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Abstract : The present paper deals with the time-optimal con­
trol of systems described by a discontinuous and non-autonomous 
differential inclusion, principally useful in the field of robotics. The 
existence and characteristics of that control are shown. The pa­
per also contains corollaries for practical applications, particularly 
concerning the random approach to an optimal control. Empirical 
examinations confirmed numerous advantages of the control system 
worked out here, especially in the area of robustness. 

1. Introduction 

In various kinds of applications in contemporary engineering, from manufac­
turing to space exploration, the objects of time-optimal control very frequently 
prove to be devices whose dynamics are described by the differential inclusion 

jj EH+ u, (1) 

where u is a bounded control function, y denotes a position, and the multivalued 
(set-valued) function H represents the model of motion resistances. (Note, 
that for H = 0 formula (1) expresses the second law of Newtonian mechanics; 
therefore, such physical objects are even known as natural systems (see Kreutz, 
1989)). As the simplest example one might mention the wide class of industrial 
plants which realize their technological cycles mainly through changes of the 
positions in particular mechanisms, e.g. saddles of machine tools, rollers of 
reversing mills, as well as, especially, industrial automata and robots (see Hejmo, 
1990; Slotine and Lee, 1991). The control yielding minimum operation time 
directly influences the efficiency of such plants. Other examples are various 
security and failure devices: the shortest possible time of reaction is a basic 
element of their reliability. An optimal control task usually consists, then, in 
time- -optimal stabilization, i.e. reaching the equilibrium state y(t) = y(t) = 0 
in a minimal and finite time. 
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In many practical problems, the form of the applied model of motion resis­
tances has great influence on the complexity or even the feasibility of a successful 
analysis. The classical theory of dynamic optimization (see Athans and Falb, 
1966), especially Pontriagin's maximum principle, allows a synthesis of the time­
optimal control, but under the assumption that the function His univalued and 
belongs to the class C 1 , which due to the physical character of friction phenom­
ena presents a considerable restriction of the usefulness of such models. In a 
very important case from a practical point of view, in which the function H 
includes only dependence on velocity (i.e. this function is of the f<lrm F(y(t)), 
where F is univalued and C 1 ), the time-optimal control takes on the extreme 
values of the admissible set and has at most one discontinuity point. 

These facts were also shown by Hejmo and Kloch (1981) for the case where 
the function F is piecewise continuous. 

In the present paper, this thesis will be generalized to non-autonomous ob­
jects described by the differential inclusion 

jj(t) E v(t)F(y(t)) + u(t), (2) 

where v and F are real piecewise continuous functions, and additionally F can 
be multi valued in a finite number of points. Such a model can be applied during 
the design of modern time-optimal control structures, especially in the random 
approach, where the function v may be treated as the realization of a stochastic 
process (see Kulczycki, 1992; 1993). This concept will be considered with great 
care in Conclusions. 

2. Theorem 

Let T be an interval with nonempty interior and G: Rn x T----+ P(Rn), where 
P(B) denotes the set of subsets of B. A function x : T----+ Rn is a solution in 
the Caratheodory sense ( C-solution) of the differential inclusion 

x(t} E G(x(t), t), (3) 

if it is absolutely continuous on every compact subinterval of T, and fulfills 
inclusion (3) almost everywhere in T. 

THEOREM 2.1 Assume: 
(A) t 0 ER and T =[to , oo); 
(B) x 0 E R 2 represents the initial state as well as Ua = {u: T----+ [-1, 1]} a 

set of admissible controls; 
(C) f : R ----+ [-1, 1] denotes a piecewise continuous function fu~filling locally 

a Lipschitz condition except points of discontinuity, and z · f(z) 2:: 0 for 
every z ER; as well as F: R----+ P([-1, 1]) is such that 

F(z)={ f(z) ifz'!:_zi, (4) 
Fi if z- Zi 

where zi denotes any real number, Fi nny real subset, and i = 1, 2, .. . , k; 
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(D) v : T __, [v_, v+], where [v_, v+] c ( -1, 1), is a piecewise continuous 
function; 

(E) a differential inclusion 
±1(t) = x2(t) (5) 

±2(t) E u(t)- v(t)F(x2(t)) (6) 
with an initial condition 

(7) 

describes the dynamics of the system submitted to the control u. 
Then, there exists a time-optimal control, which takes on the values +1, -1, 

has at most one discontinuity point, and brings the state of the system to the 
origin of coordinates along a unique C-solution. 

