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Abstract: The paper concerns the class of shape optimization 
problems for linear partial differential equations. A small set inside 
the domain of integration of an elliptic equation is identified by mini­
mization of an integral cost functional. In the two-dimensional case 
an existence result for the problem is given. The material derivative 
method of shape optimization is used to derive the first and the sec­
ond order derivatives of the cost functional. For numerical solution 
of the elliptic equation the integral equations arc introduced and 
the boundary clement method of approximation is used. Numerical 
methods of optimization are described and results of computations 
arc presented. In particular, superlinear methods are implemented. 

1. Introduction 

In the present paper a class of shape identification problems is considered. Such 
problems arise , e.g. in non-destructive identification of inclusions or voids in 
solids. The available information (data) are given on a part of the geometrical 
boundary of the solid (geometrical domain) and the inclusion is to be determined 
in the interior of the geometrical domain. 

In the present paper we restrict ourselves to the class of problems associated 
with the stationary heat conduction. We refer the reader to e.g. Abda (1993), 
for a description of the problem and results on the identifiability of cracks on 
the basis of boundary measurements. 

An existence result is established for the class of problems under considera­
tions by an application of a recent result in Sverak (1993). Unfortunately, the 
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result is based on the properties of harmonic functions and is valid only for 2- D 
problems. 

The material derivative method, Sokolowski and Zolesio (1992), is used to 
derive the first and the second order optimality conditions for the shape iden­
tification problem. Finally, the boundary element method is applied to solve 
numerically the resulting shape optimization problem. The following notation 
is used. 

n c IRN is an open set with the boundary on = r u ~. We assume that r 
is smooth, and ~ is Lipschitz. In section 2, D = D \ S, where S is a compact 
set and D is an open set with the boundary aD. The Sobolev space H 1 (D) is 
defined in the standard way, Grisvard (1985), 

H 1 (D) = { cp E L2 (D)J :.~ E L2 (D), i = 1, ... , N}, 

and by HJ(D) we denote the closure in H 1 (D) of the space V(D) = C0 (D) 
of smooth functions with compact supports in n. If on is sufficiently smooth , 
H~(oD) denotes the space of traces of functions from H 1 (D) on the boundary. 
H~(oD) is a dense subspace of the space L~(CJD). 

In the paper the weak solutions of elliptic partial differential equations are 
considered. In particular, for the equation 

- f::... 'lj; = E in D, 'lj; = G in ~' o'lj; =F in r 
on ' 

t he weak solution 'lj; E H 1 (D) minimizes the energy functional 

I(D) = inf . [ / JVcpJ2dx- 2 / Ecpdx- 2 / Fcpdf(.:r:) ] 
{cpEH 1 (D.)Icp=G m E } ./n ./n .fr 

and satisfies the following integral identity, 'lj; = G inf : 

.ln \l'lj; · \lcpdx = L Ecpdx + .l Fcpdf(x) 'Vcp E H1(D), 

where H1(D) = {cp E H 1 (D)Jcp = 0 in~} and E = E(x), x E D, G = 
G(x), X E ~' F = F(x), X E r, are given functions, defined in general as 
restrictions of functions defined in IRN. 

We shall also use the material derivative method for the shape sensitivity 
analysis. The detailed description of the method can be found in the monograph, 
Sokolowski and Zolesio (1992). To this end a one-parameter family of domains 
{Ds} C D , sE [0, 8), is defined as follows : 

Ds = T8 (D) for s E [0, ,6) where Ts = Ts(V) : IRN ~--* IRN, N = 1, 2, 3, is a 
smooth transformation. This transformation is given by a sufficiently smooth 

aT 
vector field V(-,·) with V(s ,.:r:) = ~so T8-

1 (x) . 
· uS 

We assume V(·,·) E C1 ([0,~);C2 (IRN;IRN)), ~ > ,6 > 0, and we denote 
aDs = Ts(oD). 
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The Eulerian semiderivative di(D; V) of the shape functional I( D) is defined 
as, 

. 1 
di(D; V)= hm - (I(Ds)- I(D)), 

t->0 s 

whenever the limit exists. In the particular case of the energy functionals , first 
we differentiate the functional 

