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Abstract: In shape optimization problems, each computation of
the cost function by the finite element method leads to an expensive
analysis. It is possible to make use of this analysis for getting morc
information using higher order derivatives. The additional cost of
this computation is low with respect to the cost of the analysis.
Moreover, automatic differentiation tools make it easy to implement,
and provide exact derivatives of the discrete problem.

1. Introduction

What is shape optimal design? Consider for instance an elastic rod, with cross-
scction €2 (Fig. 1.).

Figure 1. Elastic rod

The torsional rigidity of the rod is given by

i) = J( ya)
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JQ,y) = /lvynl2 dz
JQ

where yq is the solution to the partial differential equation
—Ayq =2 in
Yo =0 on I

We denote by T' the boundary of the domain €2 which is supposed to be simply
connected. We assume also that the measure of € is a fixed number. A classical
shape optimization problem is to find €2 which maximizes the torsional rigidity
of the rod (the solution to this problem is well-known: it is a circle).

The basic sheme of a shape optimization problem is the following:

Q— yo — j(ya)

and the real unknown of the problem is the domain € itsclf. We do not discuss
here the existence of an optimal shape. This is a difficult problem which is yet
not completely solved. The aim of this paper is to describe some basic tools for
shape optimization, and essentially a new method of higher order derivatives.
Indeed, in most problems the maps 2 — yq and yo — j(yq) (or at least the
map ) — yq) are smooth. But one can ask the following questions:
- are higher order derivatives expensive to calculate?
- arc they complicated to use?
- are they imprecise?
- arc they useless?
At first sight, the answer seems to be positive, but classical results of Strassen
(1990) and Morgenstern (1985) tell us that the higher order derivatives are not
expensive and can be computed automatically. The purpose of this lecture is to
give an answer to the third question by showing that the higher order derivatives
of a function can be computed with the same precision as the function itself. We
show also that the derivatives so computed are equal to the derivatives of the
discrete problem. We call the discrete problem the finite dimensional problem
processed by the computer. This result allows the use of automatic differentia-
tion, which works only on discrete problems. Furthermore, the numerical results
which are proposed at the end of the lecture give an answer to the last question
We give in Section 2. some basic results about differentiation with respect
to the shape. We describe in Section 3. how to compute the derivatives and we
propose in Section 4. a method which gives intrinsic expressions of these deriva-
tives. The mth order derivatives are given in Section 5. The discretization error
is studied in Section 6. and we illustrate the higher order derivatives method in
Section 10.

2. Derivation with respect to shape

We consider now a general cost function j(w) = J(w, %,) where ¥, is the solution
to a partial differential equation defined on a variable bounded domain w of RV,




Sensitivity computation and automatic differentiation 833

We supposc here that y, is the solution in a Hilbert space V(w) to the variational
cquation

a(w, Yu,v) + l(w,v) =0 Vv € V(w). (1)

Here a(w,.,.) is a continuous bilincar form satisfying the V(w)-ellipticity pro-
perty (Ciarlet, 1978), and 1(w,.) is a continuous lincar form on V(w).

EXAMPLE 2.1 In many cases the forms a(w,.,.) and l(w,.) can be written as
follows: fory, v € H}(w),

alw, y,v) = / ZG’W Oy 0jv dx

Jw i
W(F,v) = —/fv dx

where f € L2*(RN) and the functions a;; € L®(RY) satisfy the following
ellipticity condition: there exists a constant oo > 0 such that for any x and 1y in
RN

S (@) vy > ellylli
5]

which implies that there is a unique solution vy, to equation (1).

The problem is studied on a fixed bounded domain  (Guillaume, Masmoudi,
©1993; Masmoudi, 1987; Murat et Simon, 1976), and instead of looking for an
optimal domain we arc looking for a perturbation F' such that the domain F(£2)
is optimal. Let B(0, R) be an open ball of IRY containing Q and consider the
Sobolev space of transformations W (B(0, R); RY) equipped with the norm

IIEN] = I1E]| poo (B(0,m): Ry F IDF || oo (0, RY;2(RMY)

This choice allows us to start with any kind of domain {2, even with an irregular
boundary.

The set U € WH(B(0, R); RN) of all the maps F which are homeomor-
phisms from B(0,R) to F(B(0,R)) with Lipschitz inverse, is open in
Wh(B(0, R); IRY) (Murat et Simon; 1976, Guillaume, Masmoudi, 1993). We
define a (respectively I, J, j7) on U x V() x V(Q) (respectively U x V(Q),
U x V), U) by

a(F,y,v) = a(F(Q),yoF voF™)
I(F,v) = 1(F(Q),veF1)
J(Fy) = J(FEQ),yoF™")

JiF) = J(F(E).
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This change of variable allows the use of classical differentiation tools in the
normed space W1 (B(0, R); IRY), and we can casily derive higher order vari-
ations of 7.
It will be assumed throughout the paper that
(A)  Foranyy e V(Q) and any F € U, yo F~! belongs to V(F(S)) and the
linear mapping y — y o F'~! is an homeomorphism from V() onto V(F(Q)).
For instance this is the case when V(F(Q)) = H'(F(22)) /IR (Neumann prob-
lem) or V(F(Q)) = H(F(Q2)) (Dirichlet homogeneous problem). That is also
often the case when HE(F(Q)) € V(F(Q)) ¢ HY(F(€)) (mixed problem). If we
use a conforming finite element method (Ciarlet, 1978) then assumption (A) is
also fulfilled for the discrete problem.

_Hence a(F,.,.) is a continuous and bilinear form satisfying the V(Q)-ellipticity
property and [(F,.) a continuous linear form on V(). For F' € U and w = F'(2)
equation (1) reads now (“direct state”)

a(Fyyp,v) +1(F,v) =0 Vo € V(F(§2)) (2)

where

yr =yr@) o F (3)
The cost function becomes j(F) = J(F, yr) .
THEOREM 2.1 Let yp € V(Q) be the solution to equation (2). If the mappings

Fia(l,.,.) and F' — I(F,.) are of class C™ (m > 0) on U then the mapping
I yp is of class C™. Moreover if J is of class C™ then j is also of class C™.

Proof: Define Ap € L(V(F(Q))) and Ly € V(F (L)) by
a(F,y,v) = ((Apy,v)) Yv e V(F(Q))
I(F,v) = ((Lp,v)) YveV(F())
where ((.,.)) denotes the scalar product on V(F(2)). Equation (2) reads
yr = (Ar)"'Lp

Hence the result is a simple consequence of the composed maps theorem.

In example 2.1, if the functions a; ; € C™(IRY) and f € H™(IRY) then the
first condition of the theorem is fulfilled (cf. following lemma). For instance in
the case of the Laplace equation —Aypqy = [, if the function f is of class C*°,
then the mapping F— yp is also of class C*°.

LEMMA 2.1 Mural and Simon (1976). For m > 0 the map W : F+—— go F is
of class C™ from U into

(i) CO(B(O, R)) if g € C™(B(0, R))

(i%) L2(B(O, ) if g € A7 (B(0, F))

and, for V1, .., V™ € WH(B(0, R); RY) , its derivative is:

(D™ W(F)(VY, . V™)) (@) = D g(F@)(V (), . V(@) ace.
(iii) The map F +— DF~ is of class C* from U inlo L°°(B(0,R))N2.
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3. Computation of the derivatives

There arc two basic methods for computing the derivatives of the cost function
j: the direct method and the Lagrangian method. For the first order derivative
the sccond method is much more efficient than the first one. Both of them
can be generalized at higher order derivatives. However, the complexity of the
sccond method grows much faster than for the first one, so the best solution is
to use the Lagrangian method once and then only the direct method.

