'lj; E V, 

IYq,(t,a(t))- 1J,;;(t,a(t)) 1:::; 11 cp-'lj; lloocLbt, forallt > 0. (8) 

We want to minimize the pay-off 

J(cp,a) = /
00 

f(a(s),yq,(s,a(s)) c->-.sds, 
.Jo 

where .A E IR+ and f : A x IRN --+ IR satisfies 

I f(a,x) 1:::; Mt, for any (a,x) EA x IRN 

lf(a, x) - f(a, z)l :::; Ltlx- z l, for any a EA, 

(9) 

(10) 

(11) 

where M 1 and L 1 arc positive real constants. Using standard arguments it is 
possible to prove that the value function 

v(cp) = inf J(cp,a) 
a EA 

(12) 

satisfies the following dynamic programming principle. 
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THEOREM 3 For· every t > 0, we have 

v(cp) = inf { /t j(a(s),yq,(s,a(s))e->.8 ds+v(c/Jt) e- >.t}, 
aEA ./o (13) 

wheTe c/Jt : [ -T, 0] __, IR.N is defined as c/Jt(8) = yq,(t + s, a( t + s)), joT 8 E [ - T , 0]. 

Note that by its definition and by Theorem 1, c/Jt E V. The value function 
has some properties which will be useful to establish the convergence of our 
scheme. They are stated in the following result . 

THEOREM 4 Let (4) - {6)and {1 0) - {11) be satisfied. Then, joT any cp, 'lj; E V we 
have 

i) I v(ifJ) 1:::: ~~ 
ii) I v(cp) - v('lj;) I:S: C 11 c/J- 'lj; ll2o, 

(14) 

(15) 

wheTe C and rE IR.+ are costants depending on Lb,>..,Mt,Lt. More precisely, 
r = 1, t L>. respectively, where Lb < >.., Lb = >.. and Lb > >... 

~ b 

Proof. For any cp E V we have 

I v(cp) I:::; .loo I j(a(s), yq,(.s, a(s)) I c- >.sd.s Va EA, 

then by (10) we get immediately i). 
Let us prove ii). Take cp and 'lj; in V, by the dynamic programming principle 

we obtain 

I v(cp)- v('lj;) I:S: infA t I j(a(s),yq,(s,a(s)))- j(a(8),yw(s,a(.s))) I e- >.sd.s 
nE ./0 

+ I v(c/Jt) - v('lj;t) I e->.t. 

By (11) and (8) we have 

I j(a(.s),yq,(s,a(s)) - j(a(s),vv,(s,a(.s))) I:::; Ltl l cp- 'ljJ lloo eLbs Vs> 0. 

Then we conclude, 

it -(>.-Lb)sd + 2Mt ->.t e 8 -- e 
. 0 )... 

(16) 

Depending on the sign of(>..- Lb), we have three cases. 
1) Let ).. - Lb > 0, then we pass to the limit fort going to +oo in (16) and 

we conclude that 
I v(cp) - v('lj;) I:S: Cll c/J - '1/J, lloo 

Lt 
where C := --. 

).. - Lb 
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2) Let A - Lb < 0, then we have 
Lt 2M 

I v( 4Y) - v( 'lj;) I :S Lb _A 11 4J - W I loo e(Lb-A)t + ---!- e-At. (17) 

If 11 4J- 'lj; ll oo 2 1, we have that e- At :S 11 qy - 'lj; lloo lb for every t > 0. 
1 . 

Setting t = Lb ln(ll qy - 'lj; lloo) and replacing in (17) we get 
>. 

lv(qy)- v('lj;) I :S C II 4J-'I/;IIooLb, (18) 

where C = _!:j__ + 
2
Mf. If 11 qy- 'lj; lloo < 1, we repeat the same 

Lb - A A 
1 

argument setting t = - Lb ln(II4J- 'lj; ll oo) and replacing tin (17). 