Proof. In the following, the notation will be adopted whereby the lower 
indexes "1" and "2" denote the coordinate of the point in R 2 , e.g. x = 

[x1,x2]T, or the component of a function taking on values in R 2 , e.g. x+(t) = 

[x+1(t), X+2(t)]T. 
Suppose that x++ and x+- are unique C-solutions of system (5)-(6) with the 

terminal condition x(O) = [0, OjT, defined on the interval ( ~oo, 0], and generated 
by the control u = +1, when v = v+ or v = v_, respectively. 

Formula (6) implies 

Let: 

:i;++2(t) ~ 1- v+ > 0 fortE ( -oo, 0] . 

{[x1,x2]T E x++(t) fortE (-oo,O)} 

{[.T1,x2]T E x+_(t) fortE (-oo,O)}. 

(8) 

(9) 
(10) 

These are the sets of all states which can be brought to the origin by the control 
u = +1, when v = v+ or v = v_, respectively. 

Consider the function k++ : ( -oo, 0] __, R defined by 

(11) 

Inequality (8) ensures the existence of the function x:t~2 , so k++ is well de­
fined, because it constitutes the composition x++l o x:t~2 . Moreover, x++2 as 
a continuous function, and also thanks to (8) being open (i.e. maps open sets 
to open sets) and invertible, is a homeomorphism; so, as a composition of con­
tinuous functions, k++ is continuous. Due to inequality (8) it is also piecewise 
C 1, because in the continuity and univalence areas of the functions F and v, 
X++l is of class C 1, while X++2 as a regular function (i.e. class C 1 and with 
the Jacobian different from zero in every point of domain) and invertible, is a 
diffeomorphism. 
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Let the function k+- : ( -oo, 0] -+ R be given analogously. It is well defined, 
continuous, and piecewise C 1 , too. 

From dependencies (5) and (6) the following can be received, thanks to 
inequality (8): 

dk++(x2) 

dx2 

and similarly 

dk+- (x2) 
dx2 

x2 ----=---- almost everywhere in ( -oo, 0] 
1- v+F(x2) 

X2 
-----,--- almost everywhere in ( -oo, 0]. 
1- v_F(x2) 

Equations (12), (13) and the assumption z · f(z) 2: 0 yield 

(12) 

(13) 

dk+_(x 2) dk++(x2) 
d ::::; d < 0 almost everywhere in ( -oo, 0], (14) 

X2 X2 

which in connection with the equality k+_(O) = 0 = k++(O) implies 

0::::; k++(x2) ::::; k+_(x2) for x2 E (-oo, 0]. (15) 

Now, denote by x __ and x _+ unique C-solutions of system (5)-(6) with 
the condition x(O) = [0, Of, defined on ( -oo, 0], and generated by the control 
v. = -1, when v = v_ or v = v+, respectively. Let sets K __ and K_+, as well 
as functions k __ and k_+ : [0, oo) -+ R, respectively, be defined similarly to 
the ones above. The dependence 

k __ (x2)::::; k_+(x2)::::; 0 for X2 E [O,oo), 

analogous to inequality (15), is thus true. 
Finally, define the following sets: 

Q+ {[x1,x2]T E R 2 such that there exist [x~,x2f E K++ and 

[x~, x2JT E K+- with X~ ::::; X1 ::::; xn 

Q_ {[x1 , x 2f E R 2 such that there exist [x~, x2]T E K __ and 

[x~,x2f E K_+ with X~::::; XI::::; xn 

R+ {[x1,x2]T E R 2 \ Q such that there exists [x~,x2]T E Q 

with X1 < :rD 

R- {[x1,x2]T E R 2 \ Q such that there exists [x~,x2]T E Q 

with X~ <XI}, 

(16) 