3.1. Notations

We use the notation D™g(F).(Vi,..., Vi) for the m-th order derivative of a
function ¢ defined on U, cvaluated in the directions Vi,...,V,, €
Whe(B(0, R); IRY). This notation could lcad to some confusion when tak-
ing the derivative of the map '+ yp. Thus we denote by D7 yp.(V1,... V)
the m-th order derivative of the map F' —— yp from U into V(Q) in the di-
rections V4,... Vy € WHe(B(0, R); RY). For m = 1 or 2 we follow the usual
notation, i.c. for V, W € Wh(B(0, R); RY):

yr.V =Dryr.V, ir.(V,W):=Dhyr.(V,IW).

We refer to these derivatives as the total derivatives (also called material deriva-
tives). They are not to be confounded with the ordinary m-th order differ-
ential of a function y defined on an open set of IRY: the m-th order deriva-
tive of the map = —— y(x) in the directions hiy, ..., hy € RY is denoted
by D™y(x).(h1,..., hm) or simply by Vy(z).hy if m = 1 and D?y(z)h;.hy if
m = 2 (z.y denotes here the usual scalar product in RY). For V;,...V;, €
Wheo(B(0, R);IRY) we denote by D™y.(Vi,..., Vi) the function defined by
DO™y.(Va,..., Vi ))(2) = D™y(z).(Vi(x),..., Vim(z)).

3.2. The direct method

The direct method is very simple: use the chain rule. When the problem is
differentiable, deriving the expression j(F) = J(F, yr) yields

Dj(F).V = D1J(F, yp).V + D2 J(F, yr).(yr.V)

where the derivative 5.V € V(Q) of yp with respect to F' in the direction V is
the solution to the equation (obtained by deriving equation (2) with respect to
F)
a(F,yp.V,v) + Dia(F,yp,v).V + D1l(F,v).V =0 Vv € V(Q)
(we denote by D; the partial derivative with respect to the ith argument).
When solving the discrete problem the transformations F' of the domain are

chosen in a finite subspace of WH*°(B(0, R); RY) (for instance, when using a
P, finite clement method, F' is a continuous function which is linear on each
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triangle). Let M be the dimension of this subspace. The derivative .V has to
be computed in M independent directions Vi, ..., Vis. Hence we need to solve
M + 1 systems for computing j(F) and Dj(F). For higher order derivative we
need to solve (M + k)!/(M!k!) systems for computing j(F), ..., D) j(F).

3.3. First order Lagrangian method

The Lagrangian method has been introduced by Céa (1986). Tt allows the elim-
ination of the derivative of yp with respect to I’ and leads to fast computation
of the derivative when solving the discrete problem.

The Lagrangian is defined on U x V(2) x V(Q) by
L(F,y,v) = J(F,y)+a(F,y,v) +I(F,v)

THEOREM 3.1 Assume that the conditions of Theorem 2.1 hold with m = 1.
Let v € V(§2) be the solution to the equation (called “adjoint state”)

a(F,q,vr) + Do J(F,yp).q =0 Vq € V(Q)

Then for all V in Wh°°(B(0, R); RY) we have
Dj(F).V =D L(F,yp,vr).V

Proof: Let v be an arbitrary clement in V(§2); for all ' in U we have
L(F,yr,v) = J(Fyr) = j(F)

Hence if we differentiate this expression with respect to F' and choose then
v = vp we get the above-mentioned expression.

When solving the discrete problem we need now solving only two systems
(one for yp and one for vp) instead of M +1 in the direct method. This reduces
greatly the computer time spent for the computation of Dj(F'). For higher order
derivatives the best solution is to use the Lagrangian method once and then to
apply the dircet method. We need hence to solve 2(M + k — 1)I/(M!(k — 1)!)
systems for computing j(F), ..., D®)j(F) (instead of (M + k)!/(M'k!) when
using only the direct method).

3.3.1. Example of the Laplace equation

Let f be a function in H*(IRY) and let YrQ) € HE(F(Q)) be the solution to
the equation

—Aypy=f inF(Q)

Consider the cost function (energy):

P(@) = 3@, ye) = [ S vec do
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The transported solution yr = yp(q) o F is the solution in Hj(S2) to the
equation

a(F, yp, ) +1(F,v) = 0  Yove Hg(Q)
a(F, y,v) = / DF~TVy.DF~TVu JF dx
JQ
I(f,v) = —/fonJFda:
JQ

(JF is the Jacobian of F and DF~T is the transposed inverse of DF) and the
cost function is

iF) = J(F yr)
J(F,y) = /foFy.]Fd,m
Ja

According to Lemma 2.1 the function j is of class C*.
Using the direct method yields for all V € Wh*°(B(0, R); RN):

Dj(I).V = / yi VIV + f9r.V + fyr V.V da (4)
JQ

(we denote by I the identity map on B(0,R) and V.V = Y}, 9;V%, V =
(B2, < ey UV 0

There is another expression of the first order derivative involving the local
derivative the definition of which is here recalled (Murat and Simon, 1976):

DEFINITION 3.1 If for all w CC € the map F — (yp(g))lw defined from a

neighborhood of the identity I into L?(w) is differentiable at F = I then the
map F — yp(q) is said to be locally differentiable at I and the local derivative
YoV € LL.(Q2) is defined onto the whole domain 0 by:

(?/(1+W)(9) ) o~ (1/5]) |
A

Uy V = tlg% forallw CcCQ

. . . . I+tV)— . .
Note the difference with §7.V = lim;_,0 les el ):( HV)TYL | When yr.V is
well defined, the relationship between these two functions is:

.V =ya.V + Vyr.V (5)
Thus (4) can also be written:
Dj(I).V = / div(yr fV) + fyq.V dz
JQ

and using yr € HY(Q) yields

Dj(I).V : /Q fyq.Vdz ‘ (6)
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The Lagrangian and its first order derivative are given for all F € U and V' €
W (B(0,R); IRYN) by the following expressions (with A: B =", . AL B):
2 A ]

L(F,y,v)

/ (y—v)foF +DFI'VyDF~TVv)JF dx
Ja

DiL(F,y,0).V = / ((w=v)f o F+ DF-TVy.DF-TV0) DF-T : DV
JQ
+@y—v)Vfo F.V — DFTDVTDF-TVy.DF~TVu

= DF—TVy.DF—TDVTDF—TW) JF dax
In this particular case we find here that vy = —yy (this is due to the fact that
J(F,y) = —I(F, y)), and thus for all V€ Wh*°(B(0, R); IRY) the derivative of
jat F=1 is:

Dj(I).V = / 2y VIV + (2 fyr — |Vyr|) V.V + 2DV Vy, Vyrdz  (7)
Ja

4. Intrinsic expression of the derivatives

The derivative of the cost function 7 in the direction V€ Wh(B(0, R); RY)
depends only on the values of V' on the boundary I'. Indeed, because of its very
definition, if F(2) = G(Q) then j(F') = j(G). Hence it is a consequence of the
following Lemma from Murat and Simon (1976):

LEMMA 4.1 Let g be a differentiable function defined on U. If g(F) = g(G)
when F() = G(Q) then for all V€ WH*(B(0, R); RY) vanishing on I' and
all I' € U one has

Dg(F).V = 0.

