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Abstract: The paper presents a method of solving the mini
mization problem of the electric energy losses during the starting 
and speed control of induction motors, taking into consideration the 
electromagnetic transients. To solve .this problem, the Pontryagin 
maximum principle is used. A solution example using a digital com
puter is presented. 

1. Introduction 

The starting and speed control of induction motors can be carried out in dif
ferent ways, but the easiest and most effective method is the frequency control. 
Changing simultaneously the frequency and the amplitude of motor supplied 
voltage, not only the speed variation of the motor, but also, among others, min
imization of the electric energy losses in the stator and rotor windings can be 
obtained. 

The solution method of the optimization problem depends to a considerable 
extent, on the complexity of the accepted mathematical model of the motor. A 
supposition, permitting a great simplification in the mathematical description 
of the induction motor is to neglect the electromagnetic transients in the motor. 

With this supposition and some others, it is possible to find . the general 
mathematical description of the optimal controller that minimizes the electric 
energy losses Kawecki, Niewierowicz (1988). 

The purpose of this work is to find, using a mathematical model of the 
induction motor that takes into consideration the electromagnetic transients, 
a mathematical description of the optimal control of induction motors that 
guarantees minimization of electric energy losses during the starting or speed 
control. 

The problem is solved using the Pontryagin maximum principle. 
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2. Mathematical model of the motor 

The mathematical model of the motor has been based on the following assump
tions: 

• The supplied voltage is sinusoidal and symmetric. 
• The induction motor is symmetric. 
• The inductances and resistances are constant. 
• The motor is working on the linear segment of its magnetization curve. 
• The magnetic losses can be neglected. 
Besides, it is assumed that the control signal is the stator current which 

takes the following shape (indirect control): 

(1) 

where: 
~ 1 stator current vector on the d- q axes, rotating synchronously with the rotor 

angular frequency; 
i 1 absolute value of the stator current vector; 
~ angle between the stator current vector and "d" axis . 

The equations that describe the two-phase equivalent induction motor on 
the d- q axes, rotating synchronously with the rotor, are: 

(2) 

where: 

(3) 

R 1 , R2 resistances of the stator winding and of the rotor winding related to 
stator circuit, respectively; 

Xo magnetization reactance of the two-phase equivalent motor calculated for 
the nominal frequency of the stator current; 

xl dissipation reactance of one phase of the stator winding of the two-phase 
equivalent motor, calculated for the nominal frequency of the stator cur
rent; 

X~ dissipation reactance of one phase of the rotor winding of the two-phase 
equivalent motor, related to the stator circuit, calculated for the nominal 
frequency of the stator current; 

p number of pairs of poles; 
J rotor inertia torque; 
Mo load torque; 
t time; 
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w2d, W2q rotor magnetic flux components on the d- q axes; 
Wn nominal angular frequency of stator current; 
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Wr rotor angular speed of the motor of the one pair of poles ( w~ = Wr / p for the 
motor of p-pairs of pol~s). 

3. Optimization index 

The electric energy losses in the motor windings can be expressed by: 

where: 
.Q electric energy losses in the stator and rotor windings; 
i~ absolute value of the rotor current vector; 
tr control time. 

(4) 

Using the known dependence between the inside motor variables Krause 
(1987) , the rotor current absolute value can be expressed in terms of the stator 
current absolute value: 

(5) 

Substituti .. lg (5) in ( 4) we obtain: 

where: 

(7) 

Equation (6) describes the optimization index. 

4. Solution of the problem 

The optimization problem consists in finding control (1) that minimizes the 
optimization index (6). 

T hat means, it is necessary to find how the control variables i1 and ~ must 
change with the time for minimization of functional (6). 

To solve this problem, the Pontryagin maximum principle is applied Athans, 
Falb (1966). 
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Taking into consideration the motor mathematical model (2) and the opti
mization index (6), the hamiltonian takes the following shape: 

H =-~it R1- ~D(wn Wzd- Xoil cos~) 2 - ~D(wn Wzq- X oil sin0 2 + 
+QI( -AW"zd + Bi1 cos~)+ Qz( -AWzq + Bi1 sin~)+ 

+Q3Ci1 (Wzd sin~- Wzq cos~) - QdMo 

(8) 

where: 
Q1, Q2 , Q3 variables conjugated with the state variables 1]!2d, 1]! 2q, Wr, respec

tively. 
In accordance with the Pontryagin maximum principle, the optimal control 

variables should satisfy: 

BH _ 0 
a}} -
~t; =0 

(9) 

Taking into consideration the first equation in (9) and hamiltonian (8) we 
obtain: 

where: 

(11) 

Considering (8), the second equation in (9) takes the following shape: 

where: 

(13) 

Considering equation (12) as a scalar product of two vectors and taking into 
account that the hamiltonian should obtain the maximum value, one can write: 

(14) 

Equations (10) and (14) describe, in an implicit form, the optimal control 
which guarantees minimization of the electric energy losses during the induction 
motor speed control. 
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To build the optimal control system, it is necessary to know the optimal 
control description in a explicit form, therefore, it is necessary to know how 
the amplitude and the frequency of the supplied voltage, change in function of 
time (open-loop control system) or in function of angular speed of the rotor 
(closed-loop control system). 

