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Abstract: The paper demonstrates how to apply belief func­
tions in modelling transition function of a dynamical system. It is 
explained how to compute a next state of the system and how to 
find a sequence of fuzzy controls satisfying fuzzy constraints to meet 
a final state of the system. 

1. Introduction 

When modelling behaviour of complex systems we must often deal with uncer­
tainty, imprecision and lack of full information. The standard tool for coping 
with uncertainty is probability theory. Hence, stochastic systems form a well 
developed branch of control theory. Emergence of fuzzy sets profited in a new 
discipline- fuzzy dynamical systems. At the same time Schweppe (1968) devel­
oped another approach, termed uncertain systems. It seems that all these ideas 
can be put into one formalism - that of belief functions. 

In this paper we postulate such a common formalism and we show that 
depending on the arriount of information we have at our disposal it reduces to 
the approaches already mentioned. 

The paper is divided into three main parts. Section 2 provides short in­
troduction to the theory of belief functions. In Section 3 we focus on various 
representations of the transition function of a dynamical system and in Sec­
tion 4 we make an attempt towards computing a sequence of optimal controls 
satisfying certain set of constraints. 

2. Belief functions 

This section provides a brief introduction to the theory of belief functions, 
termed also theory of evidence or Dempster-Shafer Theory (of evidence) . An 
unacquainted reader is referred to the original works of Shafer (1976;1982) or to 
a paper by Wierzchori. (1996) where all the notions discussed later are explained . 
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2.1. Representing a single body of information 

Consider a variable X taking the values from a discrete set 8, referred to as 
a domain of X or a frame of discernment (this last name is used iil. Shafer's 
papers). When assessing a current value of X we may be faced with five generic 
situations: 

• certain information: we are sure that X takes on· a concrete value x E 8, 
• probabilistic information: we know a distribution function allowing to 

choose a value X E e with a probability p(x) = P(X = x), 
• uncertain information: because of lack of full information we only know 

that the current value of X should lie somewhere in the subset A of 8, 
• commonsense information: due to our experience the value of X typically 

belongs to a subset A of 8 (that is with probability a it lies somewhere 
in A and in 100 x (1- a) percent of remaining cases the location of X is 
absolutely undetermined), 

• lack of information (total ignorance): we only know that current value of 
X belongs to the frame 8. 

All the cases mentioned above can be nicely handled within one mathemat­
ical formalism - that of belief functions. Our knowledge about possible location 
of current value of X is expressed now in terms of a so called belief function 
Belx : 28 -+ [0, 1]. Actual form of this set function hardly depends on current 
state of knowledge about the problem under consideration. It was observed by 
Kohlas and Monney (1994), that Bel stands for a concise representation of hints 
concerning possible location of the value of X. 

From the formal standpoint , belief functions are monotone of order infinity 
set functions defined on the power set of a domain, e, and taking the values 
from the unit interval. A belief function, Bel, can be computed effectively from 
so-called mass function (described later), m, according to the equation 

Bel(A) = 2:)m(B)IB t;;; A,B =I= 0}, At;;; e (1) 

Here we have used simplified notation, that is (1) is equivalent to l:B~A,B#Ql m( B). 
Equation (1) is valid when the domain 8 is discrete. If 8 is a continuus 

domain, Bel is defined in the next equation 

Bel( A)=/ l m(x, y)dxdy, x ~ y 
. [x ,yKA 

(2) 

where the mass density function, m(x, y), is defined for all the closed intervals 
[:r, y] such that x and y are in 8, and x ~ y - see Dempster (1968). In other 
words, m defines a random interval [X, Y] whose end points are random variables 
X and Y such that X ~ Y. This interval is an example of a so-called random 
set. Denoting by S this random set, the belief function can be interpreted as the 
probability that S belongs to a prespecified set A, i.e., Bel(A) = Pr(S t;;; AIS =/= 
0). Similarly, m(A) = Pr(S = A)/Pr(S =/= 0). In the sequel we will consider the 
discrete case only. 
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In this restricted case the values of mass function are related to a given belief 
function through the equation 

m( A)= L {( -1)IA-BIBel(B)IB ~A}, A~ e (3) 