(17) 

(18) 

(19) 

(20) 

where Q = Q+ U {[O,Of} U Q_, By virtue of this, the state space has been 
subdivided into disjoint , non-empty sets: {[O,Of}, Q+, Q_, R+, and R_ (Fig. 
1). 
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Figure 1. Subdivision of state space into sets {[0, O]T}, Q+, Q_, R+, R_ and 
illustration of proof in case xo E R_. 
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(In the rest of the proof, v is the fixed function given in point (D) of the 
assumptions.) 

Let xo E R_ (Fig. 1). First, the C-solution x of system (5)-(7), defined on 
[t0 ,oo), and generated by the control u = -1, will be considered. 

Similarly to the proof of inequality (15) , it can be shown that this C-solution 
crosses the set K+- in the finite time marked with t~, and also the set K++ in 
the finite time t""', with t~ :::; t""'. 

At this point, a change in the control value will be introduced. Denote 
t' E [t~ , t""'] defined as the time of the control change from the previous value 
-1 to the new one + 1. The dependencies x2 ( t') < 0 and 

(21) 

true by formula (6), yield that the C-solution x being considered now, with the 
change of the control value, crosses the x1-axis in the finite time t". 

Suppose the function q : [t~ , t""'J -> R expressed as q(t') = x1(t"), i.e. 
assigning the coordinate of the x1-axis crossing point along the C-solution x 
to the time of change of the control value. That function is continuous by the 
form of equation (5) and the continuity of an integral with parameter. And now, 
considering the boundary conditions of the function q, similarly to formula (15), 
it can be proved that q(t""') :::; 0:::; q(t~). Because a continuous function defined 
on a connected set takes on all intermediate values, there exists such t 8 E [t~ , t""'] 
that q(ts) = 0, or x(t") = [0, OjT, and then tf = t" is the finite time of reaching 
the origin along the C-solution x. 

To summarize, if x0 E R_, then there exists ts such that the C-solution 
generated by the control 

v,o(t) = { -1 fortE [to, t 8 ) 

+1 fortE [t s, oo) 
(22) 

reaches the origin in the finite time tf, with to< ts < tf and x(ts) E Q+ (Fig. 
1). . 

It can be proved analogously that if xo E R+, there exists ts such that the 
C-solution generated by the control 

0 ( ) _ { +1 fortE [to,ts) 
u t - c [ ) -1 10r t E t 8 , 00 

(23) 

reaches the origin in the finite time tf, with to< ts < tf and x(ts) E Q_. 
Consider now x 0 E Q+. The C-solution x generated by the control u = +1 

reaches the x1-axis in the finite timet". If x1(t") = 0, or x(t") = [0, OjT, the 
desired control is as follows: 

u 0 (t) = +1 fortE [to, oo), (24) 

and then t f = t" constitutes a finite time for this C-solution to reach the origin. 
However, if 0 < x1 ( t"), a consideration analogous to the case xo E R_ can be 



Time-optimal stabilization of a discontinuous and non-autonomous dynamic object 713 

carried out, proving the existence of the control (22), while the i:·ole of the point 
x(t~) is taken by xo. If finally x 1 (t") < 0, then x(t") ER+, so, by prolongation 
of the control of +1 value, the consideration proper for the case x 0 E R+ can 
be continued fort;::: t", giving an adequate control of the form (23) . 

The case Xo E Q_ can be considered similarly. Then, the counterpart of the 
control (24) is 

u0 (t) = -1 fortE [to,oo). (25) 

Hereby the control u 0 of the form (22), (23), (24), or (25) has been assigned 
to every initial state x 0 E R 2 \ {[0, O]T}. At this point, it will be proved that in 
every case this control is time-optimal (see also Hejmo and Kloch, 1981) . 

