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Abstract: The paper concerns the class of shape optimization
problems for linear partial differential equations. A small set inside
the domain of integration of an elliptic equation is identified by mini-
mization of an integral cost functional. In the two-dimensional case
an existence result for the problem is given. The material derivative
method of shape optimization is used to derive the first and the sec-
ond order derivatives of the cost functional. For numerical solution
of the elliptic equation the integral equations arc introduced and
the boundary clement method of approximation is used. Numerical
methods of optimization are described and results of computations
arc presented. In particular, superlinear methods are implemented.

1. Introduction

In the present paper a class of shape identification problems is considered. Such
problems arise, ¢.g. in non—destructive identification of inclusions or voids in
solids. The available information (data) are given on a part of the geometrical
boundary of the solid (geometrical domain) and the inclusion is to be determined
in the interior of the geometrical domain.

In the present paper we restrict ourselves to the class of problems associated
with the stationary heat conduction. We refer the reader to e¢.g. Abda (1993),
for a description of the problem and results on the identifiability of cracks on
the basis of boundary measurements.

An cxistence result is established for the class of problems under considera-
tions by an application of a recent result in Sverak (1993). Unfortunately, the
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result is based on the properties of harmonic functions and is valid only for 2-D
problems.

The material derivative method, Sokotowski and Zolesio (1992), is used to
derive the first and the second order optimality conditions for the shape iden-
tification problem. Finally, the boundary element method is applied to solve
numerically the resulting shape optimization problem. The following notation
is used.

Q0 c IRY is an open set with the boundary 9Q = I'U ¥. We assume that I’
is smooth, and ¥ is Lipschitz. In section 2, 0 = D\ S, where S is a compact
set and D is an open set with the boundary &D. The Sobolev space H*() is
defined in the standard way, Grisvard (1985),

() = {p € Q)27

€ L*(Q), i=1,..,N},
and by H()) we denote the closure in H()) of the space D(2) = C§°(9)
of smooth functions with compact supports in 2. If 9Q is sufficiently smooth,
H?7(89) denotes the space of traces of functions from H'(2) on the boundary.
Hz(08)) is a dense subspace of the space Lz (09).

In the paper the weak solutions of clliptic partial differential equations are
considered. In particular, for the equation

-AYp=FEin, ¢P=Gink, ?:Fillr,
n
the weak solution 9 € H*(£2) minimizes the energy functional
(Q) = inf [ / [Vo|2dz — 2 / Bypdx — 2 / F(de‘(m)]
{peH(Q)|=G 1N T} " JQ JT

and satisfies the following integral identity, ¥ = G in-I" :
/ Vi) - Vodr = / Epdx + / Fodl(z) Ve c Hy(Q),
Ja Ja Jr

where HL(Q) = {¢ € H(Q)|¢p = 0in ¥} and E = E(z), = € Q, G =
G(r), » € ¥, F = F(x), € I, are given functions, defined in general as
restrictions of functions defined in IRY.

We shall also use the material derivative method for the shape sensitivity
analysis. The detailed description of the method can be found in the monograph,
Sokolowski and Zolesio (1992). To this end a one-parameter family of domains
{Qs} C D, s €[0,6), is defined as follows :

Q, = Tu(Q) for s € [0,) where Ty = T5(V) : RN = RY, N =1,2,3,is a

smooth transformation. This transformation is given by a sufficiently smooth
oT.
vector field V (-, -) with V(s,z) = —0—: o T Y (x).

We assume V(+,+) € Cl([O,B);C‘Q(RN;H{N)), 6> >0, and we denote
00, = T, (09).
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The Eulerian semiderivative dZ(€2; V) of the shape functional Z(§2) is defined

as,

AT, V) = lim ~(T(2,) — Z(),

whenever the limit exists. In the particular case of the energy functionals, first
we differentiate the functional

I(Q) = /Q |Ve|?dz — 2 /Q Epdz — 2 /F Fydl(z)

for a sufficiently smooth test function ¢ and obtain

A1 V) =
/ [[Ve|? = 2Ep|V (0, ) - ﬂ('u)dF(T) -2 / ForV(0,z) - n(z)dl(x)
Joo the

where k =divpn is the tangential divergence of the normal vector field on T’
and F' is the restriction to I" of a given function defined in a neighbourhood of
I' ¢ IRY. Next, assuming that the solution ¢ = () is unique, we obtain

aT@V) = [ [VHOP - 2BH@)V(0,2) - n(e)i(z)

where we should take into account that ¥(2) = G on X.

It means that we do not need to differentiate the solution 1(€2) with respect
to  in order to obtain the derivative dZ(§); V). However, in the case of the
sccond derivative of the shape functional d2Z(;V, W), it turns out that we
have to use the derivative 9/ (§2; W) of the solution () in the direction of the
vector field W.

We refer the reader to Sokotowski (1993), Bendsoe and Sokotowski (1995),
El Yacoubi and Sokotowski (1996), Pierre, Roche (1993), Novruzi, Roche (1995)
for applications of cnergy functionals in shape optimization. The results were
presented at the IFTP Conference in Rabat (Maroc), Roche, Sokotowski (1994).