A set function m : 28 ----+ [0, 1] qualifies as a mass function if it satisfies the 
three postulates: (i) m(0) = 0, (ii) m(A) 2': 0 for any subset A of e, and (iii) 
the sum of m-values over all the subsets of e (including e itself) equals 1. The 
requirement (i) corresponds to the situation when e is a complete list of possible 
states; otherwise it is justified to assign positive mass to the empty set. In other 
words, condition (i) corresponds to the so-called closed world assumption while 
it relaxation - to the open wor-ld assumption- see Smets (1994) or Wierzchon 
(1996) for details . 

The subsets of e with positive m-values are referred to as focal elements of 
a given mass function. Let us denote by F(m) the set of focal elements .of a 
mass function m. If A• does not belong to F(m) then m(A) = 0. 

We note that when all focal elements of m are singletons, then such a mass 
function reduces to a classical probability mass function. Hence, in this case we 
obtain the so called Bayesian belief function , that is the classical probability 
function. 

When F(m) = {e}, then m represents a vacuous belief function. It describes 
an agent's total ignorance about the occurrence of a specific elements of e. 

When F(Tn) = {A}, where A is a (strict) subset of e, we have categorical 
belief function. It represents the agent's belief that the value of X belongs 
exactly to A. Such functions model uncertain information. 

From a practical standpoint, the most important are simple support func-
; 

tions characterized by mass functions with two focal elements, F(m) ={A, e}, 
A -=1- e. They can be viewed as a mixture of categorical and vacuous belief 
functions and they can be interpreted in the following way: an agent is partially 
sure (to the extent a) that the truth lies in A ; thus the remaining portion of 
belief (i.e. 1 -a) must be assigned to the whole domain e. Such functions 
represent default, or commonsense information. 

A conjungate to Bel is the plausibility function, Pl(A) = 1- Bel(Ac), where 
Ac is the complement of A in e . . With our random-set interpretation, Pl, the 
plausibility function can be interpreted as the probability that the random set 
S hits a subset A, i.e. Pl(A) = Pr(S n A -=1- 0). In other words, the number 
Pl(A) determines the extent to which it is possible that a current value of X lies 
somewhere in the set A. 

2.2 . Combining independent bodies of information 

Assume there are two mass functions m1 and m2 representing unrelated pieces 
of information. The resulting (combined) mass function m, being the orthogonal 
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sum of m1 and m2, and denoted m1 EB m2, is defined in the next equation: 

m(A) = ml EBm2(A) = l'i:-
1 l_)m1(A1) ·m2(A2)IA1,A2 ~ 8,A1 nA2 =A} 

(4) 

where l'i: is a normalizing constant, l'i: = I:{m1(Al) · m2(A2)IA1,A2 ~ 8,A1 n 
A2 f 0}. Hence the rule ( 4), known as Dempster's rule of combination, is appli­
cable only if l'i: > 0. Intuitively, the value of/'\: expresses the degree of agreement 
between two pieces of information. If the pieces are perfectly consistent then 
/'\: = 1, and if they are absolutely inconsistent then "'· = 0. Obviously, the rule 
(4) is applicable if the two pieces are at least partially consistent. It is always 
applicable under the open world assumption mentioned earlier. 

It is interesting to note that when two categorical mass functions, with focal 
elements A and B respectively, are combined then the resulting mass function 
has exactly one focal element C = An B. Hence, Dempster's rule of com­
bination acts like a generalized set intersection. It can be verified that the 
rule corresponds to the intersection of two independent random sets. Another 
interesting property of the combination rule was observed by Kohlas and Mon­
ney (1990). The authors state on p. 51 that "Dempster 's rule of combination 
of hints through arithmetic constraints really corresponds to the arithmetic of 
uncertain intervals (much as the arithmetic of random variables)". 