3) Let Lb =A , then we have 

I v(qy) - v('lj;) I:S Ltii4J- 'lj; ll oo t + 2Mt e-At 
A 

(19) 

If 11 4J - 'lj; lloo 2 1, then e-At :S 11 4J- 'lj; lloo! for every t > 0. We choose 

t = ~ 11 4Y - 'lj; lloo -! and we replace it in (19), obtaining 
1 

I v(qy) - v('lj;) I:S Cll 4J- W lloo 2 , (20) 
Lt Mt 

where C = --:\ + 2T. If 11 qy - 'lj; lloo < 1, then we set 
1 1 

t = -): ln( ll 4J- 'lj; lloo 2 ) 

1 1 

and replace tin (19). Since -ln(ll qy- 'lj; lloo 2 ) :S 11 4J - 'lj; lloo - 2 , we have 
1 

I v(qy) - v('lj;) I:S Cll 4J- 'lj; ll oo 2 , (21) 
Lt Mt 

where C = - + 2-A A . 0 

Theorem 4 shows that the value function v E BUC(V), i.e. it belongs to the 
space of bounded and uniformly continuous functions, so we can define the 
following norm 

(22) 

3. Time-discretization and convergence 

The discrete approximation of the value function can be constructed starting 
from a discretization in time of the dynamics and of the cost functional with a 
positive time step h. Let h = ll.t be positive and let tn = nh. Naturally, to have 
a meaningful discretization we choose h < T. Our set of admissible controls for 
the discrete dynamics is the set of piccewise constant controls 

Ah :={a. EA: a.(t) =an EA C lRM with t E [tn,tn+l [ }. (23) 
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For any n E A we define the discrete dynamical system with delay 

{ 

7/n+l ( <fJ~ = 7/n( <fJ) + hi!!~n, an, 7/n( <fJ ), y(tn - T); h), 

7/n(<P)- <fJ(nh), n- 0, -1, -2 ... - n 7 , 

n = 0, 1, 2 ... , 
(24) 

where 7/n(<P) is a short notation for 7/n(tn,an,<fJ) and n 7 = [T/h]. Note that 
(24) corresponds to a one-step scheme for (1) and that the function if! changes 
according to the numerical method ( see e.g. Cryer, 1972, Oppelstrup, 1976, 
and Oberle and Pesch, 1981, for a detailed analysis of several approximation 
schemes for systems with delay). For example, one can take the explicit Euler 
scheme given by 

{ 

7/n+l(<fJ~ = 7/n(<fJ) + hb(tn,an,7/n(<fJ),7)n-m(<fJ)), n = 0, ~2.~ -' (
25

) 

7/n(<P) - <fJ(nh), n - 0, 1, 2.. . m, 

where, for simplicity, we assume that T = m h with m E lN. 
In general, we will assume that if! satisfies the following hypotheses 

if!(t,a,.T,y; ·)is continuous, V(t,a,x,y) E lR+ x A x lRN x lRN, (26) 

i!!(t,a,x,y;O) = b(t,a,x,y), V(t,a,x,y) E lR+ x A x lRN x lRN, (27) 

i.e. the method is consistent. Moreover, we assume that there exists a positive 
constant Lq, such that 

I i!!(t, a, x, y; h) - i!!(t, a, s, z; h) I~ Lq,(l x- 8 I + I y- z 1). (28) 

Let us define the discrete cost functional 
00 

,!,_(<fJ,a.h) = h~(3i f(a.;,7);(cp)), (29) 
i=O 

where (3 = c->-h and a.h E Ah· The corresponding value function is vh: V---+ 
IR, 

(30) 

We denote by 77(t) = 7)(t,a.h(t),cp) the linear interpolate of the nodes 7/n(<P) 
defined in (24) and for any p E 1N define the function <PP : [ -T, 0] -----* JRN, 

fors+ tp < 0, 
(31) 

for 8 + tp > 0. 

The following result is a key tool for the construction of the approximation. Its 
proof is standard, so it will be omitted (sec e.g. Capuzzo Dolcetta and Falcone, 
1988) . 
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THEOREM 5 Let vh be defined as in (30) , for- any integer- p 2 1 we have 

where ai = ah(t) E A with t E [ti,ti+l)· 

Taking p = 1 in (32) we obtain 
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(32) 

Vh (<jy) = inf [ ,8 vh(<fJ1) + h f(ao, </J(O))] = inf [,8 vh(<fJ1) + hf(a, </J(0))] .(33) 
<>hEAh aEA 

THEOREM 6 Let the assumptions (3), (6) and (11) be satisfied and <jJ E V. 
Then vh is the v.niq1J.e bounded solution of 

u(<jy) = inf [,8 v.(</JI) + hf(a,<jy(O))]. 
aEA 

(34) 

Proof. We have to prove that vh is bounded in V. Take <jJ E V, by definition 
(30) and assumption (11) we immediately get 

(35) 

An easy computation shows that I vh(<fJ) I::; ~~ , for every <jJ E V. 