First, the initial state x 0 to which the control (24) was assigned is consid­
ered. The optimality of this control will be proved by contradiction. Therefore, 
assume the existence of the control v.* E Ua which brings the initial state under 
consideration along the C-solution ::r* to the origin in the time tj such that 
tj < tj. 

It results from formula (6) that for the control (24) the function x2 is positive, 
so, the absolutely continuous function x2 is strongly increasing; especially 

However, the form of the set Ua implies 

x2(t) f(x2(t))v(t) + u*(t) ::; f(x2(t))v(t) + u0 (t), 

fortE [to,oo). 

(26) 

(27) 

From this and from the dependence x2(t0 ) = xo2 = x2(to), on the basis of 
differential inclusion (56) quoted in Appendix, the following is true: 

x2(t) ::; x2(t) fortE [to, oo), (28) 

or especially 

(29) 

Inequalities (26) and (29) constitute a contradiction which proves the opti­
mality of the control (24) for the initial state under consideration. 

The initial state to which the control (25) was assigned can be analogously 
considered by proving the optimality of this control. 

Now, the initial state to which the control (22) was assigned is considered. 
The optimality of this control will be also proved by contradiction, assuming­
as previously - the existence of u*, x*, t*, respectively. 

First, the following inequalities are shown: 

x2(t) < x2(t) fortE [to,min(ts,tj)] 

x2(t) < x2(t) fortE (t 8 , tj]. 

(30) 
(31) 
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Formula (30) is true on the basis of differential inequality (59), whose assump­
tions are fulfilled thanks to the condition x2(to) = x 02 = x2(t0 ) and the form of 
the set Ua. For the needs of the proof of inequality (31) carried out through a 
contradiction, let t. E ( ts, tj] such that 

(32) 

exist. Formulas (6) and (22) imply that fortE [t., tj] the function x 2 is strongly 
increasing; therefore 

x2(tj) < x2(t!) = 0. (33) 

However, with reference to inequality (56), thanks to (32) and the form of the 
set Ua, the followir1g is true: 

x2(t) 2: x2(t) fortE [t., oo), (34) 

or especially 

x2(tj) 2: x2(tj) = 0. (35) 

Dependencies (33) and (35) are contradictory, which has finally proved the 
truthfulness of formulas (30) and (31). 

It results from them directly that 

x2(tj)::; x2(tj) = 0. (36) 

Hence, because x 2 (t f) = 0 and the function x 2 is first strongly decreasing and 
later strongly increasing, one obtains: 

.T2(t) < 0 fortE (tj, tf ), 

so, equation (5) yields 

x1(tj) > x1(t!) = 0. 

However, formulas (5), (30) and (31) imply 

x1 (t)::; xi(t) fortE [to,tj], 

so, especially 

x1(tj)::; xi(tj) = 0, 

(37) 

(38) 

(39) 

(40) 

which is contradictory to dependence (38). The optimality of the control (22) 
has therefore been proved. 

Finally, for the initial state to which the control (23) was assigned, the proof 
of its optimality is analogous to the above. 

This concludes the proof that the control u 0 of the forms (22)-(25), assigned 
to any initial state x 0 E R 2 \ {[O,O]r}, is time-optimal. By this Theorem 2.1 
has been proved. • 
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3. Conclusions and applications 