(In fact when I and V' are sufficiently smooth Dg(/).V depends only on V.n).
We describe in this section how to obtain intrinsic expressions of the first order
derivative. What is meant by intrinsic is a little loose. On the one hand, as far
as the first order derivative depends only on the restriction of V' on I', one can
consider as intrinsic an expression involving only the values of V on I On the
other hand we have also (recall §7.V = yg.V + Vyr.V), Simon (1980):

V=0onl = ypV=0 (8)

(whereas 9;.V # 0 if Vy;.V # 0) so one can consider intrinsic as well an
expression involving yg,.V rather than y;.V.

4.1. Extension of the local derivative

DEFINITION 4.1 If the map F +—— yp is differentiable from U into V(S2) then
the local derivative yp,.V € L2(Q) is defined for all V € Wheo(B(0, R); RY) by:

yrV = ypV+V(yr@)o 'V
= yp.V+DF TVypV (9)
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(recall that V(yo F~1)o F = DF~TVy when F € U and y € H(F(2)), Necas,
1967).

REMARK 4.1 Using definition 3.1 one finds the following relation.:

vV = (s (Vo F1)) o F

and particularly for F = I one has ?)IJ-V =y V.
We can now generalize property (8) in the following way:

LEMMA 4.2 If the map F' — yg 1is differentiable from U into V(2) then for
all F € U and for all V € W1 (B(0, R); RN ) vanishing on I’ one has:

yr.V = V(yr@)) o F.V (10)
Consequently the local deriative y5 has the same property as yg:
V=0onT = .yp.V=0. (11)

Proof: This property comes from the fact that when F(Q) = G(Q2) then ypqy =
Ya(q) (recall yp) o F = yr). Let F € U be a fixed element, Eq the sct of all
V € Wh*(B(0, R); RYN) vanishing on I', A the affine space A = F + Eq and U’
a necighborhood of I in A such that for all G € U’ one has G(Q2) = F(£). For
G € U’ one has yga) = Yr) thus yg) © G = yr(e) © G which reads:

Yo =yr) °G.

Let V€ Eg. From the differentiability hypothesis the left side has for derivative
yp.V at the point G = F. This is when deriving from U’ into V(2) D L%(Q),
thus the same expression holds when deriving from U’ into L?(Q2). Because
Yr@Q) € HY(2) we know from Lemma 2.1 that right side is differentiable with
respect to G from U’ into L?(2) and has V(yp(q)) o F.V for derivative at G = F'.
Hence cqualing the two sides completes the proof. |

REMARK 4.2 BEquality (10) tells that for F = I and V € WH*(B(0, R); RY)
vanishing on I' on has:

Vyr.V =9.V.

One rediscovers here in a surprising way a reqularity result: as soon as the
derivative ezists the map 7.V belongs to (), thus we have Vy;.V € H'(Q).
This means that (yr)j, € H*(w) for all w CC Q. However, observe that yo.V
belongs only to L2(§2): there is a loss of reqularity when dealing with the intrinsic
local derivative.
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4.2. From the domain to the boundary

We suppose here that the maps j and F' —— yp are differentiable at " = I.
We know that if V' = 0 on I' then Dj(I).V = 0 (lemma 4.1). This property
will allow the usc of the following theorem, leading to elegant expressions of the
derivatives (recall that z.y denotes the usual scalar product in R, and X : YV
the natural contraction X : Y = ZN

i.j=1XijYij. This notation stands also for
vector-valued functions).

THEOREM 4.1 Let | € WH(B(0, R); RN)'. Suppose that:
(i) if V=0onT, thenl(V)=0,

(ii)  the boundary ' is piecewise of class C*,

(#ii) the linear form | can be written

(V)= / ayr.V+A:DV + LV dx (12)
JQ
where the functions A, L and a belong respectively to WH(Q)N*N LY Q)N and

L%(§). Then
(V) = / aya.V dx + / A (VnaT) ds.
JQ JI

Thus one just has to substitute yg,.V for yr.V, eliminate the term with L.V, and
substitute V nT on the boundary for DV on the domain.

Proof: The proof of the theorem uses the following elementary lemma:

LEMMA 4.3 Let lo € WH®(B(0, R); RN)'. Suppose that:
(i) if V=0onT, then ly(V)=0,

(ii) there is Lo € L*(Q)N such that lo (V) = [, Lo.V dz.
Then lg = 0.

Proof: Considering [y as a distribution, the support of Iy is a subset of I' so Lg
must vanish on €2 and lp = 0.
Proof of the theorem: Using (5) cquation (12) reads:

(V)= / a(yq.V+Vyr.V)+A:DV+ LYV dx
JQ
and using Green’s formula yields:
vy = / Z(—(‘)J-Aij + Li+ad;y)V' +ayqg.Vde + / A (VnT) ds
195 . Jr
Let

h(V)=1(V)— ./g.za,yéz.Vdm - ./1;A (Vv nT) ds

Due to (8) the linear form [y satisfies condition (i) of the precedent lemma. It
satisfics also condition (ii). Thus lp = 0, which is the required result. |
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4.2.1. Application to the Laplace equation

Assume that the boundary is piecewisc of class C* and that f € HY(RY) in the
example of the Laplace equation. Applying Theorem 4.1 to equation (4) we get
directly the expression (6) involving the partial derivative yg.V instead of the
total derivative y7.V.

More interesting, if the boundary is of class C' then the solution y; is in
H() NH2(Q). Applying Theorem 4.1 to equation (7) we obtain the boundary
expression

D).V = / _IV il Vi + 2(V. V1) (n.Vyr) ds. (13)
Jr

Using the fact that Vyr(s) and the normal n(s) are dependent this integral
reduces to:

Dj(I).V = /|vy,;2v.nds. (14)
JI

which is not a direct consequence of Green’s formula and can be useful in a
descent algorithm.

4.2.2. Application to electromagnetism

When dealing with antenna shape optimization, one often uses integral equa-
tions for solving the problem. Hence it is necessary to have a boundary expres-
sion of the derivative. In Millo (1991, Th. 3.5 p. 49), one finds the following
expression for the derivative of a cost function j:

Dj(I).V = Rc( = / ((e.p) + curle.curlp + V.e W) V.Vdz
Ja
- / DeDV . (Dp — Dp) + (De — “De) .DpDV dx
Ja
- / Vop'De.DV +V.e t'D}E.Dde).
Ja

It was not casy to derive a boundary expression of this integral, and needed
a few lemmas and complicated Green formulas. If we apply our method, we
obtain dircctly )

Dj(I).V = Re( /aa{(curle.(:urlp +V.e Vp) —k?(ep)] Vinds

- / [*Dp — Dp)De + ("De — De)Dp] Vinds
J o0

—/ (WD@-F.V.eD—p)V.ndS),
Jaq

which is the same expression as the one found by Millo (Millo, 1991, Prop. 3.9
p. 55).
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5. The mth order derivatives

Our purpose is now to generalize the Lagrangian method, and to express the
mth order derivative of j in the form

D™j(F).V = DiL™(F, yrv, prv)-Vm (15)

where V = (Vi, ..., Vi) € (WL22(B(0, R); RN))™, and ypv, prv € (V(Q)2" .
Notations.

