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Abstract: A method · is proposed for · solving large sparse lin
ear programs. Unlike the well-known simplex method (that makes 
steps along the edges of polyhedron), the method analysed in this 
paper takes steps in the directions that belong to the faces of fea
sible region or cross its interior. More freedom is thus left in their 
choice. A few remarks concerning the method's implementation are 
also made. The revised version of the method extensively uses the 
notion of working basis, a nonsingular sub matrix of the active part 
of LP constraint matrix. Throughout the major part of optimization 
process working basis has size remarkably smaller than the number 
of constraints, which is beneficial for the efficiency of the method. 
An experimental implementation qf the method is shown to compare 
favorably with the simplex and primal-dual interior point codes on 
large set of real-life Netlib test problems. 

Keywords: linear programs, large scale optimization, active 
constraints, working basis. 

1. Introduction 

We deal in this paper with solving large and sparse linear programming problems 

maximize eT x 

subject to Ax = b, 

X 2': 0, 

where c,x E nn,b E nm and A is an m X n matrix. 

(1) 

There exist two computationally attractive approaches to solving (1) i.e. 
the simplex method (see, e.g., Dantzig, 1963) and the inte:ior point method · 

lThis research has been supported by the grant No PB 8 8505 015 05 of the Committee 
for Scientific Research of Poland. 
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(see, e.g., Lustig et al., 1992) and several other less efficient or not yet practi
cally verified approaches, some of which have particularly interesting theoretical 
properties, see e.g.: Cardoso and Climaco (1992), Eiselt and Sandblom (1990), 
Evtushenko and Zhadan (1992), Fathi and Murty (1989), Gabasov et al. (1984), 
Korytowski (1990), Mitra et al. (1988) (including many references therein) and 
Wierzbicki (1993). The reader interested in different variants of the simplex
type pivoting rule~ is referred to the survey paper of Terlaky and Zhang (1995). 
Generally, the simplex method goes to the optimum moving along the edges of 
the polyhedron while the interior point methods pass through its interior. 

In this paper another practicable linear programming method is proposed 
that crosses the interior of the feasible region but stops only on its boundary. 

Its key idea is to make steps in the ascent directions that are the approximate 
projections of the objective function gradient onto the face defined by the current 
set of active constraints or the linear combinations of such directions. Finding 
an efficient way of computing them constitutes the main difficulty in the method. 
This is shown to be dominated by the inversion of some full row rank submatrix 
(working basis) of the active constraints matrix A 0 . As long as the number of 
working constraints is remarkably smaller than m, the cost of a single iteration 
of the method presented is expected to be smaller than that of the simplex 
method. This is, in particular, the case at the beginning of optimization. We 
underline that the working basis is a submatrix of the active constraints matrix 
Ao and not the normal equations matrix A0 Aif that would have to be inverted 
if the orthogonal projections (see, e.g., Rosen, 1961) had to be computed. Even 
more important, the working basis inverse representation may be inexpensively 
updated in subsequent iterations of the method. The complexity of such updates 
is roughly speaking the same as that of the simplex method basis updates, except 
that the size of the matrix modified is usually smaller. 

The approach presented in this paper is closely related to Wolfe's (1963), 
reduced gradient procedure for convex nonlinear programming. It may also 
be viewed as an extension of the idea of the projected gradient LP method of 
Jacquet-Lagreze (1987), a tableau form of which was successfully applied to solve 
some small to medium scale linear programs or as a (revised form) generalization 
of the adaptive LP method of Gabasov et al. (1984), that, to the best of our 
knowledge, was implemented only in the context of dense linear algebra and 
applied to solve only small problems. We underline that we propose a revised 
version of the method, in implementation of which full advantage of the sparse 

_matrix technology can be taken. The resulting code (experimental and not 
yet optimized) is shown to compare favorably with the similarly implemented 
simplex code (using the same approach for handling basis updates). 

Let us mention here that the ideas of making steps on the surface of the fea
sibility region different than those of the simplex method or going through the 
interior of this region were always present in linear programming techniques. 
Mitra et al. (1988) give a survey of such methods concluding that most of 
them remain within the framework of the simplex one. They also discuss corn-
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putationally attractive approach in which every step through the interior of 
the feasibility region (supposed to give significant improvement of the objec
tive function) is followed by a purification procedure that recovers basic feasible 
solution. 

The method presented in this paper may be viewed as an extension of the 
one of Mitra et al. (1988) in the sense that we skip their purification procedure 
and allow steps through the interior of the feasibility region until optimality is 
reached. Although we lose the nice property of having basic feasible solution, 
we not only gain a lot of freedom in the choice of next ascent direction, but save 
time on skipping purification procedure as well. We also operate on smaller 
working basis than the simplex basis matrix, which makes single iteration of 
our method less expensive. We pay for it with more involved updates of the 
working basis in which row and column addition or deletion or row or column 
exchange are possible. We have thus extended the Schur complement app:roach 
of Gondzio (1994a) to handle efficiently three new updates. Additionally, once 
the problem of exploiting sparsity in the working basis updates has been solved, 
we are given a lot of freedom in the choice of the strategy to be applied for 
computing combined ascent directions. 

The paper is organized as follows. In Section 2, fundamentals of the new 
approach are addressed. In particular, we concentrate on the method of com
puting the "best" ascent directions. In Section 3, our algorithm is presented, its 
convergence is discussed, and some remarks concerning efficient implementation 
of its logic are given. In Section· 4, computational results of the application of 
the new method to the solution of large scale li~e~yprpgrams from the Netlib 
test collection are presented. Finally, in Section 5 we give our conclusions and 
discuss possible extensions of the method. 