To prove uniqueness we proceed by contradiction. Let us assume that there 
arc two bounded solutions of (34) denoted by v.1 and u 2 . For any E > 0 there 
is a control iih E Ah such that v.2(</J) + E 2 ,Bv.2 (c$1) + hf(ii,<jy(O)) where 
ii = iih(s) with sE [0, h) and 

fors+ h < 0, 
(36) 

fors+ h > 0. 

For every <jJ E V and E > 0, we obtain v.l(<fJ)- v.2(</J)::; ,Bv.l(c$1)- ,Bu2(c$1) +E. 
Inverting v.1 and v.2 we can conclude that 11 u1 - v.2 lloo ::; ,8 11 v.1 - v.2 lloo 

that implies 11 v.1 - v.2 lloo = 0 . D 
The following theorem shows that if the approximation schemes adopted 

for the dynamics and the cost functional arc accurate enough, then the rate 
of convergence of the approximation scheme defined in (34) is 1. We need the 
following assumptions 
(A1) For every initial function <jJ E V and for every measurable control a EA, 
there exist a discrete control ah E Ah and two positive constants K1 and K2 
such that 

I yq,(s, a(s)) - rJ(s, ah(s), </Y) I::; K1h2, s E [0, h], 

1 /h f(a(s),yq,( s,a(s)) c->-.sds - hf(ao,</J(O)) 1:::; K2h2 
.fa 

(37) 

(38) 
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where aa = o:h(s) with sE [0 , h]. 

(A2) For every cj; E V and for every discrete control o:h E Ah, there exists a 
measurable control o: EA such that (37) and (38) are satisfied. 

Note that the assumptions (Al) and (A2) introduced in Falcone and Fer­
retti (1994) for controlled systems without delay can be interpreted as specific 
requests on the accuracy of the numerical schemes adopted respectively for the 
dynamics and for the costs. 

THEOREM 7 Let v,s assv,me that (5), (6), (10), {11), (26) - (28) and (A1)-(A2) 
hold tr-ue. Mor-eover-, assume that Lb < A . Then 

11 V - Vh ll oo ::; C h. 

joT some positive constant C. 

Proof. We know that vh satisfies (33). For any positive E, there exists ah E Ah 
such that vh(cP) + E > f3vh(c$1) + hf(a, cj;(O)), where a= ah(s) with sE [0, h] 
and 

ifs+ h < 0, 

The continuous dynamic programming principle implies 

v(cj;) ::; /" f( a(s), yq,(s, a(s))) e->-.sds + e-Ahv(c$h ), 
.fa 

where a EA is the measurable control corresponding to ah E Ah in (A2) and 

ifs+ h < 0, 
fh(s) = 

{ 

cj;(s+h) 

yq,(s+h,a(s+h)) ifs+h > 0. 

Then, for every cj; E V, we have 

v(cj;) - vh(cP) ::; I /h f(a(s),yq,(s, o:(s))) e->-.sds- hf(a, cj;(O)) I 
.fa 

+ {3 I v(c$h) - v(c$1) I + !31 v(c$1) - vh(c$1) I +E. 

Theorem 4 and assumption (37) imply 

I v(cPh) - v(c$1) I::; Lvll ~h- ~1lloo < LvK1h2 , 

Lt 
where Lv = A_ Lb. By (38) we get 

v(cj;)- vh(cP) ::; K2h? + f3LvK1h? + !311 V- Vh 11 ,;:, +E. (39) 
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Following the same argument, we can prove that 

vh(ifJ)- v(ifJ) s; K2h2 + f3LvK1h2 + /311 V- Vh 11~ +E. 

By (39), ( 40) for any fixed E we have 

(1 - /3) 11 V - Vh 11~ s; K2 h2 + /3 Lv K1 h2 + E. 

673 

(40) 

Passing to the limit forE going too+ and recalling that 1- f3 = >.. h - O(h2 ), 

we get 

11 V - Vh ~~~ s; C h, 

K2 Lv K1 
where C= - + --

>.. >.. 
D 

REMARK 1 SimilaT results for higheT oTder appmximations can be obtained as 
in Falcone and FeTTetti (1 994). The reader can also find theTe some sufficient 
conditions ass?J.Ting (A 1) and ( A2) for systems witho?J.t delay, i.e. joT T = 0. 
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