The theorem shown in Section 2 provides a mathematical base for solving the 
time-optimal control problem investigated in this paper. The state space has 
been subdivided here into the sets R_, R+, Q_, Q+, and the origin, being a 
target (Fig. 1). The border lines are the sets K __ , K_+, K+-> K++> defined 
constructively in the proof. Thus, if x0 E R_, then the time-optimal contr~l has 
the form of the sequence ( -1, + 1), where the change of the value, i.e. switching 
of the control, occurs when the system state belongs to the set Q+. Similarly if 
x 0 ER+, the sequence takes on the form ( +1, -1) and the switching exists when 
the state is included in the set Q_. In the cases xo E Q_ and x 0 E Q+, both 
the above controls are possible and additionally also (-1) or (+1), respectively. 
Because the switching of the control can appear only when the system state 
belongs to the closed area Q = Q+ U {[O,Of} U Q_, this set will be called 
a switching area. It constitutes the generalization of the switching curve "(, 
well known from the classical case (Section 7.2 of Athans and Falb, 1966), but 
'Y C Q only if 0 E [v_, v+], which rarely occurs in practice. Namely, if in 
Theorem 2.1, v_ = v+, implying that the function vis constant and the system 
is autonomous, then K+- = K++ and K __ = K_+, therefore the switching 
area Q is reduced to a switching curve considered by Hejmo and Kloch (1981), 
which form is dependent on the above value v_ = v+. Of course, the second 
additional condition v_ = v+ = 0 implies that Q = "(. 

The C-solutions occurri!!g in the system according to Theorem 2.1 arc of 
course K-solutions, i.e. in Krasovski sense (see Hajek, 1979), and thanks to 
Lemma 2.8 from Hajek (1979) also F-solutions, i.e. in Filippov sense (see Hajek, 
1979); (in the proof of this part the following additional definition F(zi) = 

lim z+ f(z) for i = 1, 2, ... , k should be accepted thanks to the obtained z - 1 . 

form of the time-optimal control). The requirement concerning the Lipschitz 
condition, assumed with respect to the function F, implies the uniqueness of K­
solutions (Corollary 8.6 of Hajek, 1979), therefore also F -solutions. Finally, the 
time-optimal control elaborated in Theorem 2.1 generates unique and equal to 
each other solutions in the senses of Caratheodory, Filippov and Krasovski. This 
property is worth emphasizing, considering the substantial difficulties presented 
by the lack of a universal concept of a solution for differential equations and 
inclusions with discontinuous right-hand side. 

Finally, an example of the application of the task considered here will be 
shown. Especially, the presented material will be adopted to the random concept 
of solving the time-optimal control problem. 

Suppose that the function v is the realization of a given stochastic process V 
having almost all realizations continuous and bounded to the interval [v_, v+ ]. 
The random factor introduced by this process causes dynamic system (5)-(7) to 
take on the form of the following random differential inclusion: 

( 41) 
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X2(w, t) E U(w, t)- V(w, t)F(X2(w, t)) 

with the initial condition 

[ 
X1(w, to) ] 
X

2
(w, to) = xo for almost all w, 

P . KULCZYCKI 

(42) 

( 43) 

where X 1 , X2 and U are stochastic processes. Especially, it can be shown 
(see Kulczycki, 1992) that the family of the time-optimal control functions u 0 

obtained in Theorem 2.1 for particular realizations of V treated there as the 
functions v constitute also a stochastic process U0

, called an almost certain 
time-optimal control. 

According to the above concept, the model of motion r~sistances, represented 
in formula (1) by the function H, has been decomposed into two factors: F(y(t)) 
and V(w, t). The former, a deterministic one, made it possible to incorporate 
the properties of discontinuity and multivalency of friction phenomena. The 
latter one, thanks to its probabilistic nature, includes among other things ap­
proximations and identification errors (of the first factor, too), the dependence 
of motion resistances on position, time and temperature, as well as perturba­
tions and noise naturally occurring in real systems. (These elements are usually 
omitted in the approaches commonly applied, due to the necessity to simplify 
the model.) The result of Theorem 2.1 can now be easily interpreted that the 
switching curve which is implied by the first - deterministic - factor has been 
"blurred" by the second- random- one to the switching area. 

The almost certain time-optimal control uo obviously ensures realization of 
the minimum of expected value of the time to reach the target set; however, 
it depends on the random factor, in practice a priori unknown. Thus, the 
above control is difficult to apply directly, but constitutes a useful basis for the 
creation of technical constructions of suboptimal structures in which the direct 
dependency of the control function on the random factor is eliminated. 