Mathematically, it can be expressed as: 
• for the open-loop control system: 

V.= fu(t) 
W = fw(t) 

• for the closed-loop control system: 

where: 

U = f' u(wr) 
W = f' w(wr) 

u supplied voltage amplitude; 
w angular frequency of the supplied voltage. 

(15) 

(16) 

To find the direct control it is necessary to solve state equations (2) sub
stituting i 1, sin~ and cos~ by (10) and (14), which implies the solution of the 
conjugated equations and the state equations together. 

The shape of the conjugated equations depends on the type of load with 
which the induction motor works. Therefore, we should define the kind of load 
of the motor. For example, if we assume that the load torque is null or constant, 
the conjugated variables keep the following conjugated equations system: 

ddQ 1 = F(wn \ll2d- X oil cos~)+ AQ1 - Q3Ci1 sin~ (17) 
.t 

dQ2 = F(wn W2q -X oil sin~) + AQ2 + Q3Ci1 cos~ 
dt 

dQ3 -- = 0 --. Q3 = const --. CQ3 = const = E 
dt 

where: 

R~wn 
F = (Xo +X~) 2 

Taking into account (19), we can write: 

~ = F(wn W2d- X 0 i 1 cos~)+ AQ1- Ei1 sin~ 4? = F(wn W2q- Xoil sin~)+ AQ2 + Ei1 cos~ 
CQ3 = E = const 

(18) 

(19) 

(20) 

(21) 

To find out how the control variables i 1 and ~ should be changed in function 
of time, it is necessary to solve equations (2) and (21), substituting in them 
i 1, sin~ and cos~ by (10) and (14), which implies the knowledge of the initial 
conditions of the conjugated variables: · 

Q1 (0), Q2(0), Q3(0) U E(O) = CQ3(0) (22) 
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Only the initial conditions of the state variables are known: 

(23) 

where: 
'!f;2d, 'lf;2q, wi have 'null value at the starting of motor. 

Besides, the final value of the rotor angular velocity is known, and should 
be nominal for the start of the motor or should obtain a required value for the 
speed control: 

(24) 

where: 
wd final value of the rotor angular velocity (wished) (wd = wn/P for the starting 

of motor). 
From the transversabili,ty conditions Athans, Falb (1966) the final values of 

the conjugated variables Q1 and Q2 can be calculated: 

Ql(tr) = 0 
Q2(tr) = 0 

(25) 

As seen, the problem to be solved , is the two-point boundary value problem 
and it consists in finding initial values of the conjugated variables (22) knowing 
the initial values of state variables (23) and the final values (24) and (25). To 
solve this problem it is necessary to use a strategy for the change of the initial 
values (22). 

Therefore, in the presented case, a general solution of the optimization prob
lem is impossible. Only a particular solution for a specific induction motor can 
be obtained using a computer. 

As a result, the indirect mathematic description of the optimal control for a 
specific motor can be obtained: 

il = fi(t) 
~ = fdt) 

(26) 

Therefore, basing on (26), only the open-loop system control (15) can be 
found. 

The mathematical equations that describe the direct control variables ( v. 
and w) in function of the indirect control variables ( i 1 and ~) are Schreiner, 
Gildebrand (1973), Krause (1987): 

W = Wr + fJwn (27) 

dsin~ dcos~ 
{3 = cos~-- -sin~-- (28) 

dt dt 



Electric energy losses minimization in induction motor speed 795 

(30) 

(31) 

where: 
{3 = w-wr relative slip; 

Wn 

(32) 

Knowing the initial conditions of the conjugated variables (20), and after 
solving the two-point boundary value problem, state equations (2) and con
jugated equations (13) can be solved, applying indirect optimal control (15) 
and (19) and calculating, during the solution, the values of the direct control 
(equations (27)-(31)). 