2. Fundamentals of the method 

We shall concentrate in this section on the method of computing feasible di
rections. In particular, we shall show that when compared with the simplex 
method, remarkably more freedom is left in their choice. 

First, let us observe that the linear program (1) differs from the standard 
MPS formulation (see, e.g., Murtagh, 1981) in which constraints of inequal
ity type are allowed and upper bounds of variables are present. For ease of 
presentation the latter are omitted. 

To simplify the analysis further, we shall assume that m logical (slack, sur
plus or artificial) variables, each associated with an LP constraint, are added. In 
this way the constraint matrix gets the form [A, J] with a nonsingular diagonal 
matrix I. We shall take advantage of this particular form when looking for a 
basis of the null space of the LP constraint matrix in Section 2.1. 

We also need an initial feasible solution to start with. Hence, we take any 
nonnegative .-r; 1 define a superartificial column ~ = b- Ax, and border it to A. 
The solution (x, 1) is obviously feasible to a new system of linear equations. 
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As a result of these transformations, we deal with the program 

maximize eT x + ci s 

subject to Ax + s = b, 

x,s;:::: 0, 

J. GONDZIO 

(2) 

(3) 
(4) 

in which matrix A has been bordered with a super artificial column~ (and a new 
component -M has been added to c) and C£ coefficients are zero for slack or 
surplus variables associated with the inequality constraints and -M for artificial 
variables added to the equality constraints. It may easily be shown that if M is 
sufficiently large, then the optimal solution of (1) may be derived from that of 
(2)-(4). From now on, we shall denote with n the number of structural variables 
x in (2)-(4) and with m the number of its constraints. 

Let us further suppose that after k iterations of the method a feasible point 
(xk, sk) is determined. Next, we assume that mE constraints of (3) are active, 
i.e. slacks associated with them are all zero. These active constraints define 
submatrix A0 of matrix A. For simplicity, we assume that rows of A0 have been 
reordered to the first mE positions in A of (3). Additionally, we suppose that 
some nonsingular mE x mE submatrix of Ao is given. We shall further call 
it the working basis B and assume that it is built of the first mE columns of 
A0 . Finally, we partition all out of the working basis variables into those which 
are nonbasic, i.e. lie on their zero bound XN and strictly positive superbasic 
variables xs. Summing up, the solution may be partitioned as 

(5) 

where XE E Rms is its basic part, XN E RnN is its nonbasic part, xs E Rns is 
its superbasic part and SA E Rms, SN E RmN are slack active and nonactive 
parts, respectively. · 

We consider all equality constraints and all inequality-type constraints with 
. zero slacks be active, and easily observe that 

mE+mN='m and (6) 

Vector partition (5) determines unique partition of the LP constraint matrix 

A=[B _c 
N 
D 

(7) 

where B is an mE x mE nonsingular matrix; all remaining matrices have appro
priate dimensions. Let us also observe that current feasible solution (in which 
we omit superscript k) satisfies 

XE 2': 0, XN = 0, XS > 0, SA= 0, SN 2': 0, (8) 

and XE and sN are strictly positive if degeneracy is not present. 
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2.1. Feasible directions 

Given feasible solution (8), a natural question arises about the feasible directions 
a step along which will improve the objective function value. 

Their construction uses the following scheme. First, we shall expand the set 
of m rows of (3) with n unit vectors of nm+n to define a basis of nm+n. Next, 
we shall build a nonsingular matrix Q of these m + n linearly independent rows 
and compute its inverse. Selected columns of Q-1 will then define a basis of 
the null space of the LP constraint matrix. Simplex type pricing will, finally, 
be used to find out which of them are ascent directions. 

Let us associate with (7) the following (m+n) x (m+n) nonsingular matrix 

B N s ImB 
c D E ImN 

Q= InN (9) 
Ins 

ImB 

It suffices to permute its fifth "block column" to the position two, pushing at 
the same time the block columns 2, 3 and 4 of one position to the right to obtain 
an easily invertible, hence nonsingular, block upper triangular matrix. Its first 
diagonal block will then have the form 

(10) 

and will define some simplex method basis for linear program ( 2 )- ( 4). 0 bserve 
that B is nonsingular since B is nonsingular. However, it does not have to be 
a simplex feasible basis (it would surely be so if there were no superbasic part 
present in (7), i.e. if all structural variables that are not associated with the 
working basis were nonbasic - blocked on their bounds). Let us mention that it 
is possible to implilment the classical revised simplex method with basis matrix 
represented in an implicit form (10). Powell (1975) implemented such reduced 
basis approach using PFI (Product Form of Inverse) for handling its updates. 

Simple calculations give the following inverse of Q, 

B-1 -B- 1N -B- 1S -B-1 

InN 
Q-1= Ins 

ImB 
-cB- 1 ImN -D+CB- 1N -E + CB- 1S cB- 1 

(ll) 

Observe that columns of (11) are linearly independent (Q is nonsingular and so 
is Q- 1 ) and they span nm+n. The jth column of Q-1 can be found as 

(12) 
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where ej is the jth unit vector of nm+n. Every qj,j = 1,2, ... ,m+ n defines 
some direction in nm+n. We are concerned with the following two questions: 

1. is it a feasible direction for (2)-(4) at the current (feasible) solution? 
2. is it an ascent direction? 

which shall be answered in this and the following section, respectively. 
Every column from the last three blocks of (ll) is orthogonal to every row of 

the first two blocks of Q. In other words, every column of the last three blocks of 
(ll) determines some direction from the null space of matrix [A, J] that defines 
LP constraints (3). All these directions are obviously linearly independent and 
span the whole null space of [A, J]. 