For example, in the case of open-loop systems, the expectation of the stochas­
tic process U0 can be used in the construction of the suboptimal control. If the 
limits of the actuator accept only extreme values of the admissible controls set, 
it is possible to apply the control sequences ( -1, + 1) or ( + 1, - 1), where the time 
of switching is the expectation of the sign changes in particular realizations of 
the stochastic process U0

. In both cases unique C-, F-, and K-solutions exist 
in the system. 

Similarly to the classical case, the time-optimal control designed in this paper 
can be defined as a feedback controller by the following formula: 

{ 
+1 if X(w,t) E R+ 

uo(X(w, t)) = -1 "f X( ) R ' 1 w, t E _ 
(44) 

and then for X(w, t) E Q_ U Q+ this function can be additionally defined, 
without direct dependence on the random factor, in a suboptimal way, as 

Us(X(w, t)) = { d ~f X(w, t) E Q+ ' 
-d 1f X(w, t) E Q_ 

(45) 
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where 0 < d :::; 1. In practice the value of the parameter d can be obtained 
heuristically. Usually this value should be close to 1, but it can also vary in the 
area Q, taking on the value 

d = 1- v+ + v_ ( 46) 

on the sets K+-> K __ , and increasing continuously up to 1 on the sets K++> 
K-+· This makes it possible to achieve a result similar to the bicycle-racing 
track or bob-sleigh track, which are horizontal on the interior part, and become 
more vertical the farther they go to the outside. In particular, the value of the 
parameter d should be equal to 1 even in the neighborhood of the sets K++> 
K -+, due to neutralization of the most unfavorable realizations of the random 
factor. Unique F- and K-solutions occur in the system obtained. Condition ( 46) 
and the above postulated continuity of variation ofthe value of the parameter 
d have the goal of fulfilling also the existence of C-solutions. 

Analogously to the first pair of examples, if constraints of an actuator limit 
the control to the extreme values of the admissible set, the results of Theorem 
2.1 may be modified according to the physical observation that the influence 
of motion resistances in both periods of time- before and after the switching­
can be averaged. Thus, after performing a rigorous analysis of the sensitivity of 
the control system to the values of motion resistances, one can use elements of 
statistical decision theory, where a loss function is connected with extending the 
time of reaching the target if the control switching has been too late or too early. 
A detailed description of such a concept of a feedback controller is presented by 
Kulczycki (1992; 1996). It is worth noticing that in the general case there are no 
C-solutions in the system obtained, whereas F- and K-solutions are nonunique. 

Empirical examinations (see Kulczycki, 1992) have shown many advantages 
of the control system presented above, especially in the area of robustness. 
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4. Appendix 

We will show here Lemma 4.2, which was used in the proof of Theorem 2.1. For 
this purpose another auxiliary thesis will first be proved. 

LEMMA 4.1 Assume: 
(A) I denotes an interval with non-empty interior· and t0 E I; 
(B) E = [e1, e2] orE= [-e2, -e1], where 0 < e1 < e2; 
(C) the function G fu(fills one of the following conditions: 

(a) G : R x I---+ R is continuous, 

{b) G: R xI---+ P(E) takes on the form 

G(y(t), t) = c- v(t)F(y(t)) for y(t) ER and t E J, (47) 

where c E R, v : I ---+ R is a continuous function, while for the 
mapping F : R ---+ P(R) there exists a piecewise continuous fv.nction 
f : R ---+ R such that 

F(z) = { f(z) fo~ z # zi , (48) 
Fi for z = Zi 

where Zi denotes any real number, Fi any real subset, and i = 1, 2, 
. . . , k. 

Then, a d~fferential inclusion 
y(t) E G(y(t), t) 

with an initial condition 
( 49) 

y(t0) = Yo (50) 
has a C -solution defined on the inter'Val I. 
Moreover, if 

(D) the function F fulfills locally the Lipschitz condition except points of dis­
continv.ity and multivalency, 

then that solution is unique. 