2. Shape identification

For the sake of simplicity we assume that N = 2, however, most of the results
hold for N = 3 as well.
Given a bounded domain D € IR? with the boundary 9D, denote

D, = {z € D|dist(zx,dD) > p}
and define family of open sets €2 of the form

Usa = {0 C D|Q =D\ S, 8cD,}
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for p > 0, p small enough.
Consider the following cost functional

J(Q) = /Q |V (w —u)|? + aljw — u’“i]%(r)

where o > 0 is a constant, w,u € H'(D) are given as the unique solutions to
the following clliptic equations,

(I) Dirichlet problem

Aw =0 inQ (1)

w=g ondD (2)

w=0 ons : (3)
(IT) Dirichlet-Neumann problem _

Au=0 in{ (4)

% =/f ondD (5)

u=0 onlS (6)

Here g, f € CH(OD) are given functions, i.c. data of the identification prob-
lem under considerations. In particular, such a shape optimization problem
results in identification of voids or inclusions in solids when one uses as data the
temperature and flux distributions on the boundary of solids.
For the shape optimization problem the following results can be established.
(i) The existence of a solution to the problem.
(ii) The first order necessary optimality conditions by using the material deriva-
tive method.
(iii) Numerical methods of solution by using the integral equations on 082, i.c.

BEM.
3. Existence of an optimal domain
Consider the following family of admissible domains
Or=1{0 | Q€Ua, #S<1}
where #S denotes the number of connected components of compact S.

THEOREM 3.1 For oo > 0 and any finite ¢ there exists a solution Qe O to the
shape identification problem under considerations, i.e.,

J(Q) = Join J(Q)

REMARK 3.1 The proof of this theorem is based on properties of harmonic func-
tions in IR? and uses the same arqument as given in Sverak (1993), for a slightly
different shape optimnization problem. In particular, the method cannot be di-
rectly applied in RY for N > 3.
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Proof of Theorem 3.1. Let {O;} = {D\ S;}, i = 1,2, ..., be a minimizing
sequence for the problem under consideration.

Since the cost functional is bounded by a constant, J(€;) < J(£4), the
corresponding sequences of solutions {u;}, {w;}, are bounded, i.e.

il gy < © (7)
||7U71||H1(D) S C (8)

There exists a function W € H'(D) such that w; — W € Hj(€;). On the other
hand, denote by U; € HY(D \ D.g_) a solution to the following elliptic equation

AU; = Anu; +2Vn - Vau, in D\ Dg (9)

dle = f on 0D (10)

U, =0o0n 8De (11)
2

and denote

U — U; %nD\D%
¢ 0 inDg

where the function n € C$°(IR?) satisfies the following conditions

0<n(z) <1in R? (12)
n(z)=0in Dg (13)
n(z)=1in D\ Deg. (14)

Therefore Anu; + 2Vn - Vu; € L2(;) for i = 1,2, .... Then, for f € H? (), it
follows that
Ui € H*(D\ Dg) and (1
U; € HY(D) fori= 1,2, .... (16
U; — U in HY(D) (17
u; — Uy € Hy(Q) for i = 1,2, ... (18

S o
o o T T

The result in Sverak (1993) can be formulated in the following way. There exists
a subscquence, still denoted by {S;}, which converges to S in the Hausdorff
metric, such that the sequence of metric projections

P; : HY (D) H(S)
converges strongly to the metric projection

P . HYD)w— H}(D\S)
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Therefore, we can pass to the limit in both sides of the following equalities

w; — W = Pi(w; — W) (19)
ui — Uy = Pi(u; — U5) (20)
and we obtain for the weak limits
w; — W —w—W in HY(D) (21)
u; — U; = u—U in HY(D) (22)
the following equality
w—W=Pw-W) (23)
7T =Pa—T) (2
which completes the proof of Theorem 1. |

REMARK 3.2 In order to obtain an existence result for N = 3 we should assume
that the family of admissible domains Uaa satisfies the following compactness
condition.

For any sequence §0; € Uqq, 7 = 1,2,..., there exists a subsequence, still
denoted by Q; = D\ \S; such that the sequence of compacts S; converges in the
Hausdorff metric to the compact S and the associated sequence of the melric
projections P; : HY(D) — HE(Q;) converges strongly to the metric projection
P . HY(D)w— HY(D\S). For such family of admissible domains there exists
a solution to the shape identification problem in R3.

The sufficient conditions for the hypothesis usually require some uniform re-
gularity of boundaries 3, e.g. the so—called cone condition or more complicated
conditions involving the so—called capacity. We refer the reader to e.g. Hen-
rot, Horn and Sokotowski (1996), for a review of the results on the stability of
solutions to the Dirichlet problem and to Bucur, Zolesio (1995), for the latler
approach to the existence problems.

4. Optimality conditions

In order to derive the first order necessary optimality conditions by using the
shape derivatives (instead of material derivatives) we assume that an optimal
solution = D\ S € O, is a domain with the Lipschitz boundary ¥ = d5. In
the case of a crack given by a Lipschitz curve i.e., with the Lebesgue measure
|S| = 0, the optimality conditions can be obtained by an application of the
material derivative method, taking into account the singularity coefficients at
the tips of the crack. :

THEOREM 4.1 Assume that « = 0 and £ = 1. IfQ € Oy, Q@ = D\ S, is an
optimal solution, then
ou  Ow

e = i ) — 25
5 = n " Y =08 (25)
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The proof of the theorem is based on the fact that for S C D, the shape
derivative of the cost functional J(-) is given in the following form

dJ( V) = /;[(%)2—(%)2

for any vector field V(-,-) with the compact support in D, n denotes a unit
normal vector on 0f) directed outside €.
Indeed, the cost functional takes the form

V -ndo (26)

J(Q) = inf / Vo|’dz o
@ = it |19l (27)

= inf / \Y4 2dm—2/ dr(z -2/ dl(z

L) IvePds—2 | fedr(@)] -2 | gfdr)

where

Q=D\S8 (28)
N =0DUdS, oD =T (29)
HE(Q) = {p € H'(D)|p =0 on S} (30)
Hy( ) +g={p e H5()|p=gonT} (31)

therefore, the form of the shape derivative dJ(§2; V) is obtained in a standard
way for the energy type shape functionals.