We denote by V the space V(§); for all nonnegative integer m, we set, s = 2™ ;
we denote by V,, the Cartesian product V*, which is equipped with the norm

@1 o Ys )V = lmlly + oo+ lyslly -

- Let y = (y1,..., ys) be an element of Vi, ; the element (0, ..., 0, y;, 0,..., 0) €
Vpm (i 1s the ith component) will be written simply v; , and (y1, y2, -y ¥, O 0
Vi x {0y}~ C Vy, will be written y* , with the convention y° = 0.
- For y € V, we denote by y; the clement (0, ..., 0, v, 0,..., 0) € V,,, (v is the ith
component).

Note that in both cases, 3; € {0y} ™! x V x {0p}* ™" C V..
Induction formulas.
From now on, we choose in W1 (B(0, R); IRY) m directions of derivation
Vi, ey Vi We define I* on U x V x V by I1(F, y, p) = I(F, p). The func-
tion .J, the bilinear form a and the Lagrangian £ will be denoted J*, at, £
let Y = (y, p) and P = (q, r) be functions belonging to Vi, = Vim—1 X Vi1
(m > 1); whenever possible, we define by induction (in m)

PR

JHE,Y) = D1L™(F, y, p).Vim (16)
a™t(F, Y, P) = a™(F, y, ) +a™(F, q, p) (17)
"N (F, Y, P) =1™(F, y, r) + D2 J™(F, y).q + Dol™(F, y, p).q (18)

LTHYE, Y, P) = J™Y(E, Y) +a™\(F, Y, P) +I™Y(F, Y, P) (19)

REMARK 5.1 If J, a and | are of class C%, then for 0 < m < d, the mappings
£+l gl and Mt are at least of class C4—™ , a™T1(F, e, ) is a continuous

bilinear form and I™1(F, Y, e) a continuous linear form on Vp, .

It will be scen that the clement Yry = (yr v, pr,v) € Vi involved in (15)
is the unique solution to the equation

o™ (F, Ypy, P) + 1" (P, Yy, P) =0 VP € V.
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THEOREM 5.1 Leta, | and .J be of class C¢. Then for 0 <m < d, the equation
g™t UE, ¥, P)+I"HE, ¥, P)=0 YPeV, (20)

has a unique solution Yryv € Vp, and the map F — Ypy is of class C4—™
on U. Moreover, solving equation (20) is equivalent to solving the following
triangular system of variational equations:

a(F, y1, p) +I™TY(F, 4°, ps) =0 Vp eV

a(F, p, y2) +I™T(F, y', ps—1) =0 VpeV

a(F, yoi—1, p) + ™ F(F, y*72, ps_9iy0) =0 VpeV
a(F, p, y2i) + ™ FUEF, y* 7 pe_0ip1) =0 VpeV
a(F, ys—1, p) + I™TH(F, y°*=2, p3) = 0 Vpey

a(F, p, ys) +I™TH(F, y*7, p1) =0 VpeV

Proof: The cquivalence of (20) with this system of equations can be proved by
induction in m. Then, according to remark 5.1, I™*1 is of class C¢~™ ; thus we
just have to apply theorem 2.1 to cach equation of the system. |

REMARK 5.2 This theorem and formulas (17) and (18) allow us to set (20)
under the following equivalent form:

Yrv = (Yr,v, PF,v) € Vm is the unique solution to (20) if-and only if yryv €
Vin—1 is the unique solution to the equation

a™(F, ypv, ) +I™(F, yrv, ) =0 Vr € Vim—1

and pp v € Vim—1 the unique solution to the equalion
a™(F, q, pr,v) + D2 J™(F, yrv).q + D2l™(F, yrv, prv).q =0
Yq € Vim—1.

Note that these equations generalize the direct and adjoint states described in
section 1.

THEOREM 5.2 We assume that a, J and | are of class C™.
Let Yrv = (yr,v, pr,v) € Vm be the unique solution to the equation

a'm,"rl(F’ YF,V7 P) + l’ﬂ’H—l(F’ YF:V’ P) =0 VPe Vm’

then we have

de m
D™j(F).V = D1L™(F, yrv, PF,v)-Vm &y YHE, Yiow) -

This can be proved in the same way as Theorem 3.1.
Note that these results are still valid if we replace W2 (B(0, R); IRY) by a

subspace B C WH®(B(0, R); RY) and U by U N E; this is especially the case
when one uses the finite clement method.
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6. Discretization of the problem

Let us write Taylor’s expansion of the cost function j:

5 1 K3 7 m
JE+V)=§(F) + Y 5 D)V +o(|V]™).

i=1

We denote by V® the element (V, ..., V) € (WL (B(0, R); RN))?.
According to Remark 5.2 and Theorcm 5.2, each term Dj(F).V(® can be
written in the form JH(F, Vi) where Y v is the solution to (20).
Therefore, the mth order Taylor’s expansion of j(F' 4 V) depends on Ypv
in the following way:

+Z -D? V() _Tm.(YF,V)7
where we have defined for y € V,,
T () +Z J’+1 F, ).

Note that J*(F, y) is only applied to the 2° first components of y.

Now the problem arises that we cannot calculate T, (Yp,v) ; the only thing
that we can do is to compute the value of T),(Zp ) (which we call the finite
clement approximation of Taylor's expansion of j(F + V), where Zpy is the
unique solution in (V) to the equation

(l,m+1(F7 ZF,V7 P) e lm+1(F) ZF,V: P) =0 VPe (Vh,)m- (21)

Here V), = V() is the finite element space (Ciarlet, 1978), and we assume that
V), is a subspace of V, so that T,,(Zr,v) is well defined. Thus we approximate
the cost function by T,,(Zr v ), which can be seen as the “discretization of the
derivatives of the continuous problem”.

One could naturally ask the following question: do we get the same result
if we first approximate the problem by the finite element method, and then
differentiate the approximate cost function?

As we see it now, the answer is yes.
Recall that j(F) = J(F, yr), where yp € V is the solution to the equation

a(F, yp,p) +1(F,p)=0 Vpe V.

It is what we call the “continuous problem”.
We introduce now the discrete cost function j,(F) = J(F, zp), where zp €
V), is the solution to the equation

a(F, zp, p) +U(F,p)=0 Vpe V.
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This is the “discrete problem?”.

From now on we suppose that F' € U is a fixed clement. If the assumption
(A) is still valid for the space Vi (F(§2)) (this means that the linear map y —
yo F~1 is a homcomorphism from Vj(Q2) onto Vu(F(2))), we can substitute
Vi () for V() and j, for j in sections 3. and 5., so that the result still holds,
i.e. we have

D™ (F).V = J"Y(F, Zry)

where Zp v € (Vh)m is the solution to (21). This equality means that the result
does not depend on the order in which discretization and differentiation are
made.