Let us now look closer to the directions defined by (ll). For every nonbasic 
variable x N j, we determine 

-B-1Nj 
ej 
0 
0 

- Dj +CB-1Nj 

(13) 

a step along which will relax the nonnegativity constraint XNj = 0. For every 
superbasic variable Xsj, we analogously determine 

-B-1Sj 
0 

dj = ej 
0 

-Ej + CB- 1Sj 

(14) 

However, as XSj is supposed to be strictly positive, both step along dj and along 
the negative of dj are possible. Finally, for every active LP constraint being, 
say, kth row of A 0 , we determine 

-B~
1

ek I 
dk = 0 ' 

ek 

CB- 1ek 

a step along which will relax the kth active LP constraint A f. x = h. 

(15) 

It is useful to look a little closer at all these directions and to compare them 
with the directions along which step is made in the primal and dual · variants 
of the simplex method. If B has size m, i.e. it is some (infeasible in general) 
simplex basis matrix, (13) and (14) become primal simplex directions and (15) 
becomes dual simplex direction. If m 3 is smaller than m, then (13)-(14) and 
(15) define respectively primal and dual simplex directions for such a relaxation 
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of the LP problem (2)-( 4) in which only current active constraints are taken 
into account. 

The method deals thus with both primal and dual information at a time and, 
as will be shown in the next section, naturally chooses between "primal" and 
"dual" directions. This seems to be a nice feature that could never be shared 
by the simplex method (a switch between primal and dual simplex during the 
optimization process would in general cause the loss of primal/dual feasibility). 

2.2. Ascent directions 

The answer to the question whether a step in a given feasible direction qj en
sures the increase of the objective function (2) follows the analysis of the scalar 
product 

(16) 

being the analog of the simplex method's reduced cost (cf. Murtagh, 1981). 
Partitioning the cost coefficients as the LP variables (5) and applying equation 
(ll) and definition (12), we get · 

(ci;, c']:;., C~' erA, erN )Q- 1 

(ci;B-1 +(erA- crABB-1
)- crNcB-1 , erN, 

c']:;. + ( -crAN + crABB- 1 N)- crND-

(ci;- crNC)B-1 N, 

c~ + (-erAs+ crABB-1S)- crNE

(ci;- crNC)B-1S, 

-(ei;B-1 - crABB- 1 - erNcB-1 )) 

( T ( T T [ B ] )B-1 T CLA + CB -CL C ' eLN> 

(c']:;.~cr[ ~ J)-(ci;-cr[ ~ J)B-1N, 

( c~ - er [ i ] ) -( ei; - er [ ~ ] )B-1 S, 

-(ci;- er [ ~ ] )B-1 
). 

We shall now introduce some useful notation 

eT- erA, 

c~B- 1 = (c~- ci [ ~ J)B- 1
. 

(17) 

(18) 

(19) 
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Observe that (18) defines some new cost coefficients for structural variables of 
the LP problem that account for the penalty imposed on the violated equality 
constraints (recall that C£ is zero except for artificials associated with equality 
constraints). For such modified objective function, (19) defines dual variables 
associated with the active LP constraints. Equation (17) may now be rewritten 
in a form easy for computations 

(cT,ci)Q-l = (ciA +nT, ciN, c'fv -nTN, c~ -nTS, -nT), (20) 

and the values (c'fv -1fT N)j, (c~ -nTS)1 and ( -nT)k price out directions (13), 
(14) and (15), respectively. In other words, if they are positive, then the step 
in the appropriate direction associated with them improves the LP objective 
function. Observe that for superbasic variables with negative reduced cost the 
step in the direction negative to that of (14) is possible. 

3. Formal statement of the method 

The analysis performed in the previous section allows to construct the whole 
family of methods depending on the rules applied to determine the ascent di
rection. The first choice would be of course: make step in the direction that 
ensures the largest possible progress measured with the reduced costs (16) (see 
also (20)) . Formally, this gives Algorithm 1 (Fig.1) . 

Unfortunately, it is not obvious if a finite convergence result for Algorithm 1 
can be established. We may note that there exists a finite (although very large) 
number of possible partitions (5). They are natural analogs to the basic feasible 
solutions in the classical simplex algorithm. We know that if the simplex method 
takes always strictly positive steps e, then it converges in a finite number of steps 
(it cannot visit twice the same basic feasible solution and the number of basic 
feasible solutions is finite). 

The presence of nonzero superbasic variables xs in Algorithm 1 is advan
tageous from the point of view of the practical efficiency of the method. At 
the same time it is a serious obstacle in the convergence analysis since, in gen
eral, there is an infinite number of possible strictly positive solutions XB and 
.Ts corresponding to a given partition (5). Consequently, it is not evident if 
Algorithm 1 cannot visit a given partition more than once. 

It is possible to impose additional conditions in Algorithm 1 that enable 
the proof of its finite convergence. Adding a requirement that there are no 
superbasic variables in partition (5) is one such condition. In this case, however, 
the method of Algorithm 1 becomes a classical simplex method operating with 
bases B (cf. (10))'and the notion of working basis is then exploited uniquely in 
the implicit inverse representation of B. 

Another possibility is to introduce additional restrictions that force Algo
rithm 1 to avoid visiting twice the same working basis (or visiting twice the 
same partition (5)). While this is an interesting theoretical question, it defi
nitely goes beyond the scope of our practically oriented paper. 
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Step 0. Initialize 

k = 0, mE = 0, x 0 = (0, t0
), s0 = b- t°C eT= eT - ciA. 

Step 1. Compute dual variables 

1fT= cTB-1. 