We derive the form of the second order shape derivative of the shape func-
tional under considerations which can be used to implement the Newton method.
To this end we evaluate the material derivatives of solutions to the Dirichlet and
the Dirichlet—Neumann problems. We assume that a vector field W (-, -) is given
with the compact support in D, and define the mapping T3 = T3(W). For the
solution wy € H(€2;) of the Dirichlet problem defined in the domain Q; = T3(Q)
we have

Aw;=0in Q;, wy=0o0n S =T4(S), w;=gondD (32)
therefore, for w* = w; o T, € H(S2),
~div (y(®)DTy - * DTy - V) =0in Q (33)

wt=0onS, w'=gondD
and the material derivative
1
w = w(S; W) = lim - (w* — w)
t—0 1
is given as the unique solution to the following elliptic equation

—Aw = —div [(divW — DW — *DW) Vw] in £, (34)
w=0onS, w=0onoD (35)
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In the same way the material derivative u of the solution to the Dirichlet—
Neumann problem is obtained,

—Av = —div [(divW — DW — *DW) Vu] in Q , (36)
% =0onS, % =0on 0D (37)

5. Second order derivative

For Q; = T;(W)(£2) we have the first order derivative in the direction V (¥)

dJ(Q; V(1)) (38)

/Et <‘)“f) <ddqfvf>2} V() - nydo

/ Gy V(t) - nydo

Il

p
/ Gr o} Tf ’flf] o T; U.)fd(f
b3
where
Ouy 2 Owy ¥
GtOTt: (a—nf“> s (5#) OTt.
Therefore
dJA(Q; V, W) (39)

= / GV -n+ GV -n+V -n+V-nlds
JE

where G, w, 7 denote respectively the material derivatives of functions Gy , wy , ny
defined on ¥, = T,(W)(X) in the direction W.
When V' = 0 the second order derivative takes the following form

02.J(2; V(0), W (0)) (40)
:/GV-n+G[wV~n+V~h]d2

we refer to Khludnev, Sokolowski (1996), for the definition of %7 (€2; V (0), W (0))
in the general case and the properties of the second order shape derivatives using
the material method.

In particular, the latter formula for the second order derivative holds when-
ever the method of the perturbations of identity is used for the computation of
shape derivatives, since for this method the condition V =0 is always satisfied.
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To evaluate G we need the material derivatives 4, (or the shape derivatives
v/, w’) in the direction of the vector field W of solutions u,w to elliptic equations.
It follows that
: 0
@ = = i «* DI« V)P (41)
— (n*-*DT - V)
ou
on
ow

on.

= 2[Vi-n+Vu-n—n-"DW . Vu]—

+ 2[Vw-n+Vw-n—n-"DW - Vw]—

6. Integral equations

In this section we introduce the integral equations used in our algorithm to
compute the solution of the Dirichlet problem (I) and the Dirichlet-Neumann
problem (IT).

We start with the integral representation of the solution to the second or-
der clliptic equation for the Laplace operator in a bounded domain  c IR?.
Namely, if w € H*() is a solution to

—Aw=01in O

i.c. w is harmonic in 2, w can be represented as

——/ U)?

When w = 0in Q¢ = IR2 \ €2 the jump relation on OS2 implies that the following
cqualities hold on the boundary 092, see Kress (1982):

0
yldo(y) — — / 6:) (W)]in|z — yldo(y), = € Q.
by

4 01
%u)(fﬂ) = % o w(’y)—((j—ﬂ%l?" —yldo(y) (42)
N ow ()il — yldo(y), = € 60
27T,3Q67’),y yjmir = ylaoiy),
and
10 10 dln
=y £ = — d 4
2 0Ny, w{e) 271 Ons Joq v(y) oy yldo(y) (43)
1 0 [ Ov

— e ——Inlx —y|d € 0N
T T nlz —yldo(y),

Therefore, for a solution to the Dirichlet problem (I) the following integral
cquation is obtained for the unknown density ¢ € H~377(9Q)

[ o) s gle

yldo(y) (44)
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= / ¢ln |z —yldo(y) + / ¢ ln |z — yldo(y).
JT M

The associated integral operator is denoted by

(Vo)) = 3= [ tnle—ylo)io(y) (45)

The latter boundary integral operator from H—3+o (09) into Hite (09)) is
continuous if |o] < % Let us recall that this integral operator is not always
invertible. For N = 2 the invertibility of Vag depends on 0f.

TFor any given & € IR the augmented integral equation,

. Voap —w = 0 (46)
/ b)doy) = & (47)
J O

has a unique solution ¢ € H -3 (092), w € IR. The map & — w being linear, there
is a well-defined constant such that w = cgné. By definition, the logarithmic
capacity cap(9f2) satisfies, see Costabel, Dauge (1995):

—%log(cap(@(l)) = CpQ. (48)

The operator Vaq is invertible if and only if capn # 0 and positive definite on
H~3(09) if and only if caq > 0, Costabel, Dauge (1995).