5. Results comparison 

Comparing the results obtained in this paper with the optimal control in the 
closed-loop system obtained for the mathematical model of induction motor 
without the electromagnetic transients which description is Kawecki, Niewierow
icz (1988): 

where: 

for i]_ < iomax 

for i]_ >= iomax 

A1 +R1 (Xo+X:J) 2 

A1+R1X:J 2 

A1 +R1(Xo+X:J) 2 

A1 +R1X:J 2 

{ 

1 R1R~}
2 

[Xo- (Xa + X2)(Xo + X1)]a + - {3 - + 

[ R1(Xo +X~)+ R~a (Xa + X1)r 

A1 = R~x; + R1 (X a + X~) 2 

(33) 

(34) 

(35) 

(36) 

(37) 
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iomax maximum value of the magnetizing current amplitude for which the motor 
operates in the linear part of its magnetizing curve; 

i'f maximum admissible value of the stator current amplitude i 1 ; 

v.m nominal value of the supplied voltage amplitude; 
a = ..!:!!.... relative angular frequency of the stator current; 

Wn 

1 = ....JL relative amplitude of the supplied voltage; 
Um 

v = ~ relative angular velocity of the rotor. 
Wn 

we can conclude then, that the electromagnetic transients cause the variations 
with the time of the relative slip (3 (28) . This slip is constant when the elec
tromagnetic transients are neglected (34). The curve shapes of the relative slip 
and other variables of the control (wand u or a and 1) depend on the induction 
motor parameters. To determine these shapes we must solve the optimization 
problem as it is showed in the preceding chapter. Then, the form of the control 
variable curves may be different for the different motors. When the induction 
motor mathematical model is without the electromagnetic transients, the an
gular frequency of the control voltage (w, a) is a linear function (33) and the 
amplitude of this voltage ( u, 1) is a lmost a linear function (35) of the motor 
speed, then, because the electromagnetic torque of the motor during the con
trol is constant Kawecki, Niewierowicz (1988), both variables are an aperiodic 
(almost linear) function of the time. 

6. Example of the solution 

To illustrate the solution method of the electric energy losses minimization dur
ing speed control of induction motors a numerical example is presented. In this 
example the idle starting (Ma = 0) of a grinding electrospindle is presented. 
The parameters of the grinding electrospindle are: 

Tn 3, p = 1, Um = 187.79[Vj, 

Wn 9420[rd/s], R1 = 0.8[D], R~ = 1[D], 

X 1 X~= 4.1[D], Xa = 53.7[D], 

J 8.18 x 10-6 [kgm2 ] 

where: 
m number of the phases of the motor. 

To solve the two-point boundary value problem, the parametric optimization 
algorithm was applied Kawecki, Niewierowicz (1991). 

The initial condition for the conjugated variables found by PC-AT computer, 
for the motor parameters mentioned above are: 

Ql (0) = -1.7167 X 10-2 

Q2 (0) = -7.862 x 10-2 

E(O) = 202.413 u Q3(0) = 1.188 X 10-3 
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Figure 1. Control and controlled variables 

Using the PC-MATLAB software package, equations (2), (13) with indirect 
control (15),(19) were solved. The direct control was calculated, using formulas 
(18) - (31) for the motor parameters and the initial conditions for the conju
gated variables presented above. Additionally, the electric energy losses were 
calculated too, according to equation (6). 

The results of the calculations are presented in the Figures 1 and 2. 
The values of the starting time tr and the electric energy losses Q obtained 

during the starting are: 

tr 4.37[s] 

Q 11.192[J] 

For comparison we present the calculation results obtained for the idle start
ing of the same motor for: 

• the optimal control obtained with the mat.hematical model of induction 
motor without the electromagnetic transients: 

tr 1.657[s] 

Q 11.188[J] 
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Figure 2. Electric energy losses 
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• ordinary starting 
tr 0.616[s] 

Q 238.316[J] 

7. Conclusions 

This paper shows, that it is possible to find analytically the indirect form of 
the frequency control, which minimizes the electric energy losses during the 
starting or speed control of induction motors, taking into consideration the 
electromagnetic transients. 

· To find the direct description (explicit description form) of this control it is 
necessary to solve the two-point boundary value problem for a; specific motor, 
using a computer. 

The solution obtained in the paper can serve to build the optimal open-loop 
control system of the specific motor. 

In the present stage of microprocessor speed development, the results ob
tained in this paper may be applied to the induction motor starting in the 
open-loop control system, generating previously the voltage or. current ampli
tude and frequency control curves by a computer. 

The simulation results, based on the optimal control described in this paper, 
may be also used to evaluate the other practical control systems. For that it is 
sufficient to compare the results of two control system simulations: optimal and 
evaluated. 

For the investigated motor we can conclude then: 

I. the electromagnetic transients cause that: 

a) the optimal control variables (a, 1) have the oscillation (Fig.1) 

b) the starting time is longer (above 164%) 

c) the electric energy losses do not change practically, 

II. the optimal control of the motor starting which takes into consideration 
the electromagnetic transients, comparing with ordinary starting: 

a) decreases considerably the electric energy losses (this losses in the 
optimal starting arc about 4. 7% of the ordinary starting losses, then 
the energy advantages are very large) 

b) increases considerably the starting time (about 609%). 
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