7. Error estimate on the approximate solution

We assume now that Q is an open set of IR? or IR?, and it is a finite union of
simplicial or curved elements. Equation (21) is solved by using Lagrange’s finite
clements.

Notations.

- The norms of the spaces HP(§)) and (HP(§))" arc denoted by || || .

-1, : YNCP(2) — Vy, denotes the Lagrange’s interpolation operator (Ciarlet,
1978).

- We denote by y = (y1, ..., ys) the solution Yp v to (20) and by z = (z1, ..., z5)
the solution Zry to (21).

-ForpeV, g€V, and 1 <7< s, we define g; by

gi(q, p) = U"THF, q, ps—iv1).

- For the sake of simplicity, we denote a(F, p, ) by a(p, r) and we suppose
that the bilincar form a is symmetric.
Thus, the system of Theorem 5.1 becomes:

alyr, p) + 1 (y°, p) =0 VpeV
alys, p) + g92(y*, p) =0 VpeV

alyi, p)+ gy, p)=0 VpeV

a(ys, p) + gs(y*~ L, p) =0 VpeV

and z is the solution to the system obtained by substituting V, for V.

Let & > 1 be the degree of the finite element space. Recall that when the
family of finite clements is regular (Ciarlet, 1978), the following property holds:
(P)  There ezists a constant ¢ such that for any function w € V N H*T1():

[ — Thhullr < ¢h®||ul|ksr.
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THEOREM 7.1 Assume that the family of finite elements is reqular (Ciarlet,
1978), that the maps a, J and | are of class C™ and that their m-th order
derivatives satisfy a Lipschitz condition. If y belongs to (H*+(Q))*, then

lly = 2l = O(h").
Proof: It is sufficient to prove that for 1 < j <s, we have
lly! — 27|l = O(h*).

We prove it by induction in j.

For j =1, it is a classical result (Ciarlet, 1978).

Let the result be true for 1 < j—1 < s—1 ; it follows from Strang lemma
(Ciarlet, 1978) that there exists a constant C' such that:

lyi — zilln < CR* |lyillesr + llg; (27, @) — g5 (%", @[y

Moreover, taking into account the definition of ¢ and the Lipschitz condition in
the theorem, there exists 7 > 0 and L > 0 such that

e ="Ml <= lg;(u, ®) = g; (" ", &)l < Liju—3"" s .

Now it follows from the induction hypothesis that the inequality

g—=1,
Iy ™ =2 =) Il —zlh <7
=1

holds for h small enough; therefore, for such a small h we have

lly; — zillh < CR*|ly;llkea + Llly" =" — 2774,

and the result is obtained by using the induction hypothesis once more. E

8. FError estimate on the approximate derivative
Let us define the error on the approximate derivative by

| T H(E, y) — JTNE, 2)].
A first cstimate of this error is given by the following theorem:

THEOREM 8.1 Assume thal the family of finite elements is reqular, thal the
maps a, J et 1 are m + 1 times differentiable and that their (m + 1)th order
derivatives are locally bounded. If y belongs to (H*T1(Q))*, then

JmHL(E, y) — JHU(E, 2) = O(hY).

The proof is easily obtained by using the mean value theorem and Theorem 7.1.
Under additional weak assumptions, it is possible to improve the error esti-
mate. For that purpose, we recall the lemma introduced in Masmoudi (1987).
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LEMMA 8.1 Assume that the family of finite elements is reqular. Let b be a
continuous linear form on V, and assume that the solution w(b) € V to the
equation.

alp, w)+0(p) =0 Vp eV
belongs to H**1(Q). If yy belongs to H*T1(Q), then
b(yr — 21) = O(h?F).
Proof: We recall from (22) that
a(y, p) +U(F,p)=0 VpeV
a(z,p) +1(F,p)=0 Vp € W,
which gives
alyy —z, p) =0 Vp e V.
By using the definition of w(b) and the previous equality, we have
by — ) = alz — 1, w(b)) = ala — 1, w(b) — Ta(w()) ).

Hence, the continuity of the form a, property (P) and theorem 7.1 allow-us to
conclude. ]

The proof of the previous lemma is based on the fact that for all p € V),
we have a(yy — z1, p) = 0. But this is not the case when the linear form is not
computed exactly, as in

a(y2, p) +g2(y*, p) =0 VpeV
a(za, p) +g2(2H, p) =0 Vp€ V.

However, if go is regular, one can get a similar result for b(y2 — z2). Thus, we
obtain the following lemma:

LEMMA 8.2 Assume that the family of finite elements is regular and that the
maps a, J et | are m+ 2 times differentiable. Let b be a continuous linear form
on V. Assume that the solution w(b) € V to the equation

a(p, w(d)) +b(p) =0 Vp eV
belongs to H*t1(Q), and that for any v € H*(Q), the solutions w; j(v) € V
to the equation

1

a(w; (), pi) + D1gi(y" ", v).p=0 Vp € Vn
1

7

belong also to HF1(Q) for 1 <i < j—1<s—1. Ify belongs to H**1(Q) , then
b(ys — z) = O(h%) Vi 1<1<s.

Il
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We can now give a better estimate of the error with the following theorem:

THEOREM 8.2 If the condilions of lemma 8.2 hold for all the linear maps
pi > Do JJ™YE, y).pi (1 <i <), then

JYE, y) — J™T(F, 2) = O(h?F).

Proof: Let us write the second order Taylor’s expansion of J™1(F, e):
THEUE, 2) = ", y) = Do ™, y).(2 — y)+
+D5 ™ (E, y).(2 = )P + o(lly — 2I*);

The bilincar map D3Z,.J™ 1 (F, y) is continuous and y belongs to H*1(Q) , so we
just have to use Theorem 7.1 and to apply Lemma 8.2 to Dy J™H(F, y).(z—vy)
to get the conclusion. |

REMARK 8.1 It can easily be proved that, in example (E), if f € H™(IRY) and
if the functions a; ; € W™HLo°(IRN), then the assumptions of Lemma 8.2 hold
when the boundary of ) is reqular enough, Grisvard (1985).

9. Direct computing of the mth order derivative

Instead of using the Lagrangian method, it is possible to get the mth order
derivative of § by using the chain rule in the expression j(F') = J(F, yp); this
time we need the derivatives of yp with respect to F'.
We shall denote by D™y the mth order derivative of the map I — yp (note
that this is not the ordinary derivative of the function yz).
9.1. Computing D™yp.(V1,..., Vi)
In this section, let I°(F, p) = I(F, p) and define by induction (in m)

I™TYF, p) = Dia(F, D™yp.(V1, ..; Vin), D) Vg1 + Dil™ (F, ).V .

It is casy to check that if a, J and [ arc of class C? then for 0 < m < d, then
D™yp.(V1, ..., Vi) € V is the solution to the equation

a(l, q, p) +1™(F,p)=0 Vp e V.

9.2. Discretization of the direct method

Given any function ¢ defined on U, let

G(J, F, o(F), Dp(I), ..., D™p(F), V)
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be the formal expression obtained when differentiating at order m the mapping
F v J(F, o(F)) in the direction V = (V4, ..., V4,) ; for instance we have

DmJ(F)V = G(']a F7 yr, D:ljF, 7DmyF7 V) ¥

Recall that zg € V), is the solution to the discrete problem:
a(F, zp, p) +1(F,p)=0 Vp € V.