For example if 99 is a circle of radius R, Vaq is non-invertible if and only if
R = 1. In general Vag is non-invertible if and only if the logarithmic capacity
is equal to 1, see also Schmidt (1994), Symm (1967).

In the case of the Dirichlet-Neumann problem (II) the integral equations take
the following form:

Forxz e,
1ou(z)y 1 0 [ oln
il A ‘ _—r ’
2 07’7,7- 27‘(’ On'm Jp U (:l/) a,n,y |T y| U(:l/) (49)
n 1 du(y) O1n % — yldo(y) = h(x)

o 5 Ony, Ong

with the right-hand side,

Ma) = —o [ 1) Gl = sldoty) (50)
FllI'thCI'HlOI'(;f, for z € X,
3 [ w910t (51)
1 [ ou(y)

= ar | om, 1P vldo(y) = m(z)
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wherc
m(e) = 5 | 1) Inle = yldo(). (52)

The following boundary integral operators are related to the above system of
integral equations,

(Kond)(e) = =3 [ SEle=3l6)da(w) (53)
(Ksad)w) = ~5m5 [ Inle = 3lé(a)do(s), (54
(Doad)(w) = ~5= o | 22 la—ylo(s)doly). (5)

21 Ong, Jaq Ony

Tt is well known, Costabel and Stephan (1988), that the following integral ope-
rators are continuous for |o| < 1,

Koq : HTY(0Q) — H317(9) (56)
Kbhe : H™319(0Q) — H™ 317 (5)) (57)
Dag : H39(09) — H3H(69) (58)

With this notation the integral equations (46) and (47) can be rewritten in the
following form

(Dr(w) + (K 52)(a) = (7 + Kf)f)(w) if 2 € T (59)
(Krul(r) + Vo gol(z) = V) )@) if o € 5. (60)

When the boundary ¥ posseses the property that the operator V™t from H? =)
in H=3% (22) is well defined, there exists the unique solution in H3 (T') x H~2 ()
of equations (49)(51), we refer the reader to Costabel and Stephan (1985), for
the proof.

6.1. Integral equations in the 3-dimensional case

For N = 3 and Q C IR® a bounded domain, if w € H*(Q) is a harmonic function
in Q i.e. Aw = 0, the following jump relation on 92 = I'| J ¥ is obtained, see
Nedelec (1977).

W) ins =00 eme 1 17 0
- [Oq—u(?—/—z};da(y) if x € 0Q).

E~BQ ony |z -yl ‘
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(v) ow(y),  Ow(y)

Hewq(u)—[ ==, line——,
by by

derivative on 8Q Fo1 the function w sufficiently regular in the boundary 652
we have

1y 1 ;
w(z) = o ./zm q(y) - ylda(y), z € IR°. (62)

|ext denotes the jump of the normal

Given g € H=(89) the interior Dirichlet problem (I) in integral formula-
tion has a unique solution with respect to the unknown density q € H "%(89).
Moreover, the following variational formulation is obtained,

ba,d) = {9,d)  Vd € H *(0Q) (63)
where the bilinear form is given by
L[ [ a=@)d®)
b(q,q :—/ / ————do(z)do(y). 64
(2:4) T Joci Jon T8 =1 (z)do(y) (64)
The bilinear form is coercive, i.e. there exists a constant ¢ > 0 such that
_1 .
Was) 2 ellall g Va € HHO0). (65)

So the solution to the Dirichlet problem (I) is given by (62), where ¢ is the
unique solution to (63). In the three-dimensional case there is no restriction on
the capacity of 9€) to assure the invertibility of the integral operator associated
with the Dirichlet problem. In the same way as in the two-dimensional case,
assuming that v = 0 in Q¢ for 2 € I' we have the following integral equation

R T (66)

2 Ong Am Ong Jr ony, |z —y|
17 ou(y) 0O 1

d, = h{x
= A7 |y, Ony Ong |z —y o () )
where
1
(x) = —d ]
Ma) = 3= [ SO o) (67
Furthermore, for z € X,
1
— | u(y ——do(y) (68)
i O
1 [ ou(y) 1

do(y) = m(x)

dr Jy Ony |z —yl

where

mlz) = % /F f)

do(y). (69)

|z — 9l
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By the same argument as for the two-dimensional problem the existence and
uniqueness of the solution to the equations (63)(64) can be shown, see Nedelec
(1977).

It is important for our purposes, that the weak solution to the system of
integral equations (63), (64) satisfy the integral identities in the following form.

Find ¢ = (q1,q2) € H2(T) X H—%(z) such that,

4% PR /65% B '| do(y)do(z) (70)
+J% ﬁU/ 2(0) o (1) )

= — / qi(z) f(z)do(z)

1
+ g [ /f S o ) (2)
and
= | 86) [ @)z @it ()

1

+ M'%U/@w

= qg /f

for all test functions ¢ = (q1,q3) € H% (I‘) x H=%(%). Note, that in (70), (71)

|f|wwwm

do(y)doa)

we have the tangential derivatives 5s —qt, 59 —q instead of normal derivatives.

The numerical method combines the boundary element technique with Quasi-
Newton method in shape optimization.

7. Numerical method

For the numerical methods the continuous problem is approximated by a family
of finite dimensional problems. To this end the integral equations are solved by
the finite clement technique. The resulting optimization problem is solved by
an appropriate variant of Newton or Quasi-Newton methods.