Step 2. Price out nonbasic and superbasic variables 

fN 

fs 

c'Jr- 1rT N, 

c~ -1rTS. 

Step 3. Optimality test (and the choice of the ascent direction) 

q 

max !Nj, 
{j:fNj>O} 

max l!sjl, 
{.j:fsjT'O} 

max ( -Kk), 
{k: - 7rk>O} 

arg max {(JN)qp (fs)q2, fq3} . 

If Jq > 0, then compute direction dq and go to Step 4. 
If fq = 0, then stop: optimal solution found. 

Step 4. Compute stepsize 

(} max {e > 0 : xk+l = xk + edq 2: 0}. 

If e < oo, then go to Step 5. 
If e = oo, then stop: unbounded direction found. 

Step 5. Make step in direction dq chosen by (27) 

Step 6. Update 
Modify matrices B, N , S, C, D and E depending on the ascent 
direction chosen in Step 3 and the type of the blocking constraint 
found in Step 4. 
k = k + 1 and go to Step 1. 

Figure 1. Algorithm 1 
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(21) 

(22) 

(23) 

(24) 

(25) 

(26) 

(27) 

(28) 

(29) 
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We shall now pass to the brief analysis of computational effort involved in a 
single iteration of the method. The main difficulty in Algorithm 1 lies in step 6, 
i.e. the working basis update. Let us then discuss it in more detail. 

There are four possible cases of the working basis modifications. They are 
determined by the type of the direction chosen in step 3 and the type of the 
blocking constraint found in step 4. 

Case 1. The ascent direction was associated with some nonbasic or superbasic 
variable (see equations (13) and (14)) and the step along it activates as the first 
some LP constraint from the [C, D, E ] part of (7) . Consequently, we have to 
add the new active constraint to the set of active LP constraints and add the 
variable q to the set of basic ones. The working basis is thus bordered with a 
new row and a new column. 

Case 2. The ascent direction was associated with some nonbasic or superbasic 
variable (see equations (13) and (14)) and the step along it activates as the first 
some nonnegativity constraint of the basic variable (xB)p· The zeroed basic 
variable will remain nonbasic in the next iteration and, consequently, must leave 
the working basis. It is replaced with the variable q. In other words, one column 
of the working basis is exchanged. 

Case 3. The ascent direction was associated with some active LP constraint 
(direction (15) relaxes this constraint) and the step along it activates as the 
first some LP constraint from the [C, D , E] part of (7) . Relaxed constraint 
leaves the set of active constraints and the activated one enters it . The working 
basis has thus one row exchanged. 

Case 4. The ascent direction was associated with some active LP constraint 
(as in case 3) and the step along it activates as the first some nonnegativity 
constraint of the basic variable (xB)p · The deactivated LP constraint must leave 
the active set and the zeroed variable will remain nonbasic in the next iteration. 
One row and one column of the working basis have thus to be deleted. 

Let us mention that a step along direction (14) may move the superbasic 
variable to zero, .which would not need any working basis update (appropriate 
variable status has only to be changed) . 

Summing up , the working basis is subject to one of the following changes in 
subsequent iterations of Algorithm 1: 

• row and column addition, 
• column exchange, 
• row exchange, 
• row and column deletion. 
Apart from that, the working basis is used twice at every iteration of the 

method: to compute dual variables at step 1 and to compute the ascent direc
tion at step 3. The former requires one backward transformation (BTRAN) of 
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B and the latter needs one forward transformation (FTRAN) of B. (Observe, 
that whichever direction (13), (14) or (15) has been chosen, the computations 
may always be organized in such a way that only one equation with B has to 
be solved). The efficiency of the implementation of Algorithm 1 depends thus 
strongly on the quality of the method used for working basis inverse representa
tion. The approach applied for this extends the idea of the Schur complement 
simplex method of Gondzio (1994a), in which the inverse of a large sparse basis 
matrix has been represented with two other matrices: easily invertible large and 
sparse fundamental basis built of columns of the LP problem constraint matrix 
and the small and dense Schur complement that handles the information on the 
difference between the current and the fundamental bases. For a detailed dis
cussion of this extension the reader is referred to a subsequent paper of Gondzio 
(1995). 

Let us now briefly compare the method presented and the revised version 
of the simplex method. We quickly conclude that there exist many similarities 
between them. The main difference, that we expect the most advantages from , is 
operating on a smaller working basis n. Let us observe that apart from savings 
obtained in FTRAN and BTRAN operations we also gain on pricing operation 
performed in step 2 of Algorithm 1 as we do not scan the whole columns of A 
but only their active parts. An important implcmentational issue is to organize 
this step (equations (22) and (23)) row wise rather then column wise as it is the 
usual practice of the simplex method, sec e.g., Murtagh (1981). 

The main disadvantage comes from the need of dealing with more involved 
updates of the working basis. Those, however, are shown in Gond:;-;io (1995) 
to have comparable complexity to that of the standard column exchange up
date involved in the simplex method, while smaller size of the working basis is 
supposed to yield computational savings. 

For ease of the method's presentation we have assumed by now that a step 
is always made along the direction that is the best one in terms of reduced cost 
(20). We may extend it easily and consider the whole family of methods that 
use different linear combinations of directions (13), (14) and (15). As long as at 
most one active constraint is relaxed at a time (i.e. at most one direction of type 
(15) enters the linear combination), working basis updates remain restricted to 
the four cases mentioned earlier. Relaxing more than one active LP constraint 
in a single iteration would inevitably create a need for block updates of the 
working basis, which we want to avoid. 

Let us observe that although all directions defined by (13)-(15) lie on the 
face of the feasible polyhedron, their linear combinations may enter its relative 
interior. 

