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Abstract: The equilibrium problem of a clamped elastic bar 
with a vertical crack is considered. A nonpenettation condition of 
the crack banks leads to the restriction imposed upon the solution 
established by Khludnev (1992;1994) as the inequality. This model 
is described by the elliptic variational inequality. We construct the 
analytical solution of the problem using the projection of the initial 
space onto the set of solutions with the restriction. 

Some approximation methods for variational inequalities were 
suggested, for instance, by Barbu, Korman (1991), Glowinski, Lions, 
Tremolieres (1976), Kovtunenko (1994a;b;c). Some exact solutions 
for the problem of contact between an elastic bar and an obstacle 
were found by Cirnatti (1973). 

1. Introduction 

Let the middle line of a bar coincide with the real interval [0, 1] and the bar 
have a vertical crack in x0 , 0 < xo < 1. Let us denote 

D = (O,xo) U (xo, 1). 

We have to find the vector u = (u1 ,u2 ) of horizontal displacements u 1 = u1 (x) 
and vertical displacements U2 = u2(x) of the bar points X E D under the action 
of external load f = (h, h) (Fig.1). 

The jam condition 

u1 = u2 = Du2 = 0 in x = 0, 1 (1) 

should hold. Here D is the derivative operator. 

lThe work was supported by the Russian Foundation of Fundamental Research, grant 
95-01-00886a 
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Figure 1. 

In accordance with the Kirchhoff kinematic hypothesis, the displacements 
field alone! the thickness yE [-h, h] of a bar is given by the following dependence 
of the bar middle line on displacements: 

v.1(x,y) = v.1(x)- yDv.2(x), v.2(x,y) = v.2(x) . 

The condition providing for nonpenetration of the cut edges along the cut thick
ness is 

v.1(xo + O,y) - v.1(xo- O,y):::: 0 'v'IYI ~h. 

Substituting here the function value, one gets 

[u1] :::: y[Dv.2] 'v'lyl ~ h, 

where [s] denotes the jump of the function s(x) at xo, i.e. [s] = s(xo + 0)
s(x0 - 0). Obviously, the last inequality is equivalent to 

Thus, we obtain the nonpenetration condition of the crack banks, as given by 
Khludnev (1992,1994) . Later on, we consider the model assuming for simplicity 
h = 1: 

Let us construct linear functions 

Then, (2) is equivalent to 

cp( u) :::: 0, 1/J( v.) :::: 0. 

Let us define the basic Hilbert space 

X= {u E H 1 (D) x H 2 (D) and (1) holds}, 

(2) 

(3) 
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its dual space X* and a closed and convex subset 

K = {v. EX and (3) holds}. 

We introduce the inner product in X through 

(v., v) = / Dv.1 · Dv1dx + / D 2v.2 · D 2v2dx, v = (v1, v2) ./o ./o 
and the corresponding norm 

(v.,v.) = [[v.[[2 

in agreement with the obvious estimates 

/ (u2) 2dx :s; / (Du2) 2dx :s; / (D 2v.2) 2dx . 
./o ./o ./o 

The equilibrium problem for the clamped elastic bar with the crack induced 
by the action of the load f E X* is formulated as the following variational 
inequality, Khludnev (1992;1994): 

uEK, (v.,v-u)~(f,v-y) \/vEK. (4) 

Here the brackets(·,·) imply duality between X and X*. It is easy to see that 
the solution of ( 4) is unique. 

2. Construction of the solution 

Let .J- 1 : X* -> X be the inverse duality injection, then 

(.J- 1f,v) = (f,v), \/vEX. (5) 

We denote 

w = J-1 f. 

Let f = (h, h) E (L2(D)? be given. By integrating (5), we can see that the 
vector w = ( w1, w 2 ) is the solution of the following boundary problem 

- D 2w1 = h, D 4 w2 = /2, in D 

in x 0 

In the above notation the variational inequality ( 4) is equivalent to 

v. E K, ( w - v., v. - v) ~ 0 \/v E K. 

(6) 

(7) 
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Let P be the projection operator of X onto K, i.e. for any s E X the unique 
projection Ps E K exists such that 

(s-Ps,Ps - v)20 VvEK. (8) 

Comparing (7) and (8), it can be seen that (7) is equivalent to the following 
equation, Minoux (1989): 

u=Pw. (9) 

To construct this projection, we introduce the function a(x) EX n 0 00 (0) in 
the following manner 

_ O 5 { x 2
, X E [0, Xo-] 

a - · (x - 1) 2 , xE [xo+,1] 

and define the vector B(w) = (81(w),82 (w)) by 

81 (w) = 0.5(<p-(w) + 'lj;-(w)) · Da, 

82 (w) = 0.5(1>'(w) - 'lj;-(w)) · a. 

Here the superscript minus means the negative part of the number, i.e . a = 

a+ - a-, a+, a- 2 0. We mark the following properties of the constructed 
function 

D 281(w) 

[81(w)] 

DB1(w) 

D 2Bz(w) 
cjJ(B(w)) 

THEOREM 2.1 

v.=w-B(w) 

D 382 (w) = 0, in 0, 

[D2Bz(w)] = 0, 

0.5(1>-(w) + 'lj;-(w)), 

0.5(1>-(w)- 'lj;-(w)), in xo, 
- cp-(w), 'lj;(B(w)) = - 'lj;-(w). 

is the solv.tion of variational inequality (4) . 

Proof. Taking into account (9), we have to prove that 

Pw=w-e(w). 

(10) 

(11) 
(12) 

(13) 
(14) 

First, Pw belongs to K. Actually, in view of the linearity of cjJ and 'lj;, (14) gives 

cj>(Pw) = cj>(w)- cp(B(w)) = cp+(w) -1>-(w) + cp-(w) = cp+(w) 2 0 

and·, similarly, 'lj;(Pw) = 7j;+(w) 2 0. 
Second, let us verify (8), i.e. 