7.1. Approximation of continuous problem

An optimal domain satifies the necessary optimality conditions in the form of
the following equation,

dJ( V) =0
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for all admissible vector fields V'(.,.). The equation is obtained by an application
of the material derivative method, Sokotowski (1993), and can be used also
in the framework of the so-called perturbation of identity technique for shape
optimization. It means that the admissible vector fields are defined in such
a way that admissible domains coincide with those constructed by the latter
technique. The relation between both techniques is described in Sokotowski
(1993). Numerically, we want to evaluate an approximation of the optimal
domain i.e. such that the continuous shape derivative of the cost functional (27)
vanishes for all admissible vector fields. To this end we construct a minimizing
sequence of domains QF, more precisely, we consider a sequence of domains
defined by their boundaries I'* U ©*. In practice, in the two dimensional case,
by I'® we mean the piecewise linear closed Jordan curve with n edges [z¥, rcfﬂ] =
Liyi=1,..,nand zF_ ; = 2%, In the same way % is defined as a piecewise
linear closed Jordan curve with m edges [y? ,yH_l] N;; 9=1,. . In fact, at
each iteration we qef I'* =T but ¥* changes by local pertmbatlons of vertex.
To each vertex 1/ of ¥¥ is a%somatod the direction Zk e R?, Z’“ is the mean
value between the normal vector associated to two ﬁmtc elemcnis with 1/7 as
vertex. We construct a continuous piecewise linear function Zf :T% - IR? such
that:

Zf(yf) _ 27/@5” 1,7 =1,..m,

where 6;; is the Kronecker symbol. The support of ZF is equal to [yF |, y5] U
[yf,yfq_l]. Given the surface Y, at iteration k + 1 we compute the vector
field Z*(y) == Y1, siZF(y), v € *. The surface T*+1 is constructed in the
following way,

D = {X =2+ s:ZF(x);s € R,z € BF} (72)
=1

where 5 = (81, ..-5m) 1s the vector of unknown parameters which determine

the form of the surface ¥#*1. This procedure gives the family of domains
QL B =12, ... , with the piecewise linear boundaries ©¥*+1 corresponding
to (51, .., 5m) € IR™. In the 3-dimensional case I'° is the piecewise linear ap-
proximation of the exterior boundary I'. ¥* k = 1,2, ....., is the approximation
of the inclusion boundary in the form of the union of triangles 7; in IR*. Each
triangle is parametrized with the help of a reference triangle in coordinates £
and 1. The vertices of the triangle T} are denoted by zh!, 22 212 so that if
x € Ty, the function defined on 7; can be expressed in the following way

r=x(é,n) = Zr“an (73)

where N;(.,.) are given functions,

Ni(§m) =1—&—m; Na(&m) =& Na(§,m) =1 (74)
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where DL/ (8, Ag) is given by:

DL/ (3%, Ax) = < fjg’;g dswégk) > .

the matrix Hy(5y) evaluated at 55 by the B.F.G.S. algorithm is an approxima-
tion of the Hessian of the cost function J(5). Therefore, we obtain the following
shape identification algorithm:

Algorithm;
Data. Initial guess for £9 and r°. The exterior boundary I'. The boundary
data g and fon I

For k =0, .... until convergence test

Step 0. Initialise Hy = Identity matrix in IR™ x IR™
Step 1. Compute the gradient of J.

i) Solve the Dirichlet problem;

Aw=0 inQ" (96)
w=g onl (97)
w=0 on X" (98)

ii) Solve the Dirichlet-Neumann problem;

Au=0 inQF (99)
% =f onT ; (100)
u=0 onxF (101)

iii) Compute the shape gradient of J. For I =1,..,m

T {5y = /z;» [(5’(%)2 ~ (5(#)2

Step 2. Compute the descent direction using a B.F.G.S. approximation of the
Hessian of Js.

For g, = dJs(5k) — dJs(Sk—1) and & = 5 — 5p—1 we compute the update
Hiyq.

Zl ¢ nkda (102)

i {7
9r9x  HiopbpHy ;
k+1 k 6Lgk 6};gk ( )

Step 3. Compute 65, and 6Ay solution of the linear system.

(Gl =) (o) == (7005a™ ) o
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REMARK 7.1 The first value r° for the penalty parameter v must be chosen in
such a way that the penalty term is of the same order as the gradient of J,
otherwise numerical instabilities may occur. After solving the unconstrained
problem. J.o only two or three steps in the parameter r are neccesary to reach
numerical convergence.

REMARK 7.2 This algorithm requires the periodical reinitialisation of the matriz
Hy, by the identity matriz in order to obtain a minimisation procedure even in the
case where Hy, is not positive definite. At each iteration the condition 6}.g, > 0
should be verified to assure that Hyyq is posilive definite. If it is not the case
a gradient iteration is performed and afterwards the matriz Hy is set to be the
identity matrix.

7.3. Lagrange-Newton Method

We describe briefly another numerical method based on the Kuhn-Tucker opti-
mality conditions for the minimization problem. The method can be applied in
the case of equality constraints. We introduce the following Lagrangian:

L(5,A) = J(3) + Aw(3)) (91)
where 5 € IR™ and A € IR.

PROPOSITION 7.1 Let J(5) and w(5) be two functions with the first derivatives
continuous at 5*. We suppose that w(5*) = 0 and dsw(5*) #£ 0, then a necessary
condition that s* is a local minimum of J(3) with the constraint w(3) = 0 is the
existence of the Lagrange multiplier A* € IR such that:

dsL(5*,A*) = Vs J(5*) + A" (Vsw(5%)) =0 (92)
see e.g. Fiacco, McCormick (1968) for a proof.