2.3. Transporting beliefs expressed on different frames 

When studying dynamical systems, the set 8 is usually understood as a Carte­
sian product of few spaces. More concretely, let X =;: {X1 , X2 , ... , Xn} be a 
set of variables and let 8 ( {Xi}) stands for the domain of i-th variable. Then 
8(X) denotes the Cartesian product of the domains of all variables specified in 
the set X. Similarly if A is a subset of X then 8(A) = x{8({Xi})IX; EA}. 
Belief functions defined on the frame 8(X) are referred to as the multivariate 
belief functions, and they are studied in Kong (1986). 

To combine two multivariate mass function m1 and m2 defined on different 
spaces, say 8(A) and 8(B), respectively, we must redefine them to the common 
space 8(A U B) - consult Shafer (1976) for a general case. Such an operation is 
said to be a minimal extension. It is defined in the next equation: 

if B = A x 8( (A U B) - A) 
otherwise 

(5) 

Particularly it can be verified that if m1 and m2 are defined on the spaces 8(A) 
and 8(B), where A and B are disjoint subsets of X, then the combined mass 
function m has focal elements of the form A x B, A E 8(A), BE 8(B) and 

(6) 

This shows that frames being products of disjoint subsets of X qualify as inde­
pendent frames- see Shafer (1976), for a deeper discussion of this notion. 
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Knowing a multivariate mass function, m, defined on the space G(A), we 
may be interested in the information this mass function carries about G(B), 
where B C A. This task is gained through a marginalization operation defined 
in the equation (7): 

ml B(B) = l:)m(A) IA ~ 8(A), Proj(A, 8(B)) ~ B} (7) 

where Proj(A, G(B)) stands for the projection of the set A onto the space 8(B). 
Marginalization is an extension of a similar operation from probability theory. 

2.4. Conditional belief functions 

Conditional belief functions are belief functions obtained by combining multi­
variate belief functions with categorical belief functions. To be more precise, 
consider a mass function defined on the product space G(X). Let A be a (strict) 
subset of X and let B =X- A. Denote mb to be the categorical belief func­
tion with focal element bE G(B). The conditional mass function m(·IB = b) 
defined on G(A) is computed according to the equation1 

(8) 

Such a function represents the state of an agent's knowledge about variables 
from the set A when it is assumed that the variables from the set B take the 
values described by the element b. 

Knowing a set of conditional belief functions we may attempt to recover a 
joint belief function. Although this problem has no unique solution we may 
apply the method of conditional embedding proposed by Smets (1994). Due to 
this method a mass function m(·IB =b), defined over G(A), is extended to the 
mass function m(- IB = b)'*x with focal elements of the form 

C =A x {b} U 8(A) x (G(B) - {b}) for all A E F(m(·IB =b)) (9) 

According to Almond (1991), that conditionally embedded mass function is 
equivalent to the statement 

"If B = b then we are sure to the extent m(AIB = b) that the 
(joint) variable A takes a value a which belongs to the set A~ G(A); 
if not, our knowledge about A is vacuous". · 

The join belief function is obtained now by combining the belief functions 
Bel( ·IB = b )'*x over all b's. Conditioning such a function (i.e. combining 
it with a categorical belief function) we obtain so-called generalized Bayes theo­
rem. It can be shown that such a procedure leads to a counterpart of the Modv.s 
Tollens logical scheme- see Wierzchon (1996) for details . 

1 Let B = {X;1. X;2 , ... , X;k}· Then the symbol B = b should be read as X; 1 = 
b;1, X;2 = b;2, ... , X;k = b;k, where b;j E 8( {Xij} ), J'= 1, ... , k, and b = (b;1, b;2, ... , b;k)· 
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3. Dynamical systems under uncertain restrictions 

We assume there are given three discrete sets: 8( {U}) = { u1 , . . . , um}, 8( {X}) = 
{X!' .. . 'Xn}' and 8 ( {Y}) = {Yl' ... 'Yk}' which are the domains of the three 
variables U, X, and Y, called respectively control, state, and output. 