Proof. In the case of assumption (C) for version (a), there exists a saturated 
classical solution, unique if requirement (D) is fulfilled (see Pelczar and Szarski, 
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1987; Hubbart and West, 1990). The above facts directly imply the existence 
of a C-solution, also unique under condition (D) (for details see Hajek, 1979). 

For variant (C)-(b), however, an analogous line of reasoning can be followed 
in the areas of the simultaneous univalence and continuity of the function F, 
after which the obtained solutions may undergo "joining". It should be noted 
that, because of the inequalities y(t) ~ e1 > 0 or y(t) :::; -e1 < 0 for t E I, 
resulting from the form of the set E, it suffices to consider only a finite number 
of such "joinings". • 

LEMMA 4.2 Assv.me: 
(A) t0 E R and Yo E R; 
(B) I= [t0, oo) or I= [t0, t*), where t0 < t*; 
(C) E = [e1, e2] orE= [-e2, -e1], where 0 < e1 < e2; 
(D) G: R xI---> P(E) takes on the form 

G(y(t), t) = c- v(t)F(y(t)) for y(t) ER and t E I, (51) 
where c E R, v : I ---> R is a piecewise continuous function, and F : R ---> 

P(R) denotes a piecewise continuous function which additionally can be 
multivalued in a .finite number of points (i .e. in the sense of assumption 
(C) -(b) of Lemma 4.1); 

(E) y : I ---> R is a C -solution of a #fferential inclusion 
y(t) E G(y(t), t) (52) 

with an initial condition 
y(t0) = Yo·; (53) 

(F) z : I ---> R denotes any .fixed absolutely continuous function. 
If the following conditions are fulfilled 

z(t0) :::; y(t0) (54) 
z(t) :::; inf G(z(t), t) almost everywhere in I, (55) 

then 

z(t) :::; y(t) fort E I. (56) 

However, if 

z(t0) ~ y(t0) 

z(t) ~ sup G(z(t), t) almost everywhere in I, 

then 

z(t) ~ y(t) fort E I. 

(57) 

(58) 

(59) 

Proof. (See also Hejmo and Kloch, 1991). The existence of the solution y 
occurring in assumption (E) is guaranteed by Lemma 4.1. 

The proof will be shown for equality (56). The proof of dependence (59) is 
analogous. 
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Because of the form of the interval E, the set of the points t E I of multiva­
lency or discontinuity of the function F is finite. It is thus sufficient to prove the 
thesis under the assumption of the simultaneous univalence and continuity of 
that function, since after the "joining" of the relevant solutions the considered 
inequality will remain true. 

Let a differential inclusion 

p(t) E { G(p(t), t) if p(t) :::0: z(t) 
G(z(t), t) if p(t) ~ z(t) 

with an initial condition 

p(t~) = Yo 

(60) 

(61) 

be given. The existence of the C-solution of that inclusion results from Lemma 
4.1. 

It will first be shown that 

p(t) :::0: z(t) for t E I. (62) 

For the contradiction of this inequality, let there exist t"'" E I such that 

p(t"'") < z(t"'"). (63) 

The continuity of the functions z and p implies, on the basis of dependencies 
(54) and (61), the existence of such t~ E [t0, t"'"] that 

p(r) = z(C) 

p(t) < z(t) fortE (r, t"'"]. 

In turn, formulas (52) and (60) together with (65) yield 

(64) 

(65) 

p(t)- z(t) :::0: G(z(t), t)- G(z(t), t) = 0 almost everywhere in [r, t"'"]; (66) 

therefore, thanks to equality (64), one obtains 

p(t) ::::: z(t) fort E [r, t"'"], (67) 

which is in contradiction to hypothesis (63). Inequality (62) has thus been 
shown. 

From dependencies (60)-(62) and the uniqueness of the C-solutions of in­
clusion (52)-(53), guaranteed by 4.1, it results that p = y, which, thanks to 
condition (62), finally proves inequality (56). • 
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