Then a numerical method to find a local critical point 5 of the cost func-
tional J(5) subject to the constraints w(5) = 0 consists in computing a solution
to the following set of the first order necessary conditions:

v { daJ(5) + Adw(3) \ &
DL(5,A) = < () > =0 (93)

A Quasi-Newton method to solve the Kuhn-Tucker equation (92) consists in
computing a sequence of solutions (3j, A*) to the linearized equations obtained
from (92). This leads to the following algorithm:

Given 3o and A°

Compute

(§k+1,Ak+1) = (Ek,Ak) + (§§k, OAg); 05k € IR™; 6A, € IR (94)
defined by:

DL(Ek, Ak) -+ DL/(E/C, Ak)(égk, 5Ak) =0
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The direction of the displacement at each vertex of X¥ is given by a piecewise
linear vector field

iy | ZINj&m)ifz €T and (6,n) =29 €T,
Z 7) = k*+'g b > =4
k() { 0 otherwise. (75)

Then, as in the two dimensional case, at the iteration k + 1 the update of the
boundary ¥ is given by
m
S = (T4 5,2F)(5%), 8 = (51,1 5m)- (76)
i=1

This method of evolution of the boundary has the important advantage that
there is only one degree of freedom at cach vertex, for N = 2 as well as for
N =3.

Finally, to perform the shape optimization, the vector 8*! € IR™ is computed
at cach iteration by a minimisation procedure in such a way that:

J(3"1) < J(5). ()

See Pierre, Roche (1993) for a related approximation technique in shape opti-
misation.

7.2. Penalty method

For the problem under considerations it is convenient to introduce constraints.
Constraints on the position of the inclusion, can be introduced, for instance
stipulating that the distance of the inclusion to the boundary is greater than a
given constant € > 0. Another constraint can reflect the requirement that the
surface of the inclusion is prescribed. We denote by w(5) = 0 or w(5) < 0 such
constraints in terms of the paramecter of optimization 5 € IR™. Let us consider
the following penalized cost functional

Jo(5) = J(3) + g (w(5))’ (78)

for the equality constraint or, in the case of inequality constraints:

Jn(5,) = J(3)+ %(w(E) 2 (79)

In both cases r is the parameter which is large enough, theoretically » oo,
see e.g. Fletcher (1987), and Minoux (1983), for a description of such methods.

We propose the following scheme to evaluate the unknown crack boundary
3 by the penalization technique.
Algorithm;
Data. Given X° and r°. The exterior boundary T'. The boundary data g and f
on I'.
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0 rl, ... solve the unconstrained optimization problem.

Forr =r
(P.) Min{J.(5),5 € R"} (80)
For k =0, .... until convergence test.

Step 0. Initialise Hy = Identity matrix in IR™ x R™
Step 1. Compute the gradient of J,.
i) Solve the Dirichlet problem;

Aw=0 inQF (81)
w=g onl (82)
w=0 on X" (83)

ii) Solve the Dirichlet-Neumann problem;

Au=0 inQF (84)
ou

O—Z =f onl (85)
u=0 onX* (86)

iii) Compute the shape gradient of .J,.. For I =1,..,m
_ ' Ouy, e Owy, 2
dJ,. (5} = — — | ==
{dJr(5)h ,/Ek [( on ) < on

Step 2. Compute the descent direction using a B.F.G.S. approximation of the
inverse of the Hessian of .J,..
For gr = dJ.(5) — dJr(5k—1) and 8 = 5, — 5x—1 find the update My,

7y - npdo

(87)

By = +;§J§f6k]22i - 611;ng}:5};-95[1€91€(52 (88)
Step 3. Compute 55+,

Sk1 = —pr(He D Jr(5k)) (89)
where p is found by of the Armijo’s line search procedure.
Step 4. Update the boundary of ¥ to obtain Mji;.

S = (1 + 3 (B hZ) () (90)

=Y

Go back to step 1.
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Step 4. Compute 511 = 55 + p*65, where p* is found by the Armijo’s line
search procedure.
Step 5. Update the boundary of ¥* to obtain X*+1,

nhHl — I+Z{sk+1}1Zl %) (105)

Go back to step 1.

This scheme describes the algorithm with a superlinear rate of convergence
if the first guess X0 is close enough to the solution . In general, such a procedure
starts with a steepest descent method to obtain X% and applies a Quasi-Newton
technique to refine the result of optimization.

In the next section we are going to explain the numerical method which is
used to find approximations of the solutions to the Dirichlet problem (I) and
Dirichlet-Neumann problem (II) by the boundary element method.

7.4. Integral equations

At cach iteration we evaluate a numerical approximation of normal derivatives

ow Ou ow
3’ Bn on ©¥ and —, w on I'* in order to approximate the continuous gradient
n

n, on’
and the value of the cost functional.

’ ow" (x
10 = [ g0 o) (106)

Ong
+ [ rapt@dr@) =2 [ o) @)

The integral equations for density q(z) associated to the Dirichlet problem take
the following form.
For y € T'*,

[ @) -Gt =sldo@) = [ a@)nlo-yldotz) (107
J OOk J OOk
and for y € XF,

; Oln '

| o) gl —ldo@) = [ a@)nle —yldoz) (108)

In order to solve the above system of two integral equations, the Galerkin
method, Costabel and Stephan (1985), Schmidt (1994), is used. In the con-
tinuous case the following variational fomulation is obtained,

geH *:  b(qq)=1(¢)¥d e H* (109)

with

W, q) / /m ()¢ () In|z — yldo(y)do(x) (110)
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and

yldo(x) (111)

// 9) — g a

The bilinear form b(.,.) is coercive, i.e. there exists a constant ¢ > 0 such that

b(q,9) = cllgll ,-35¢>0 (112)
for all ¢ € H~2(99) with Jaq @(y)do(y) = 0. Then, if O has the property that
there exists the inverse mapping Va_Ql, the equation has the unique solution in
H~2(88). The same formulation is used for 9QF in the discrete case.