As we did it previously for the continuous problem, let i) (F, p) = I(F, p) and
define by induction (in m)

ZZ,L+1(F7 p) = Dla‘(F) Dm,ZF'(Vh "'7V'm)7 p)'vm,-i—l + DIZ}T(Fr P)-Vm+1 .

The function D™zp.(Va, ..., Vi) € Vp is then the solution to the equation

a(F, ¢, p) + 17 (F,p)=0  Vp € V.
If one uses this direct method, the discrete approximation of D™j(F).V should
naturally be

G(J, F, zp, Dzp, ...,DmZF, V),

but is it the same as the one made with the Lagrangian method? Fortunately
it is:

THEOREM 9.1 Assume that a, J et l are of class C™. Then we have
G(J, F, zp, Dzp, ..., D™zp, V) = J"TYEF, 2).

As a consequence, the approzimations made by using either of the two methods
are the same; espectally, if the conditions of Theorem 8.1 hold, we have

D™j(F).V —G(J, F, zp, Dzp, ..., D™zp, V) = O(h¥),

and if the conditions of Theorem 8.2 hold, we have
D™j(F).V — G(J, F, zp, Dzp, ...,D™zp, V) = O(h?).

Proof: Recall that 7,(F) = J(F, zr); according to the definition of G,
D™ (F).V = G(J, F, zp, Dzp, ... D™zp, V).

The result is then a simple consequence of the equality D™, (F).V = J™TH(F, 2),
proved in section 5. [ |

Thus one can differentiate after making discretization or discretize after dif-
ferentiating with either of the two methods.
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Figure 2. Initial design modified design (I + V)(£2)

10. Examples
10.1. Numerical results for the torsional rigidity example

With intent to illustrate numerically the use of higher order derivatives, let
us take the popular example of the torsional rigidity of an elastic bar, whosc
cross scction is an open set (I + V)(€2). § is the initial domain (Fig. 2), and
(I+V)() :={z+V(zx); = € Q} is a perturbation of this domain.

The cost function (torsional rigidity) for a cross section (I 4+ V)(Q) is

j([+ V) =2 / y(I+V)(Q) d.’l?,
Jr+vy@)

where yr4vy@) € H ((I + V)(Q)) is the solution to the Laplacian equation

“Ayaivya) = 2.

This cost function 7 is of class C°.

10.1.1. First design perturbation

Here the modified design is given in Fig. 2. We are using finite elements of
degree 1, using smaller and smaller elements: at cach step, the size of the
clements becomes half of the previous ones, as shown on Fig. 3.

We give in Table 1 the results of the computing of j(I + V) obtained when
using the Taylor’s expansion of j at the point I, which have to be compared with
the ones obtained when computing directly 7(I + V') on the modified domain.

Observe that the nodal table is made of the components of the map I in an
appropriate basis. When V is a perturbation of the identity, the modified design
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Order | triangulation 1 triangulation 2 triangulation 3 triang. 4

of exp.

0 .165754759809873 | .17144321842656 | .17416741916434 | .1751508015

1 .169 178 181 182

3 1754 .1840 1870 .1879

5 174584 .183198 .18630 18719

10 1745975 183210 .1862835 1871720

20 .1745992758 .18320866 186283765 1871722234

30 .174599276026168 | 18320864866 18628376224

40 .174599276026178 | 1832086486832 1862837622883

50 .174599276026178 | .18320864868347 | .18628376228882

JI4+V) | .174599276026178 | .18320864868347 | .18628376228882 | .1871722233

Table 1. Behavior of Taylor’s expansion of the cost function

Order triangulation 1 triangulation 2 triangulation 3 triang. 4
of exp.

1 .073309714253548 | .086073617452509 | .093782161947154 | .0968730219
3 .006718268316071 | .013093233335998 | .014979462707718 | .0149311039
5 .001722788508621 | .002539750030623 | .004808110366787 | .0053616606
10 .000028892586130 | .000129843146119 | .000248661883022 | .0002795846
20 .000000002534305 | .000000923092796 | .000001335313315 | .0000013535
30 .000000000000226 | .000000002219957 | .000000006721870 | .0000000087
40 .000000000000001 | .000000000010874 | .000000000134758

50 .000000000000001 | .000000000000040 | .000000000000581

Table 2. Bcehavior of the solution

nodal table is made of the components of the map I + V. Thus the derivatives
of the map V +— j(I + V) are cxactly the derivatives of 7 with respect to the
nodal table.

We give in Table 2 the relative error for the norm L°° between the solution
yr+v computed on the modified domain and the approximation of the latter by
Taylor’s expansion of yI 4 V') at the point 1.

The convergence of the series seems to depend only slightly on the size
of the elements. On the other hand, when the number of nodes increases, it
becomes more and more advantageous to solve some linear systems where the LU
decomposition has already been done, than to compute the LU decomposition
of the new stiffness matrix at the point I 4 V; this means that the use of higher
order derivatives is particularly valuable when solving large scale problems.

This is shown by Table 3; the CPU time spent to compute j(I) (which is
also the one spent to compute j(I + V) directly on the new domain) appears in
the column j(I), and the additional CPU time spent to compute j(I+ V') when
using Taylor’s cxpansion of j at the order k appears in the columns Tj(k). We
have done those computations on a processor MISP 6000.
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Triangulation | j(X) | Tj(1) | Ti(3) | T3(5) | Tj(10) | T3(20) | Tj(30)
1 ) B 2:5 3.5 6.5 11.5 21.5
2 5 9 9 12 22 60 109
3 46 9 33 50 127 311 527
4 543 | 68 159 248 756 1908

Table 3. CPU time (s)

One can see that a Taylor’s expansion at the order 3 or 4, which gives a
sufficient precision for the engineer, leads to a shorter computation of the result
on and after the third triangulation. In the numerical algorithm, we have taken
into account the fact that the stiffness matrix is a band matrix, which decreases
the ratio

cost of the LU decomposition / cost of solving of the linear system.

When solving a three dimensional problem, this ratio is larger (the band of the
matrix is larger), as well as the size of the problem himself. It follows that the
use of the higher order derivatives will be more efficient in dimension 3 than in
dimension 2.

10.1.2. Other design perturbations

We are now interested in the circle of convergence of Taylor’s series, as well as in
the domain of validity of the method. Recall that analyticity results have been
proved in Destuynder (1976) for a similar problem. The chosen perturbations
can damage the triangulation, as shown in Fig. 4.