I(D) = / j\7<pj 2d.-r- 2 / E<pdx- 2 / F<pdf(.-r) 
.Jn .Jn ./r 

for a sufficiently smooth test function <p and obtain 

di(D; V)= 

!. [j\7<pj 2 - 2E<p]V(O, .-r) · n(x)df(x)- 2 / F<pK-V(O, x) · n(.-r)df(x) 
. an .lr 

where r;, =divrn is the tangential divergence of the normal vector field on r 
and F is the restriction to r of a given function defined in a neighbourhood of 
r c ffiN . Next, assuming that the solution 'ljJ = '1/J(D) is unique, we obtain 

di(D; V)= ;· [I\7'1/J(D)I 2
- 2E'I/J(D)]V(O, x) · n(x)df(x) 

, ao 

-2 ~· F'l/J(D)r;.V(O, x) · n(x)df(x) , 
.r 

where we should take into account that '1/J(D) = G on ~. 
It means that we do not need to differentiate the solution '1/J(D) with respect 

to D in order to obtain the derivative di(D; V). However, in the case of the 
second derivative of the shape functional d2I(D; V, W), it turns out that we 
have to use the derivative 1/;'(D; W) of the solution '1/J(D) in the direction of the 
vector field W. 

We refer the reader to Sokolowski (1993), Bendsoe and Sokolowski (1995), 
El Yacoubi and Sokolowski (1996), Pierre, Roche (1993), Novruzi, Roche (1995) 
for applications of energy functionals in shape optimization. The results were 
presented at the IFIP Conference in Rabat (Maroc), Roche, Sokolowski (1994). 

2. Shape identification 

For the sake of simplicity we assume that N = 2, however, most of the results 
hold for N = 3 as well . 

Given a bounded domain DE ffi2 with the boundary aD, denote 

Dp ={.-rE Djdist(x, aD) > p} 

and define family of open sets D of the form 

Uad ={DC DID = D \ S, S C Dp} 
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for p > 0, p small enough. 
Consider the following cost functional 

.J(D) = /IV(w -v.)l2 + aii'W - v.ll2 ~ .J 0. H 2 (r) 

where a :::0: 0 is a constant, 'W, u E H 1 (D) are given as the unique solutions to 
the fo llowing elliptic equations, 

(I) Dirichlet problem 
6..VJ = 0 in D 

'W = g on aD 
w = 0 on S 

(II) Dirichlct-Neumann problem 
6..v. = 0 in D 

av. --J 
an on aD 

v. = 0 on S 

(1) 

(2) 
(3) 

(4) 

(5) 

(6) 

Here g, f E C 1 (aD) arc given functions, 1.c. data of the identification prob­
lem under considerations. In particular, such a shape optimization problem 
results in identification of voids or inclusions in solids when one uses as data the 
temperature and flux distributions on the boundary of solids. 

For the shape optimization problem the following results can be established. 
(i) The existence of a solution to the problem. 
(ii) The first order necessary optimality conditions by using the material deriva­

tive method. 
(iii) Numerical methods of solution by using the integral equations on aD, i.e. 

BEM. 

3. Existence of an optimal domain 

Consider the following family of admissible domains 

Oe = {D 

where #S denotes the number of connected components of compact S. 

THEOREM 3.1 FaT a > 0 and any finite I! theTe exists a solv.tion {2 E 0 p to the 
shape ident~fication pTOblern 1J.ndeT considemtions, i.e., 

.J(D) = min .J(D) 
O.EOe 

REMARK 3.1 The proof of this theoTem is based on propeTties of harmonic fv.nc­
l;ions in JR? and 7tses the same ar:qv.m.ent as given in Sve·f'ak (1993), joT a slight;ly 
different shape optim.ization pmblern. In particv.laT, the method cannot be di­
Tectly applied in JR.N for· N :::0: 3. 
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Proof of Theorem 3.1. Let {Di} = {D \Si}, i = 1, 2, ... , be a minimizing 
sequence for the problem under consideration. 