Before we pass to the formulation of alternative interior search methods, let 
us present the approach of Jacquet-Lagreze (1987) in the framework of Section 
2. In t his method, superbasic part of t he ascent direction has always been fixed 
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to 

ds = cs, 

giving thus the following direction to take step along 

-B-1Scs 

d= 
0 
cs 
0 

-Ecs + CB- 1Scs 

where d1 is defined with (14). 

ns 

= l::csjdj, 
j =l 

J. GONDZIO 

(30) 

(31) 

It seems promising to combine only the ascent directions taking thus advan
tage of the available pricing information. Following Mitra et al. (1988), we may 
for example use the reduced costs as weights of each component direction. 

In the following section several different strategies of combining t he ascent 
directions are practically verified . 

4. Numerical results 

The method analysed in Sections 2 and 3 has been experimentally implemented. 
We shall present in this section preliminary computational results that demon
·strate its efficiency on linear programs from the Netlib test collection of Gay 
(1985). 

Table 1 brings some statistics on the LP tests used in our analysis. Its 
columns contain: problem name and its size before and after presolve analysis 
(cf. Gondzio, 1994b ): number of constraints m, number of variables (excluding 
slacks) nand number of nonzero elements of the constraint matrix (excluding 
objective and right-hand side vectors) nonz. The last column of Table 1 contains 
final density of A. Test problems are ordered by the increasing number of 
constraints .. 

We start the analysis from a comparison of three different methods applied 
to solve test problems. 

Primal-Dual. The primal-dual logarithmic barrier interior point method with 
. Mehrotra's (1991) predictor-corrector of order 2. This code - HOPDM ver

sion 1.0 of June 1992- has been shown by Altman and Gondzio (1993a;b) to 
solve most of the test problems in the number of iterations comparable with 
that of OB1 of Lustig et al. (1992). 

Simplex. The simplex method in which Schur complement updates are used 
to handle the basis inverse representation. The code has been developed in 
the context of Marsten's (1981) XMP library. LA05 routines of Reid (1982) 
implementing Bartels-Golub updates of sparse LU factors were replaced in it 
with the set of routines of Gondzio (1994a) for handling Schur complement 
basis inverse. This code is slightly faster than XMP (5-10% on the average) . 
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New. The method analysed in this paper (Algorithm 1) with the Schur com
plement approach extended by Gondzio (1995) to handle all necessary working 
basis updates. 

Table 2 collects information on the performance of all three methods for all 
test problems. It contains: number of iterations and the 25MHz SUN SPARC 
station computation time in seconds (excluding the time for model input and 
solution output). Empty fields in it mean that the problem was too difficult to 
be solved by a given method. 

Although the New code used in the experiments is not yet optimized (some 
· improvements still have to be made in it) , the results obtained so far seem 

encouraging. On most of the problems from the test set our experimental code 
compares favorably with other two LP solvers. The New method solved all 
except 2 of 56 Netlib problems. In 12 cases this implementation was the fastest 
of all three codes compared. In 26 cases it was faster than the simplex method. 
We can thus conclude that the new method is an attractive a~ternative for other 
two practicable LP approaches. 

Table 3 gives a bit of insight into the method analysed. It containes: problem 
name, number of LP constraints m, number of equality type constraints mEQ, 
size of the working basis after crash (see e.g., Gould and Reid, 1989) 'm;'B(st), 
the largest size of the working basis found in the solution process mB(max), 
its size in optimum mB(opt), and the percentage of all LP constraints that are 
binding at the optimum. Thus, we may conclude that for considerable part of 
the problems, the size of the working basis remains smaller than m during the 
whole solution process. Small size of mB clearly favours New code. 

Table 4 collects information on the number of different working basis up
dates: row and column additions RCadd, column exchanges Cexcng, row ex
changes Rexcng, and row and column deletions RC del. The sum of these columns 
does not necessarily give the number of iterations to reach optimality as they 
also include pivots that were rejected for stability reasons. 

Typical update of the standard simplex method, i.e. column replacement is 
clearly the most frequent one. Let us also observe that modifications following 
steps along direction (15) (given in the last two columns of Table 4) seldom 
exceed 10% of all iterations. They offer, however, to Algorithm 1 the possibility 
of choosing "dual" steps. 

Finally, in Table 6 we report results of solving several larger Netlib tests (see 
Table 5 for their statistics) with different variants of the new method: 

One direction. The new method as stated in Algorithm 1. 

k best. Its modified version in which at every kth iteration a step is made in a 
direction that is a linear combination of k best ascent directions (best in terms 
of reduced costs) . The reduced costs were used as weights in the composite 
direction. 

Additionally, as a benchmark, we report results of solving these problems 
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with the CPLEX 2.0 LP optimizer of Bixby (1992). CPLEX is a very effi
cient commercial simplex code. It uses sophisticated linear algebra dedicated 
to a specific computer architecture and deeply optimized implementation of the 
logic of the simplex method, which explains its high performance. Analysis of 
data from Table 6 shows that our code solves most of the linear programs in 
a comparable number of iterations but it is roughly speaking about 3-8 times 
slower than CPLEX (a single iteration in our code costs about 3-5 times more 
than that of CPLEX). We decided to report these results as, in our opinion, 
they indicate considerable potential of the new approach. 

An important conclusion from an analysis of results collected in Table 6 
is that the approach presented in this paper needs relatively low number of 
iterations to reach optimality. We suppose that this feature is a consequence of 
the possibility of choice between "primal" and "dual" type directions. 