A dynamical system is said to be deterministic and stationary if its behaviour 
is described by the set of equations 

{ 
Xt+l = f(Xt, Ut) 
~r h(X U) t = 0, 1, 2, ... rt = t, t 

(10) 

where f : X x U --+X is a state transition function and h : X x U --+ Y is an 
output function. The parameter t represents discrete time. When the output 
equation is of the form yt = h(Ut) then the system is said to be memor-yless. 

In the sequel we shall write x.i = f(xi, uk) to express the fact that if the 
system was at the moment tin a state xi E 8( {X}) and a control uk E 8( {U}) 
was applied then, in the moment t+ 1, it proceeded to a new state Xj E 8( {X}). 

A dynamical system is said to be nondeter-ministic and stationary if its 
behaviour is described by the next set of equations 

(11) 

where the mappings f and h are of the form f : 2xxuxx --+ [0, 1] and h : 
2xxuxY --+ [0 , 1]. Particular and well-known examples of nondeterministic sys­
tems are: Schweppe's uncertain systems, stochastic systems, and fuzzy systems. 
In the next two subsections we demonstrate how such systems (including deter­
ministic systems) may be modelled in the framework of belief functions theory. 

3.1. Naive represent,ation of dynamical systems 

Consider first a deterministic transition fuction. It can be represented by a 
categorical belief function Bels with one focal element A~ 8( {X}) x 8( {U}) x 
8( {X'}) of the form . 

A= {{xi,uk,f(.Ti,uk)}ixi E 8({X}), Uk E 8({U})} (12) 

where 8( {X'}) represents the new set of possible states (at the moment t + 1). 
The set A consists simply of all triplets of the form (xi, uk, f(xi, uk)). 

Quite similarly we define the belief functions Belu and Belx representing our 
knowledge about current control and actual state of the system, respectively. 
That is Belu is a categorical belief function with one focal element B = { uo}, 
where u0 E 8({U}) and Belx has one focal element C = {xo}, where xo E 

8({X}). 
Now, the next state of the system is computed according to the equation 

(13) 
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Indeed. The focal element of the function Bell{xuxx' equals now BiXxUxX' = 
8({X}) x {v.o} x 8({X' }) and the focal element of the function Bellxxuxx' 
can be expressed as CiXxUxX' = {.-ro} x 8({U}) x 8({X'}). 

According to the Dempster's rule of combination, ( 4), the focal element, D, 
of the function Belx' is computed as 

D (AnBiXxUxX' ncrxxuxx')lX' = ({xo,v.o,f(xo,v.o)})lX' = 
{f(xo, v.o)} (14) 

Similarly, if the transition function f represents uncertain system, i.e. 
f(xi,v.k) ~ 8({X'}) then the focal element of the categorical belief funct ion 
Bels can be expressed as the set of all triplets {xi,V.k,xj} where :rj's vary over 
the range of f(xi,v.k) for all.-ri E 8({X}), Uk E 8({U}). Note that in this case 
the equation (14) produces a set of values, and not a single value. 

Consider now a more complicated situation. We assume that the t ransition 
function f is deterministic but both a current state and control are represented 
by simple support functions with focal elements F(mx) = {{x0 },8({X})} and 
F(mu) = { { v.0 }, 8( {U} )}. In other words, our knowledge about a current state 
of the system is represented by a simple support m-function of the form 

{ 

a.x 
-rnx(A) = ~- a.x 

ifA={xo} 
if A= 8({X}) 
otherwise 

(15) 

The equation (15) should be read as follows: we are certain to the degree a.x, 
where a.x E [0, 1], that the current state of the system is xo and with the degree 
1- a.x we state that the current state locates somewhere in 8( {X}), i.e. 1- a.x 
is the extent to which the state of the system is uncertain. 

Similarly, our belief that the correct control, uo, was applied is expressed by 
the next m-function: 

{ 

a.u 
mu(B) = ~- a.u 

if B = { v.o} 
if B = 8({U}) 
otherwise 

(16) 

Equation (13) decomposes now into four parts defining four (not necessarily 
different) focal elements of t.he mass function mx' corresponding to Belx': 

1. Current state and control arc known to be xo and uo, respectively. Hence 
the system proceeds to the state Xf+ 1 = { Xt + 1} = f(xo, uo) and the 
degree of belief mx,(Xl+1 ) = a.xa.u. 