N = <N

RERRRRRR g \
RRRRRRRR : : o
AN AL ¥ v o Foas
5:??;;% \g WHEE € S
—522_45 / < = ‘
v A VAAA] IAARAAR

triangulation 2.1  triangulation 2.3 triangulation 2.4 triangulation 2.5

Figurc 4. Damaged triangulations

A correct triangulation of the new domains would be given by Fig. 5.
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AN

triangulation 2.1 triangulation 2.3.1 triangulation 2.4.1 triangulation 2.5.1

Figure 5. Correct triangulations

Order of triangulation 2.3 triangulation 2.4 | triangulation 2.5
expansion
il 0.17 0.17 0.17
3 0.1951 0.2134 0.225
5 0.19471 0.2122 0.2228
10 0.1945934 0.21151 0.22119
20 | 0.1945949508 0.21153 0.22082
30 0.1945949526 0.21154 0.2196
50 0.19459494967 0.21153 0.187
100 0.194594949635326 | 0.21132 -178.7
J(I+V) 0.194594949635325 | 0.21158 0.22146
jet(I+V) 0.194553646999355 | 0.21287 0.22313

Table 4. Behavior of Taylor’s series of the cost function with a bad triangulation

We give in Table 4 the results of the computing of j(I + V') obtained when
using Taylor’s expansion of j at the point I for these different perturbations,
which have to be compared on the onc hand with the direct computation of
4(I+ V) on those perturbations with bad triangulation (triangulations 2.3, 2.4,
2.5), on the other hand with the direct computation of j(I + V') on the correct
triangulation of those perturbations (triangulations 2.3.1, 2.4.1, 2.5.1), denoted
by jct(I4+V). One can sce that the Taylor’s series converges for the perturbation
2.3, and is obviously divergent for the large perturbation 2.5; however, one can
see that even in this extreme case, one can get a good approximation of j(I+V)
by choosing a correct order of Taylor’s expansion (here between 5 and 10), and
better, a good approximation of jet(I + V).

We give in Table 5 the relative errors el and ¢2 for the norm L°°:

- ¢l is the error between Taylor expansion of g + V) at the point I and the
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Order of 0 1 3 5 10 20 30 50 70
expansion

el 0.408 | 0.102 | 0.054 | 0.016 | 0.016 | 0.034 | 0.127 | 3.990 | 126.4
e2 0.425 | 0.105 | 0.069 | 0.057 | 0.061 | 0.061 | 0.146 | 3.955 | 124.7

Table 5. Behavior of Taylor’s series of the solution with a bad triangulation .

solution y;.y computed on the triangulation 2.5;

- ¢2 is the error between Taylor expansion of y I + V) at the point I and the
solution computed on the correct triangulation 2.5.1, the relative error between
the solutions computed on the two triangulations being 0.060. One can see here
that even in the case of an important perturbation of the triangulation, the use
of the higher order derivatives lecads to quite a good approximation (relative
error of six per cent), which is often sufficient in practice.

10.2. Numerical tests for Maxwell’s equations
10.3. Introduction

The sources of some Spatial Antennas are a network of waveguides. The topo-
logy of such a network is obtained using a recent patent (Masmoudi, Brunet,
Dusseux and Saury, 1993). The aim of this section is to study an element of
this network, i.e. the junction of two rectangular waveguides. The shape of this
junction is of most importance in a telecommunication satellite, where room,
weight and performance are crucial.

We show that the use of higher order derivatives of the discrete problem
(with respect here to the frequency and the shape of the junction) (Guillaume,
Masmoudi, 1994) leads to a very performant method for the numerical simula-
tion of the waveguide.

10.4. The 3D problem

Let us roughly describe the physical problem. Two rectangular waveguides G
and G’ meet together as shown on Fig. 6.

We denote by G the inside of the complete waveguide. The inner boundary
T" is supposed to be a perfect conductor.

We state the problem as follows: an incident wave is given, which propagates
in the waveguide G toward the junction; a part of it is reflected, the other part
being transmitted in the waveguides G’. Our goal is to obtain a Taylor expansion
of the reflected wave with respect to the frequency and the shape of the junction.
This expansion will be used to perform shape optimization, in order to minimize
the modulus of the reflected wave on a large frequency scale.

Following usual assumptions are made:

e The clectromagnetic ficld is time-harmonic, i.e. the time dependence occurs
through a factor exp(iwt) with w = 2rf (f is the frequency); more precisely,
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G
Figure 6. The 3D waveguide

the physical electromagnetic field is the real part of a complex field E exp(iwt),
where F is time-independent.

e The incident wave is not modified by the scattered electromagnetic field. This
defines in cach waveguide G and G’ an electric incident field £, which vanishes
in G’, and is expressed in G by

. . X o
E' = sin —(0, 0, e~*v)
a
where k& is the wave number, defined as (¢ is the light speed in vacuum):

Y P S s |

a?’ ¢

(23)

It is the fundamental mode of the rectangular waveguide (Dautrey and Lions,
1988; Vassallo 1985) and the only one which does not vanish at infinity if we
assume that

[

)- (24)

This hypothesis is not really necessary, and is just made to avoid heavy formu-
lation.

The global electric ficld is a solution to the equations (which derive directly
from Maxwell’s equations):

curl curlE— B2E=0 in G
(P) EAn=0 on I
(RC) conditions

T .
— < f < min(—,
a b

e

)
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Figure 7. The domain €2

We denote by n the outward unit normal to I'; and the condition £ An = 0
reflects the fact that the boundary is a perfect conductor. For e, = (0,1,0) in G
and e,, = (0,1,0) in G’, the radiation conditions (RC) (Sommerfeld conditions)
are

(RC) lim curl (E—ENAey—ik(E—E)=0 inG
Y——00
lim curl EAey —ikE=0 in G’
W—+—00 ’

These equations express that the wave E—FE' is outgoing, and behaves at infinity
like the fundamental mode.

The 2D problem

The 2D waveguide (Fig. 7) is the median plane of the 3D waveguide (i.e. the
intersection of the 3D waveguide with the planc z = a/2). We still denote by G
the inside of the 2D waveguide, and by I' its boundary. We also denote by 2 a
bounded part of the junction delimited by two cross-sections S and S’

For all scalar field g and all vector-valted field u = (uy, u), let

Curlg = (0,8, —0yg)
curlu = dyu, — J,uy.

and denote by u; the tangential component of u (i.e. u = u, n + u; t where
(n,t) is a direct oriented orthonormal basis).
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Tt can be proved (Guillaume, Masmoudi, 1995) that when the width a of the
waveguide is constant, then the 3D problem reduces to a 2D problem. Moreover,
the solution of the 2D problem is well approximated by the solution of the
following problem:

Curl curlu — k?u = 0 in €
P) ur =0 on I’
curlu +iku; = curlu! +ikul on SUS

The incident wave u? (which is the restriction of E* to the median plane) vanishes
in G’, and is expressed in G by

ut = (0, 7).

We attempt to calculate the reflexion coefficient Sy; and the transmission
cocflicient Sy3. These are given by

1/ ;
S = = / (up —uy) ds
bJg i
1y
S = h_’ . up ds

where w is the solution to problem (P).

10.5. Multi-frequency analysis

We use an H(curl) conforming finite element method (Nédélec, 1980). Hence
we have to solve a linear system of equations

A(K)X (k) = B(k) (25)

Thanks to the form of the approximate problem, the matrix A(k) and the vector
B(k) arc polynomial in &, that is

A(k) = C — k2S + ikF
(C like curl, S like scalar and F' like frontier) and
B(k) = kL

where C, S, F, L do not depend on k. Observe that higher than second order
derivatives of A and B vanish.

Let kg be a given frequency. The solution to eq. (25) with k = k, is
computed with a direct method, using a LDLT Cholesky-Crout factorization of
the matrix A(k).