On the other hand, we were surprised that the use of composite directions 
did not help too much. It improved the method's performance only on GREEN
BEA and GREENBEB problems. However, as all problems collected in Table 
5 except WOODW are highly degenerate, we suppose that our code first needs 
incorporating better anti-cycling rules before final validating composite direc
tions approach. Another difficulty of applying combined directions arises from 
larger number of pivot rejections that occur during the solution process. We 
are now investigating the possibility of removing this drawback. 

5. Conclusions 

We have presented another computationally attractive approach to solving large 
scale linear programming problems. 

The method belongs to the active set family. It extensively uses the notion 
of working basis B, a nonsingular submatrix of the active (or, strictly speaking, 
working) part of LP constraint matrix. The size of matrix B remains usually 
smaller than rn throughout major part of the solution process so a single iter
ation of this new method may be (when carefully implemented) cheaper than 
that of the simplex method. Although the computations needed in the method 
proposed arc organized in a simplex-like way (BTRAN, PRICE, FTRAN, UP
DATE), the method is definitely a nontrivial extension of the simplex. 

It has a useful property of dealing naturally with primal and dual information 
and can easily choose between primal/dual steps. Additionally, it can pass 
through the interior of feasible region taking steps along directions that arc 
linear combinations of the most attractive ascent directions. 

Its experimental implementation proved to be quite fast and there still exist 
possibilities of its further improvement. Some useful partial results may, for 
example, be stored to save on computations. 

More generally, we suppose that most of the techniques applied in advanced 
implementations of the simplex method can probably be incorporated into the 
method analysed in this paper. This, in particular, applies to implementing 
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steepest-edge pricing (see e.g., Forrest and Goldfarb, 1992), using better anti
degeneracy technique and early detection (and avoiding) of unstable pivots. All 
these possible improvements will be the subject of our future research. 

Additionally, it may be more natural to make a bridge from the primal-dual 
interior point method to this new method than to the simplex one since we do 
not have to determine the full row rank basis matrix to start with and accept 
more that m strictly positive variables at the optimum. Let us also observe that 
adding new LP constraints or variables (as e.g., feasibility or optimality cuts in 
decomposition approaches) may naturally be handled in this method. 
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Problem Original size After presolve 
m n nonz m n nonz density(%) 

AFIRO 27 32 83 21 29 72 11.80 
AD LITTLE 56 97 383 53 95 365 7.25 
SCSDl 77 760 2388 77 760 2388 4.08 
RECIPE 91 154 628 71 109 411 5.31 
SHARE2B 96 79 694 92 79 632 8.70 
SHARE1B 117 225 1151 107 217 990 4.26 
SCAGR7 129 140 420 95 138 350 2.67 
GROW7 140 301 2612 140 301 2612 6.20 
SCSD6 147 1350 4316 147 1350 4316 2.17 
FORPLAN 161 418 4494 131 399 4200 8.03 
BEACONFD 173 262 3375 72 129 668 7.19 
ISRAEL 174 142 2269 163 142 2258 9.76 
VTP-BASE 198 186 802 53 83 281 6.39 
SC205 205 203 551 203 202 550 1.34 
BRANDY 220 249 2148 121 203 1735 7.06 
E226 223 282 2578 161 260 2169 5.18 
BORE3D 233 314 1427 128 159 615 3.02 
CAP RI 271 351 1804 249 331 1535 1.86 
GROW15 300 645 5620 300 645 5620 2.90 
SCTAP1 300 480 1692 269 452 1557 1.28 
BAND M 305 472 2494 245 400 1783 1.82 
SCFXM1 330 457 2589 273 430 2335 1.99 
STAIR 356 391 3684 356 391 3684 2.64 
STANDATA 359 1059 2974 301 954 2627 0.91 
SCORPION 388 358 1426 233 295 718 1.04 
SCSD8 397 2750 8584 397 2750 8584 0.79 
ETAMACRO 400 606 2060 333 541 1849 1.03 
SHIP04S 402 1458 4352 241 1291 3823 1.23 
SHIP04L 402 2118 6332 317 1915 5695 0.94 
PILOT4 . 410 1058 7119 393 970 6797 1.78 
GROW22 440 946 8252 440 946 8252 1.98 
STAND MPS 467 1059 3622 403 1026 3143 0.76 
SCAGR25 471 500 1554 3L!7 498 1322 0.77 
SCRS8 490 1169 3182 447 1131 2827 0.56 
SEBA 515 1028 4~52 328 334 2280 2.08 
FFFFF800 524 854 6 27 466 817 5425 1.42 
SHELL 536 1525 3056 487 1448 2902 0.41 
GFRD-PNC 616 1092 2377 590 1066 2325 0.37 
SCFXM2 660 914 5183 546 860 4675 1.00 
NESM 662 2748 13078 646 2676 12926 0.75 
PILOT-WE 722 2791 9398 703 2593 9049 0.50 
SHIP08S 778 2387 7114 326 1632 4795 0.90 
SHIP08L 778 4283 12802 520 3149 9346 0.57 
25FV47 821 1571 10400 776 1544 10079 0.84 
CZPROB 929 3294 9983 689 2770 8337 0.44 
PILOT-JA 940 1765 13060 827 1679 12404 0.89 
PILOTNOV 975 1968 12186 865 1907 11736 0.71 
SCFXM3 990 1371 7777 819 1290 7015 0.66 
SCTAP2 1090 1880 6714 977 1768 6159 0.36 
SHIP12S 1151 2763 8178 417 1996 5823 0.70 
SHIP12L 1151 5427 16170 687 4224 12507 0.43 
SIERRA 1227 2016 7252 1135 2016 6968 0.30 
GANGES 1309 1681 6912 1120 1489 6396 0.38 
PILOT 1441 3449 41092 1384 3382 40725 0.87 
SCTAP3 1480 2480 8874 1346 2356 8229 0.26 
80BAU3B 2262 9301 20413 2020 8851 19390 0.11 