(B(w), w- B(w) - v) 2 0, Vv E K. 
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In view of the smoothness of e ( w), the following integration holds for every 
( = (6,6) EX 

(B(w),() =- / (D2B1(w) · 6 + D3B2(w) · D6)dx.Jn 
[DB1(w) · 6 + D2B2(w) · D(2]. 

Relations (10)-(13) give 

(B(w),() = -~ ( ( (p-(w) + ~r(w)) · [6] + (r(w)- 1/J-(w)) · [D6]) = 

-~ ( (p-(w) · 4;(() + ~r(w) · 1/J(O). 

Taking into account (14), we get 

(B(w),w- B(w)- v) = -~ (q;-(w) · (q;+(w)- cj;(v))+ 

~r (w) · ( 1/J+(w)- ?j;(v))) = ~ ( q;-(w) · cj;(v) + 1/J-(w) · 1/J(v)) :::: 0 

due to v E K. The proof is complete. • 
REMARK 2.1 It follows from (5) and (6), that if f E Hn(n)xHm(n), n,m;:::: 
0 , then u E Hn+2 (0) x Hm+4(D,) (here H 0 (0) = L2(D ) . If j E Cn(D) x 
cm(n) , n, m;:::: 0, then '11. E cn+2 (D) X cm+4(D). 

REMARK 2.2 The fv.nction u = w- 8( w) is the solution of the following bov.nd
ary problem 

-D2u 1 = h, D 4 u2 = h, in D, 

[Du1] = [D2v.2] = [D3u2] = 0, 

Du1 = -0.5(4;-(w) + 1/J-(w)), 

D 2u 2 = -0.5(4;-(w)- 1/J-(w)), 

[v.1] = 0.5(cj;+(w) + 1/J+(w)), 

[Dv.2] = 0.5(cj;+(w)- 1/J+(w)) . 
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REMARK 2.3 Let function v. belong to X n (H2(0.) x H 4(0.)) and the following 
boundary conditions be fv.~filled in xo 

[Du1 ] = [D2u2] = [D3 •1.2] = 0, 

(Du 1 + D 2 v. 2 )if;(v.) = 0, 

(Du 1 - D 2u2 )1j;(u) = 0, 

if;(u) 2 0, 1/J(u) 2 0, 

-Dv.1 2 [D2v.2[· 

Then v. is the solution of variational inequality (4) with the right-hand side part 
f = ( -D2u 1 , D 4 u.2). For· instance, this holds when u EX n (HJ(rt) x H(S(D.)). 

3. Examples of solutions 

EXAMPLE 3.1 Let h = a, a > 0, h = 0, then u.2 = 0. There are two cases: 

• if 0 < x 0 ::; 0.5, then 

0 " { x
2 

- 2x0 x, 
u.1 =- .oa (x- 1) 2 - 2(x0 - 1)(x- 1), 

x E [O,xo-] 
x E [xo+, 1] ' 

[u1] = (0.5- xo)a 2 0, 

• if 0.5 ::; x 0 < 1, then 
u.1 = -0.5a · x(x- 1), [u.1] = 0. 

EXAMPLE 3 .2 Let h = { a 1' x E [[00,
5
°·5

-
1

]] , Xo = 0.5, f2 := 0. Then 11.2 := 0 
a2, X E . +, 

and 

• if a2 ::; a1, then 

'11.1 = -0.125 { 

[u.1] = 0, 

• if a2 2 a1, then 

4a1x 2 - (3a1 + 12)x, 
4a2x2 - (5a2- a1)x- a1 + a2, 

X E [0,0.5-] 
X E [0 .5+, 1] ' 

u 1 = -0.5a · x(x- 1) · h, [u1] = 0.125(a2 - al) 2 0. 

EXAMPLE 3.3 Let f { 
b1, X E [0,0.5-] J'fb b h = 0, xo = 0.5, 2 = b [O 5 1] . J 1 + 2 2 

2, X E . +, 
0, then 

'11.1 =- b19+6b2 { x, 
X -1, 

X E [0, 0.5-] 
X E [0.5+, 1] ' 

[
V, l = b1 + b2 > 0 

1 96 - ' 
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Figure 2. 

We may come to the following conclusions: 

1. The equations ensure that h = 0 entails u 2 = 0 (Examples 1,2). 
2. h = 0 does not necessarily entail v.1 = 0 (Example 3). 
3. [h] = 0 or [h] = 0 do not guarantee [u1] = 0, or [u2] = 0, or [Du2] = 0 

(Examples 1,3). 

4. Discussion of applications 

In geophysics, tne earth's solid surface is generally imagined as made of shells 
and plates. Plate faulting and their interactions are studied in the plate tecto
nics, see for example, Cox, Hart (1986). Such appearances are often illustrated 
by plates and bars with cuts. A certain version of two faulty plates is shown 
at a cross-section near the boundary in Fig.3a, Logatchev (1994). This figure 
is based on the assumption that plates are compressed. We can ti.nvestigate this 
physical phenomenon by the mathematical model of a bar with a cut accounting 
for nonpenetration at the contact boundary. By omitting the nonpenetration 
condition, we may well obtain a crossed bar as shown in Fig.3b. Thus, the con
tact condition considered in the paper refers to the assumption of compression. 

Certainly, the suggested mathematical model is the first approximation in 
describing the boundary contact. First, the friction phenomenon is of great 
importance. Second, the geometrical model of plate dislocation suggest the 
presence of slanting cuts as shown in Fig.3c, Cox, Hart (1986). These phe
nomena can be described by contact conditions in manner similar to the one 
presented here and we are engaged in the work on it. 
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Figure 3. 
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