2. Current state is known to be xo and control value is uncertain. The new 
state of the system becomes uncertain and it equals to the set X(+ 1 = 
U{f(x0 , Ut)lv·t E 8( {U})} (i.e it is computed by projecting all the triplets 
of the form (x 0 ,v.t,f(x0 ,ut)),v.t E U onto the space X') . The degree of 

belief associated to x;+l equals to a.x (1 - a.u). 
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3. Current state is uncertain and the value of control parameter is known to 
be ua. Again, system comes to an uncertain state X[+l = U{f(xt, u0 ))1xt E 

G({X})}. We assign to such a subset the degree of belief mx,(X[+1 ) = 
(1-ax)au. 

4. Both control and state are uncertain. The system comes to an uncertain 
state defined by the set X£+1 = U{f(xt,Ut)),xt E G({X}),ut E 8({U})}. 
Obviously mx,(X£+1) = (1- ax)(1- au). 

Obviously if we are certain that the current state of the s:ystem is x 0 and 
that the control uo was applied we put ax = au = 1 and we obtain the equation 
(14) itself. 

3.2. Conditional belief functions 

The naive representation is too vast in a general case. More efficient is a rep­
resentation using conditional b~ef functions, that is the system is represented 
by the set {Belx,( ·lxi,uk),xi E 8({X}), v.k E G({U})} of belieffunctions. 

With such a representation, to find next state of the system we proceed along 
two steps: 

• first we create a joint belief function Bels defined as the orthogonal sum 
of conditionally embedded belief functions Belx' (-I xi, uk): 

Bels = EB{Bel~,xxuxx' (-jxi,uk)jxi E G({X}), Uk E 8({U})} (17) 
• next we apply the rule (13) 
Let us investigate the formula for a focal element of the belief function 

Bel8 . Ace )rding to the equation (9) the focal elements of the conditional belief 
~xxuxx'( I ) function Belx, ·xi, Uk are of the form 

A x {xi,uk} U [G({X'}) x (G(X x U)- {xi,uk})], 

A E 8({X'}), Xi E 8({X}), Uk E 8({U}) (18) 

Denote by Ai, where j = (i -1) ·m+ k, m= Card(8( {U} )) , a focal element of 
the conditional belief function Bel~,xxuxx' (-jxi, uk)· Then the focal element 
A of Bels computed as the intersection of Aj 's equals 

n m 

A= U U (A(i-l)·m+k X {xi, uk}) (19) 
i=1 j=1 

Below we give three propositions which demonstrate basic properties of the new 
representation. 

PROPOSITION 3.1 If Belu and Belx are categorical belief functions focv,sed on 
singletons { u0 } and { xo}, respectively then 

jXxUxX' ljXxUxX' B l (I ) Eels EB Belu EB Be x = eX' · xo, uo . 
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Proof: Intersection of a focal element of Bels of the form described by the 
equation (19) with a focal element X' x {x0 ,u0 } of the function Bel~xxuxx' EB 

Bel){xuxx' produces exactly the set A1 x {x0 ,u0 } which is a focal element of 
the conditional belief function Belx,(· lxo,uo) . • 

From this proposition it follows that when all conditional belief functions 
Belx,(-lxi,uk) are categorical functions focused on singletons then we obtain 
the deterministic system. The next proposition shows how to find next state of 
the system under a categorical control. 