Table 1. Collection of test problems 
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Problem Primal-Dual Simplex New 
Iters Time Iters Time Iters Time 

AFIRO 6 0.52 9 0.08 7 0.12 
AD LITTLE 11 1.84 132 1.06 109 1.01 
SCSDl 8 3.84 238 2.39 253 4.75 
RECIPE 11 2.06 46 0.27 30 0.53 
SHARE21;3 12 2.36 146 1.64 127 1.59 
SHARElB 21 4.94 330 4.44 194 3.32 
SCAGR7 13 2.08 111 1.16 98 1.27 
GROW7 13 6.32 725 24.44 206 10.23 
SCSD6 10 7.70 640 9.26 789 21.58 
FORPLAN 32 17.90 626 11.29 598 17.68 
BEACONFD 7 4.32 118 1.86 27 1.34 
ISRAEL 28 20.76 362 6.56 181 3.42 
VTP-BASE 38 10.12 315 4.52 58 0.69 
SC205 10 2.46 50 0.92 152 2.93 
BRANDY 19 7.20 405 8.07 364 7.90 
E226 21 9.98 866 17.11 588 13.87 
BORE3D 18 6.50 464 8.62 45 1.21 
CAP RI 20 11.54 342 5.97 309 7.76 
GROW15 14 13.20 2006 273.69 365 57.84 
SCTAPl 17 7.58 '339 5.76 315 7.34 
BAND M 17 8.58 669 17.49 377 13.01 
SCFXMl 20 11.76 508 11.01 490 13.75 
STAIR 18 31.88 1238 75.61 353 34.02 
STANDATA 13 9.58 270 5.27 76 2.84 
SCORPION 11 4.18 222 6.98 81 2.28 
SCSDS 9 13.78 1076 33.23 3196 220.79 
ETAMACRO 33 34.32 833 17.31 1394 41.03 
SHIP04S 12 10.40 181 3.97 170 5.95 
SHIP04L 12 15.53 259 5.93 206 9.60 
PILOT4 42 81.93 3530 440.92 2543 276.65 
GROW22 16 21.28 - - 515 177.34 
STAND MPS 16 14.74 448 11.66 827 29.46 
SCAGR25 17 7.84 623 14.19 522 16.62 
SCRSS 23 18.27 884 24.13 697 29.12 
SEBA 26 69.88 14 0.85 15 2.21 
FFFFFSOO 39 65.21 612 19.63 738 33 .41 
SHELL 30 25.09 615 15.34 519 22 .31 
GFRD-PNC 17 11.21 536 14.85 489 18.55 
SCFXM2 26 29.81 958 37.72 998 49 .60 
NESM 49 169.79 9134 413.34 3172 233.62 
PILOT-WE 52 108.90 13738 2014.91 10878 1301.55 
SHIPOSS 13 17.41 377 13.17 285 11.44 
SHIPOSL 14 34.00 492 18.04 458 28.58 
25FV47 39 149.88 8096 811.57 8798 1175.68 
CZPROB 49 80.16 2023 88.14 1427 103.15 
PILOT-JA 43 338.08 - - - -
PILOTNOV 25 180.98 - - 5379 990.68 
SCFXM3 24 42.81 1482 83.58 1458 102.16 
SCTAP2 14 35.65 1094 48.27 799 46.19 
SHIP 12S 17 23.78 438 21.18 315 14.80 
SHIP12L 16 49.46 903 46.87 526 48.98 
SIERRA 22 56.01 1816 109.16 776 47.56 
GANGES 18 59.73 807 61.77 1002 85.96 
PILOT 77 4210.55 - - - -

SCTAP3 15 51.75 1367 83.13 974 72 .74 
80BAU3B 54 393.15 - - 13771 2169.91 

Table 2. Comparison of the efficiency of the methods analysed 
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Problem m mEQ ms(st) ms(max) ms(opt) 'l'nB rnax (%) 
AFIRO 21 6 6 10 10 48 
AD LITTLE 53 14 13 43 43 81 
SCSDl 77 - 77 77 77 77 100 
RECIPE 71 50 50 50 50 70 
SHARE2B 92 13 13 52 50 54 
SHARElB 107 81 73 89 86 80 
SCAGR7 95 83 83 92 86 91 
GROW7 140 140 140 140 140 100 
SCSD6 147 147 147 147 147 100 
FORPLAN 131 89 88 115 112 85 
BEACONFD 72 70 70 70 70 97 
ISRAEL 163 0 0 67 65 40 
VTP-BASE 53 43 43 46 46 87 
SC205 203 90 90 192 192 95 
BRANDY 121 98 92 112 112 93 
E226 161 29 27 115 109 68 
BORE3D 128 127 125 127 127 99 
CAP RI 249 126 131 211 211 85 
GROW15 300 300 300 300 300 100 
SCTAP1 269 113 113 196 196 73 
BAND M 245 245 240 245 245 100 
SCFXM1 273 172 166 226 225 82 
STAIR 356 209 208 353 350 98 
AND ATA 301 160 160 161 161 53 
SCORPION 233 203 203 228 227 97 
SCSD8 397 397 396 397 397 100 
ETAMACRO 333 207 207 313 309 93 
SHIP04S 241 201 201 217 216 90 
SHIP04L 317 277 277 289 289 91 
PILOT4 393 274 262 375 375 95 
GROW22 440 440 440 440 440 100 
STAND MPS 403 268 267 293 289 72 
SCAGR25 347 299 299 325 310 89 
SCRS8 447 353 353 432 425 95 
SEBA 328 321 321 326 326 99 
FFFFF800 466 313 308 390 389 83 
SHELL 487 485 482 486 485 100 
GFRD-PNC 590 522 496 558 548 93 
SCFXM2 546 344 332 452 451 83 
NESM 646 472 472 524 523 81 
PILOT-WE 703 566 546 679 679 97 
SHIP08S 326 254 254 277 276 85 
SHIP08L 520 448 448 469 469 90 
25FV47 776 490 484 636 616 79 
CZPROB 689 662 662 679 679 99 
PILOT-.JA 827 591 557 ? ? ? 
PILOTNOV 865 632 586 833 833 96 
SCFXM3 819 516 498 682 680 83 
SCTAP2 977 442 442 666 655 67 
SHIP12S 417 316 314 354 354 85 
SHIP 12L 687 586 584 621 621 90 
SIERRA 1135 523 503 568 562 50 
GANGES 1120 1096 1052 1097 1097 98 
PILOT 1384 208 199 ? ? ? 
SCTAP3 1346 589 589 932 915 68 
80BAU3B 2020 0 0 1869 1865 92 