The equation (109) is discretized by using a finite element representation ¢
of q. We introduce the basis functions {e;};=1,. , on I'* and {F3 iz, c.oms o1
¥* which are both piecewise constant.

Then, ¢*(z) for z € I is obtained as ¢"(z) = TJ_,qje;(z) and ¢*(z) for
z € XF takes the form ¢*(z) = B7_,¢2 f;(z) WhGIC {qj }.7_17,,,,, € IR" and
{q? }i=1,.m € IR™ are the solutions of the following linear system:

i h

A4 B ! Ji
=l - (113)

¢ D a :

i IN+m

here

= / / In |z — y|do(z)do(y) (114)
Jr Jr;
bij' = /1 /N7 In |z — yldo(z)do(y) (115)
G = / / In |z — y|do(z)do(y) (116)
JN; JL;
dyy = /N /N1 In |z — y|do(z)do(y) (117)

and
I, Jor(9(@) — 9(@)) g2 |z — yldo(y)do(x)  1<i<N

S, Jor 9@) Gl — yldo (y)do () N<i<N+M
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The above linear system is symmetric and the associated matrix is positive
definite.

For the mixed Dirichlet-Neumann problem (IT) we solve the integral equa-
tions (46) in I'® and (51) in ©*. This system of integral equations has a unique
solution in H=z(I') x H™%(%), see scction 6 for details. We introduce now a
variational formulation, find (q1,q2) € H2(T') x H~2(X) such that for all test
functions (p,) € H 3(I') x H~2 (%) the following equations are satisfied.

For z € T'*,

' o [ Odln
[ e [ a5 e~ yldowyiot (118)

+ /rk W(m)aim /zk q2(y) In |z — y|do(y)do(zx)
= /F (@) f (z)do (@)

e
+ [ e [ 1) ke - yido()do )

= /1/) /fh
+ [ e /qz y) In |z — yldo (y)do (x)
=~ [ [ )l —yido()do )

This equations have unique solutions, Costabel and Stephan (1988), Schmidt
(1994), if the mapping Vx is invertible. We introduce the basis functions
{fi}j=1,n where f;(z) are piccewise linear on I' and satisfy the conditions
filmi) = 8. We set gi(z) = T7_ v} fi(= ) and we approximate g2(z) by the
piccewise constant function ga(z ) = X7 v7ej(x) defined on ¥. Then the fol-
lowing lincar system is obtained:

yldo(y)do(z) (119)

v} ma

4 B v} m;
_ (120)

¢ D v2 m;

; i

9oy Mg

where

wi=[ i) [ 7_1UL_j(;)%f¢(y))lnlm—ylda(y)do(m) (121)

i—1UL; 05
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bi.,:—/L'z |, Ha )/

/ | gk - sl (123)
Lj_1UL;

yldo(y)do(z) (122)

di==[ [ - sldo)do(s) (124)
J Ni J Nj
and the right-hand side is given by:

o= / @) @) (125)

Oln
+ [ @) [ 16t = yldote)io(y)
and
m; = / / fly)In |z —y|do(y)do(x) (126)
JN; Jr

The system (120) is symmetric and dense. It can be solved by LDL" method,
see Golub, Van Loan (1983).

In both cases numerical errors of two types appear. The first one is the
geometric representation error, the error of replacing I' and ¥ by I'* and ©*.
The second one is the approximation error, between ¢(z) and its piecewise linear
approximation. An exhaustive analysis of numerical errors in boundary integral
methods can be find in Nedelec (1977), Rannacher, Wendland (1985;1988).

8. Numerical example

In the first numerical example we consider as D a ball in IR? of radius R and
centered at the origin. As the inclusion (void) S we consider a small ball of
radius 7 and centered at the origin. A harmonic function u(z),z € IR*\ S, can
be constructed by taking u(z) = In |z| — In(r).

To follow the evolution of the iterations of the algorithm we consider five
parameters. The first one is Costy/Costy which is the quotient of the value of
the cost function in the k-th shape iteration to the value of the cost function at
the initial shape guess. The second parameter is Vi /Vo which is the quotient
of the L2 norm of the gradient at the k-th step to the L2 norm of the gradient at
the initial iteration. The third parameter is ||‘3—’1':—F |2 (a0 the L? error between
the normal derivative of w computed by solving the Dirichlet problem (I) and
the true value F'. The fourth parameter ”% — F|| 2z is the L? error between
the normal derivative of v computed by solving the Dirichlet-Neumann problem
(IT) and the true value F' on . The fifth parameter ||u— g|| z2(r) is the L? error
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Figure 1.

between the approximation of u computed by solving the Dirichlet-Neumann
problem and the true value g on T

The boundary 0f€) is discretised by piecewise linear finite element, and we
obtain th = Fh, U Zh-

The numerical method consists in constructing a minimizing sequence
(S% uk,wk) for the discrete shape functional Jx(Sa). In fact we consider a
discretised continuous gradient method, which means that we compute at each
iteration a numerical approximation of the continuous gradient and not the
gradient of the discrete problem. This implies that at each iteration we compute
only an approximation of the gradient of the discrete problem.