PROPOSITION 3.2 If Belu is a categorical belief functions focused on singleton 
{ uo} then 

Eels EB Bel~xxuxx' EB Bel1:xxuxx' 

EB{BeFx?<xuxx' (·lxt,uo) EB Bel1:xxuxx' (-)lxt E 8({X})} 

Proof: Assume that u0 is the K-th value in 8( {U} ). The intersection of a 
focal element A of Bels with the only focal element X' x { uK} x X of the belief 
function Bel~XxUxX' leads to a focal element of the form 

An (X' x { uK} x X) ~ (Q,9, (A('->)·m+' x {x;, u<))) n 

(8({X'}) X {uK} X 8({X}) 
n 

U(A(i-l)·m+K X {xi,uK}) 
i=l 

which includes only focal elements of the conditional belieffunctions Bel;-?< x uxx' 
(-lxt, UK ). Thus the remaining conditional belief functions can be ignored. • 

PROPOSITION 3.3 If Belu and Belx are Bayesian belief functions with masses 
pu and px, respectively then the formula (13) reduces to 

mx,(A) K.-
1 

· L {mx,(Aixi, uk) · Px(xi) · Pu(uk)lxi E 8( {X}), 

uk E 8({U})}, A~ 8({X'}) 

where K. is a normalizing constant. 

f h f · B 1' B ltXxUxX' B 1tXxUxX' Proof: Focal elements o t e unctwn e = e u EB e x 
are singletons {Xi, ·u.k} with masses p x (xi) · Pu ( Uk). Combining this function 
with· Bels we obtain the joint belief function characterized by mass function 

mx'xuxx(A X {Xt,Ut}) = mx,(A X {.Tt,Ut}U 

[X' x ((X x U)- {xt,ut})]) · Px(xt) · Pu(ut) 
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Projecting rnx'xUxX onto X' we obtain the result. • 
From this proposition it follows that under the Bayesian control and Bayesian 

information about the current state we obtain the Bayesian-like behaviour of 
the system. Particularly if all conditionals are Bayesian belief functions then 
our representation reduces to the stochastic system. Finally, when all Belx' 's 
are consonant belief function we obtain fuzzy dynamical system (in this case we 
use rather plausibilities than beliefs: mx,(st+l[st,Ct) = Plx,({st+1 }[st,Ct)). 

4. Controlling uncertain system 

Assume that a dynamical system is described by a set of conditional belief 
functions {Belx,(·[xi,V·k), Xi E 8({X}), v .k E 8({U})}. Assume further that 
at each stage t, t = 0, 1, ... , N - 1 there is given a fuzzy constraint C(t), 
represented by a membership function f.LC(t) : 8( {Ut}) ~ [0, 1]. As usual, the 
value J.lc(t)(v,k) where v.k E 8({Ut}), represents the degree to which the control 
v,k is considered as admissible at the stage t . Further with the final state XN a 
fuzzy goal G, represented by a membership function f.LG : 8( {XN}) ~ [0, 1], is 
associated. This problem was firstly posed by Bellman and Zadeh (1970). The 
task is to find optimal sequence of controls ( v,~, v.i, ... , v,')\r _ 1 ) which maximize 
the next functional 

(uo , ... ,u.N - 1 )E8(Uo) X · .. xG(U N-Il 

where the symbol A stand for the "ruin" operator, and E[p,c(xi)] denotes the 
expected value of fuzzy event which, in the Bayesian case, it is defined by the 
equation (21): 

(21) 

To find the optimal sequence ( v,~, ... , v.')¥_ 1 ) in this fuzzy-stochastic case we use 
dynamical programming approach which can be summarized in the next pseudo 
code - sec Kacprzyk (1986) for details. 

Program FindSequcnce; 
const 

var 

N {mumber of stages}, 
noX { cardinality of the space X} 
noU { cardinality of the space U} 

constraints: array [l..N,l..noU] of real; {matrix of fuzzy constraints} 
goal: array [l..noX] of real; {fuzzy goal} 
transition: array [l..noU,l..noX,l..noX] of real; {transition function} 
expectation:array [l..noU,l..noX] of real; {computed due to (15)} 
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policies: array [l..N,l..noX] of integer; {optimal strategy} 

Procedure FindExpectation; 
begin 

expectation := 0; 
for i:=l to noU do 
for j:=l to noX do 
for k:=l to noX do 
expectation[i,j] :=expectation[i,j] +transition[i,j ,k] *goal[k]; 

end; {FindExpectation} 

Procedure FindStrategy; 
var temp: real; g: array [l..noX] of real; 
begin 

g :=0; 
for i:=l to N do 
begin 

end; 

FindExpectation; 
for j:=l to noX do 
for k:=l to noU do 
begin 

end; 

temp:=min( constraints[N-i,k] ,e[k,.i]); 
if temp>g[j] then 
begin g[j]:=temp; policies[N-i+l,j]:=k; end; 

goal:=g; g:=O; 

end; {FindStrategy} 

703 

The procedure FindStmtegy finds optimal policies, i.e. a function 7r : X -+ U 
determining best control for intermediate states. 