Table 3. Changes of the working basis dimension 
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Problem iters RC add Cexcng Rexcng RC del 
AFIRO 7 4 3 0 0 
AD LITTLE 109 38 60 4 9 
SCSDl 253 0 253 0 0 
RECIPE 30 0 30 0. 0 
SHARE2B 127 54 52 5 23 
SHARElB 194 26 154 1 15 
SCAGR7 98 17 63 4 17 
GROW7 206 0 206 0 0 
SCSD6 789 0 789 0 0 
FORPLAN 598 79 428 28 67 
BEACONFD 27 0 27 0 0 
ISRAEL 181 81 66 19 17 
VTP-BASE 58 4 53 0 1 
SC205 152 104 31 14 3 
BRANDY 364 36 311 2 21 
E226 588 170 288 39 98 
BORE3D 45 2 43 0 0 
CAP RI 309 104 170 9 29 
GROW15 365 0 365 0 0 
SCTAPl 315 110 169 9 31 
BAND M 377 5 372 0 0 
SCFXMl 490 103 329 16 49 
STAIR 353 158 164 13 16 
STAND ATA 76 1 75 0 0 
SCORPION 81 27 51 1 3 
SCSD8 3196 1 3195 0 0 
ETAMACRO 1394 195 1044 59 129 
SHIP04S 170 28 128 1 16 
SHIP04L 206 19 180 0 11 
PILOT4 2543 159 2319 13 51 
GROW22 515 0 513 0 0 
STAND MPS 827 82 669 13 70 
SCAGR25 522 63 381 28 79 
SCRS8 697 139 459 32 85 
SEBA 15 5 8 2 0 
FFFFF800 738 155 486 23 89 
SHELL 519 4 514 0 1 
GFRD-PNC 489 69 403 0 17 
SCFXM2 998 211 654 43 97 
NESM 3172 262 2627 56 276 
PILOT-WE 10878 591 9737 77 486 
SHIP08S 285 37 233 0 23 
SHIP08L 458 36 405 2 26 
25FV47 8798 1034 6817 154 924 
CZPROB 1427 66 1312 0 60 
PILOT-JA - ? ? ? ? 
PILOTNOV 5379 401 4971 42 113 
SCFXM3 1458 351 884 54 178 
SCTAP2 799 279 433 22 74 
SHIP12S 315 56 237 5 22 
SHIP12L 526 70 408 14 44 
SIERRA 776 97 546 4 41 
GANGES 1002 46 960 0 0 
PILOT - ? ? ? ? 
SCTAP3 974 410 460 23 84 
80BAU3B 13771 3688 8047 214 1930 

Table 4. Number of different update cases 
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Problem Original size After presolve 
m n nonz m n nonz density(%) 

80BAU3B 2262 9799 21002 2020 8851 19390 0.11 
BNL1 643 1175 5121 558 1109 4619 0.74 
BNL2 2324 3489 13999 1886 3055 12564 0.22 
FIT1P 627 1677 9868 627 1655 9846 0.95 
FIT2P 3000 13525 50284 3000 13525 50284 0.12 
GREENBEA 2392 5405 30877 1947 4005 23417 0.30 
GREENBEB 2392 5405 30877 1940 3988 23346 0.30 
STOCFOR2 2157 2031 8343 2129 2015 8255 0.19 
WOODW 1098 8405 37474 711 5355 23080 0.61 

Table 5. Collection of larger Netlib test problems 

Problem Cplex rOne direct. 2 best 3 best 5 best 
Itcrs Tin1e Iters ime Iters Time Iters Tin1e ltcrs in1e 

80BAU3B 10635 174 13771 1337 14373 1351 14113 1514 14848 1387 
BNL1 2320 30 3223 99 3645 121 3521 114 3631 117 
BNL2 4563 156 8229 828 9191 942 10412 1050 11813 1302 
FITlP 810 12 629 52 756 62 890 72 789 60 
FIT2P 12246 925 14787 6051 16283 6592 17634 6840 17411 6791 
GREENBEA 7621 317 19525 2890 17391 2520 15017 2201 14971 2199 
GREENBEB 6056 253 15658 2287 15016 2133 13291 1810 13721 1921 
STOCFOR2 968 25 873 64 948 74 936 73 983 75 
WOODW 1765 28 1179 86 1318 92 1359 93 1353 92 

all t1mes are for 33MHz SUN SP ARCstatwn. 

Table 6. Comparison of different variants of the new method 
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