In the first run we consider an initial guess X0 such that it has the same
shape as ©* (the solution) but is not in true position in D. We want to identify
the position of the void. Then, the sequence of inclusions E’fL is determined by
a sequence in IR?, since ¥ depends on two parameters, the center a* = (a1,a)
of the circle ¥*,

The minimizing sequence is obtained by locally optimal displacements of the
vertex of the boundary X, according to a given vector field V' with translation.

For the vector field parametrized by 2o, %o the continuous gradient takes the
following form:

g ou\? ow\?
w@v)= | de) (&)
In Figure 1 we plot the evolution of the iterations, the first guess ¥ is the most
distant circle. '

In Table 1 we can sec the evolution of the five parameters described above.
We observe that after fifteen iterations the algorithm reaches a good approx-
imation of the real position of the void in the center of D. We spent twenty
more iterations to improve this position identification. The errors of the com-

putation stabilize after twenty five iterations, only the gradient decreases but
the precision of the computation of u and w is stable because it depends on the

V -ndo = C(zo,y0,w,u) (127)
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k Costy/Costo | Vi/Vo ||?9—7:: - F”L?(an) ||% - F”L?(z) [l — 9”L2(11)
0

1. 1. 2.8331 0.5476 2.1273
5 9.48e-03 9.23e-02 | 0.3131 6.10e-02 0.279
15 | 8.37e-03 2.21e-03 | 7.56e-03 2.19e-02 1.72e-02
25 | 8.38e-03 5.41e-05 | 5.76e-04 2.18e-02 1.58e-02
35 | 8.38e-03 1.32e-06 | 5.62e-04 2.18e-02 1.58e-02

Table 1. Example n° 1, n=64.

o S

i ‘\

Figure 2.

number n of nodes in the representation of 9QF.

In the second example a first guess is given by a circle of radius 7% > r. In
this case we apply the algorithm described in section 7.2, we have one degree of
freedom for cach vertex of ¥¥. Then the shape gradient D.J(XF, Z¥) at iteration
k is given by:

{(DJ(F; ZF)}; = /E [(%)2 B <%1'n£>2

In Figure 2 we observe the results of the subsequent iterations, here the position
is known but the shape is the unknown.

In Table 2 we observe the evolution of the cost function with respect to the
initial guess cost, the minimum is reached after thirty iterations. The minimum
error in the numerical solution of the integral equations is also reached after
thirty iterations because the error of numerical approximation is at that step
greater than the error induced by the wrong shape. The last twenty iterations
are used to improve the shape, then the gradient decreases.

In Figure 3 we consider an example where we add the two problems, the first
guess is in a wrong position and it has a wrong radius 9. In this case we have
also one degree of freedom for each node of the ¥ boundary.

In Table 3 we observe that the same precision is reached in the numerical

Z; - vdo (128)
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Costy/Costo | Vi/Vo | 132 = Flir2eeny | 155 — Fllres) | v — gllr2y
0 1. 1. 8.44 48.8 6.16
5 0.47 0.61 4.74 38.27 5.19
10 | 0.19 0.40 2.20 24.6 3.68
20 | 3.62e-03 8.38¢-02 | 0.15 2.79 0.47
30 | 7.88e-04 6.08e-06 | 3.87e-03 6.08e-02 2.31e-03
40 | 7.88e-04 2.00e-10 | 3.87e-03 6.08e-02 2.28e-03
50 | 7.88e-04 3.69e-14 | 3.87e-03 6.08e-02 2.28e-03

Table 2. Example n°® 2, n=64.

Figure 3.
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k | Costy/Costo | Vi/Vo | 5% = Fllr20) | 155 = Fll2e) | v — gllzz
0 1. 1. 5.32 18.52 217

10 | 0.31 3.74e-02 | 1.44 18.49 2.67

20 | 9.68e-03 3.36e-03 | 1.55e-02 0.29 5.99e-02

30 | 9.94e-03 1.03e-05 | 3.88e-03 6.09e-02 2.28e-03

40 | 9.94e-03 7.35e-06 | 3.88e-03 6.09e-02 2.28e-03

50 | 9.94e-03 6.67e-06 | 3.88e-03 6.09e-02 2.28e-03

Table 3. Example n° 3, n=>64.

approximation of the integral equations solutions as in example 2. The rate of
convergence of the gradient is compared to example 2 because of the presence
of translations and shape deformations in the shape perturbation vector fields.

In conclusion we observe that the presented shape optimisation technique
will be able to identify the position and the shape of inclusion via boundary
data.

As shown in Tables 1, 2 and 3 the precision of the results depends on the
performance of the numerical solution of the integral equations. Computational
errors in numerical approximation of u and w include errors in shape gradient
and cost function computation which cause a lower rate of convergence of the
optimization procedure.

The numerical technique proposed here can be used in other shape identifi-
cation problems, for example clectromagnetic casting, see Pierre, Roche (1993).
Purely Newton techniques can be also used if the shape Hessian is available
and its numerical computation is not too expensive in terms of floating point
operations, see Novruzi, Roche (1995).

The computations were carried out with the Silicon Graphics Parallel com-
puter of the C.C.H high performances computer center of Nancy, France.

Acknowledgement. The authors are indebted to Dr Ewa Bednarczuk for
reading the manuscript and her useful remarks.
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