In order to compute X (k) for other values of k without compuling a new
factorization of the matriz A(k), we use the Taylor expansion

X(j)(kg)

Sk k)’ (26)

X(k)=X(kg)+ Y

Jz1
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S’

Figure 8. Circular guide

For this purpose, we need to compute the derivatives of X (k) with respect to
k. This is done by solving the following systems, which arc obtained by taking
the successive derivatives of the system (25):

A(R)X' (k) —A' (k)X (k) + L (27)
ARXM(E) = —AEXVE) +SXD (k) Vn>2 (28)

Note that the sccond member of (28) is calculated from the non zero elements
of the matrices A'(k) = —2kS + iF and A”(k) = —25 (these arc at most five
on cach line).

The approximation of the coefficients S11(k) and S13(k) becomes

j — 1 =
S11(k) Qika.X(k) 1= mAX(A.).X(A,) -1
1 .
SIQ(k) = 27,]{'[)’ B/X(k>

where B’ is defined in a similar way as B, and X (k) is approximated through
(26).

10.6. First example

Our first example is a circular waveguide (see Fig. 8), for which physical mea-
sures werc supplied.

Computation has been performed on a HP 9000/867S. Time spent is given in
Table 6. It can be seen that the multi-frequency analysis (i.e. the computation
of the Taylor expansion, here up to the order 50) is about so expensive as a
single ordinary analysis.

By classical mcthods, the knowledge of the reflexion coefficient needs about

hundred analyses.
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Number of degrees
of freedom

CPU time (s)
for Cholesky

CPU time (s)
for Taylor(50)

799 1 18
3264 20 166
10853 071 678

Table 6. Computation time

Frequency |S11] |S12] phase of S;; | phase of Sig
(CHz) (dB) (dB) (deg) (deg)
_ Taylor(30) 10 -30.918855 -0.248347 -136.899087 18.637913
Taylor(50) 10 -37.476134 -0.001559 -71.579726 18.761669
direct computation 10 -37.496066 0.000773 -71.204879 18.763322
Taylor(30) 15 -24.902031 0.029737 -100.536434 -11.838846
Taylor(50) 15 -33.595172 -0.001504 -99.458462 -9.562543
direct computation 15 -33.657307 | -0.001960 -99.606644 -9.553712

Table 7. Convergence of the Taylor expansion on the interval 10-15 GHz

10.6.1. Convergence of the Taylor expansion

Results of convergence of the Taylor expansion are given in Tables 7 and 8,
with k4 corresponding to the frequency 12.3 GHz. Comparison is made with
the solution computed by solving directly the system (25) for different values of
k (10, 11, 14 and 15 Ghz). Of course, the rate of convergence is better on 11-14
Ghz than on 10-15 Ghz.

10.6.2. Comparison with experimental measures

Comparison with the experimental measures (non smooth curves) is given in
Figures 9 and 10. Take into account that the reflected wave is very weak, thus
computation as well as experimental measure are quite inaccurate (Figs. 9(a)
and 10(a)). In contrast, the computation of the transmitted wave is so precise
that the result of the computation of the phase (Fig. 10(b)) is exactly the same
as the one of the measures (the slight difference in the modulus (Fig. 9(b))
comes from non perfect conduction of the real waveguide).

Frequency |S11] |S12] phase of S11 | phase of Sio
(GHz) (dB) (dB) (deg) (deg)
Taylor(30) 11 -37.960780 -0.000695 22.602659 -67.361454
Taylor(50) 11 -37.960780 -0.000695 22.602660 -67.361454
direct computation 11 -37.960780 -0.000695 22.602660 -67.361454
Taylor(30) 14 -32.765963 -0.002320 -26.661061 63.463939
Taylor(50) 14 -32.765955 -0.002320 -26.660971 63.463938
direct computation 14 -32.765955 -0.002320 -26.660971 63.463938

Table 8. Convergence of the Taylor expansion on the interval 11-14 GHz
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Figure 11. (a) shape at t = -2 (b) shapcat t=0  (c) shape at { = 2

Frequency |S11] |S12] phase of Syq phase of Sqg
(GHz) (dB) (dB) (deg) (deg)
Taylor(20,0) 10 -28.36168 0.06291 -5.23238 -48.04583
Taylor(20,3) 10 -11.11887 -0.29565 -135.08447 -44.57097
Taylor(20,5) 10 -11.07522 -0.34964 -135.87184 -44.63012
Taylor(20,10) 10 -11.09239 | -0.35196 -135.92671 -44.59784
Taylor(20,20) 10 -11.09178 | -0.35187 -135.92933 -44.59680
direct computation 10 -11.09184 | -0.35185 -135.92960 -44.59692
Taylor(20,0) 15 -36.93388 -0.00209 13.10028 -117.14689
Taylor(20,3) 15 -6.01872 -1.31288 164.36942 -104.22770
Taylor(20,5) 15 -5.08636 -2.07613 172.37182 -99.06069
Taylor(20,10) 15 -4.83339 -1.75674 169.51543 -98.01031
Taylor(20,20) 15 -4.84270 -1.72714 169.23757 -98.05877
direct computation 15 -4.84289 -1.72714 169.23763 -98.05965

Table 9. Convergence of the Taylor expansion at t = —2 and f = 15GHz

10.7. Second example

Our sccond example is shown in Fig. 11. As in previous section, the coefficients
S11 and Sp2 are computed by using a Taylor expansion, but now with respect
to the frequency and the shape: the position of the middle facet depends upon
a parameter t. The shapes corresponding to the values t = —2, 1 =0 and £ = 2
arc shown respectively in Fig. 11(a), Fig. 11(b) and Fig. 11(c).

The difference here is that the dependence of the matrix A(k,t) is no more
polynomial in t. Thus the successive derivatives of £ —— A(k,t) are computed by
using automatic differentiation on the elementary matrices Morgenstern (1985),
Griewank (1989). A polynomial in two variables P(k,t) is obtained. The con-
vergence of the Taylor expansion is given in Table 9. Taylor(p, ¢) indicates a
derivation at order p with respect to the frequency, and at order ¢ with respect
to the shape.

The graph of the map (f,t) — |P(k(f),)| is shown in Fig. 12 and Fig.
13. It is worth to note that a simple view on Fig. 13 gives the value of ¢ for the
solution to the non differentiable problem:
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Figure 12. Graph of (f, ) — |S11(f, )|

minimize j(¢) with

J(t) = sup 1S11(f, 1)l
10GHz< <15 GH 2
The curve ¢ — j(¢) is the superior envelope of all the curves, and the
optimal # is near zero (which corresponds to the initial design!).

11. Conclusion

Those numerical results show clearly the efficiency of the higher order derivatives
method and automatic differentiation.

It is necessary, in order to introduce shape optimization methods into in-
dustry, to lower their cost of implementation. There is, at least, one mean to
achicve this objective: the use of automatic differentiation to compute first and
higher order derivatives.

The communication between CAD (Computer Aided Design) and computing
environments needs a lot of human time; the high order derivatives method
reduces the number of analyses and the number of conversions of CAD models
to finite element models.

The designer can obtain in real time the solution of the modified domain
(polynomial cvaluation), and uscs at cach moment his own know-how for up-
dating parameters.
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2 -1 0 i} 1 2

Figure 13. Projection of the graph on the plane f = 10GHz

In conclusion, using the suggested methods, the designer can obtain a satis-
factory design in a short time.
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