When dealing with uncertain systems, we are faced with the problem of 
appropriate definition of the matematical expectation. The role of a probability 
measure plays now a capacity that is a belief or plausibility measure, and the 
expectation is generalized as a Choquet integral (see Nguyen and Walker, 1994 
for details). Under the discrete case we computed the upper expectation defined 
in the equation (22) below 

E*[p,c] = (22) 
A<;;8({X}) 

and the lower expectation which equals 

(23) 
A<;;8({X}) 
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Xt Ut = u1 
{xi} {x2} {x3} {x1, x2} {x1,x3} { x2, x3} {x1, x2, x3} 

{xi} 0 0 0 0.8 0 0 0.2 
{x2} 0 0 0 0 0 0.7 0.3 
{x3} 0.7 0.2 0.1 0 0 0 0 

Table 1. 

Xt Ut = U2 
{xi} {x2} {x3} {x1, x2} {x1,x3} {x2,x3} {x1,x2,x3} 

{x1} 0 0 0.6 0 0 0 0.4 
{x2} 0 0 0 0.9 0 0 0.1 
{x3} 0 0 0 0 0 1 0 

Table 2. 

The closed interval [E* [Me J, E* [Me]] can be treated as an interval estimate of 
unknown value of E[Me]. In practice, we can use only one end point of this inter­
val, or a point from this interval (being a convex combination of its endpoints) 
-see e.g. Smets (1994). Problems concerned with the ordering of such intervals 
are discussed in Wierzchon (1987). 

To illustrate these notions consider a simple example. The uncert ain transi­
tion function, expressed in terms of a conditional mass function is given below. 

In the fi rst table the evolution of the system under control for Ut = u 1 is 
described, and its evolution under Ut = x2 is shown in the second table. The 
table should be read as follows: Under control Ut = u1 t he system usually comes 
from a state, say x 1 , to an uncertain state (x1 or x2 ) and sometimes its state is 
fully indetermined. Similarly, when the system was in the state X3 and Ut = c1 
was applied, then it behaved in strictly probabilistic way. 

Assume for simplicity that we consider a one-step strategy only, and the 
fuzzy constraint and fuzzy goal are as below: 

Mc(o) (ul) 

Me(xl) 

1.0, MC(O) ( U2) = 0.6, 

0.3, Me(x2) = 1.0, Me(x3) = 0.8. 

Thus, the expectations calculated according to the equations (22) and (23) 
are listed in the table 3, and the matrix g, defined in FindStrategy equals 

1.00, g*(x2) = 1.00, g*(x3) = 0.60 

0.36, g*(x2) = 0.65, g*(x3) = 0.60. 

Lastly we compute the upper and lower policies 
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Upper expectation Lower expectation 
xl x2 X3 xl X2 

ul 1.00 1.00 0.49 0.30 0.65 
U2 0.88 1.00 1.00 0.60 0.30 

Table 3. 

u1, n*(x2) = u1 or u2, n*(x3) = u3 

c2, p*(s2) = c1, p*(s3) = C3 

5. Concluding remarks 

X3 

0.49 
0.80 

705 

In this paper a first attempt to modelling uncertain systems was presented. 
A number of problems concerned with finding an optimal sequence of controls 
satisfying certain restrictions- discussed in Kacprzyk (1986) - still wait for sat­
isfactory solutions. To solve these problems we can use graph theoretic concepts 
- cf. Kacprzyk (1986), Sect. 10.4.2. Under such a setting the idea of message 
propagation, formulated in Shenoy and Shafer (1990), can be applied. This 
problem is discussed in Wierzchon (1996). 
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