Since the cost functional is bounded by a constant, J(D;) ::; J(Dl), the 
corresponding sequences of solutions { v.i}, { w;}, are bounded, i.e . 

llv.;lls 1 (DJ :S C 

llw;lls1 (D) :S C 

(7) 

(8) 

There exists a function WE H 1(D) such that w;- WE H"J(D;). On the other 
hand, denote by U; E H 1 (D \ D~) a solution to the following elliptic equation 

b.U; = b.rJv.; + 2VrJ · Vv.; in D \ D~ 

oU; f "'D - = on u on 
U; = 0 on aD/!_ 

' 2 

and denote 

U; = { 
0
U; in D \ D ~ 

in Df!_ 
2 

where the function 'rJ E C0 (In?) satisfies the following conditions 

0 :S 'r) ( x) :S 1 in IR 2 

rJ(.r,) = 0 in Df!_ 
3 

rJ(x) = 1 in D \ D /!_. 
6 

(9) 

(10) 

(11) 

(12) 
(13) 

(14) 

Therefore b.rJV.; + 2V'r) · Vv.; E L 2 (D;) fori= 1, 2, .... Then, for f E H~ (r), it 
follows that 

U; E H 2 (D \ D~) and 

U; E H 1 (D) fori= 1, 2, .... 

U; ~ U in H 1 (D) 

u;- U; E H6(D;) fori= 1, 2, .... 

(15) 

(16) 

(17) 

(18) 

The result in Sverak (1993) can be formulated in the following way. There exists 
a subsequence, still denoted by {S;}, which converges to S in the Hausdorff 
metric, such that the sequence of metric projections 

converges strongly to the metric projection 
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Therefore, we can pass to the limit in both sides of the following equalit ies 

wi- W = Pi(wi- W) (19) 

v,i - ui = Pi ( v,i - ui) (20) 

and we obtain for t he weak limits 

11Ji - W ~ w- Win H 1 (D) 

Ui - ui ~ u - u in H 1 (D) 

the following equality 

w - w = P(w - W) 
u- U= P(u - U) 

which completes the proof of Theorem L 

(21) 

(22) 

(23) 

(24) 

• 
REMARK 3.2 In or-der- to obtain an existence r-esult; for N = 3 we shov.ld assume 
that the family of admissible domains U ad satisfies the following compactness 
condition, 

For- any sequence Di E U ad, i = 1, 2, ... , ther-e e;r:ists a sv,bsequence, still 
denoted by Di = D \ Si such that the seqv,ence of compacts Si converges in the 
Hav,sdor:fl metr-ic to the compact S and the associated sequence of the rneiTic 
pr-ojections Pi : HJ(D) f--7 HJ (Di) conver:qes str-ongly to the metr-ic pr-o_jection 
P : HJ(D) f--7 HJ(D \ S). For- such family of admis~>ible domains ther-e exists 
a ~>olution to the shape identification problem in IR3 . 

The s1;.jjicient conditions for- the hypothesis v,sually req·niTe so·m e ?J.nifonn r-e­
gv,lar-ity of bov,ndaries I:, e.g. the so-called cone condition or more complicated 
conditions involving the so- called capacity. We refer- the r-eader to e.g. Hen­
TOt, Horn and Sokolowski (1996}, for a review of the r-esults on the stability of 
~>olv,tions to /;he DiTichlet pr-oblem and to Bv,cv:r, Zolesio (1995}, for- the latter­
appToach to the existence pmblern~>. 

4. Optimality conditions 

In order to derive the first order necessary optimality conditions by using the 
shape derivatives (instead of material derivatives) we assume that an optimal 
solution D = D \SE Ot is a domain with the Lipschitz boundary I:= oS, In 
the case of a crack given by a Lipschitz curve i.e., with the Lebesgue measure 
ISI = 0, the optimality conditions can be obtained by an application of the 
material derivative method, taking into account the singularity coefficients at 
the t ips of the crack, 

THEOREM 4.1 Assv,me that a = 0 and£ = L If D E 0 1 , D = D \ S, is an 
( 

optimal solution, then 

ov, ow 
on I: = oS on on (25) 
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The proof of the theorem is based on the fact that for S C D P the shape 
derivative of the cost funct ional .!(-) is given in the following form 

d.J(D; V) (26) 

for any vector field V(-,·) with the compact support in D , n denotes a unit 
normal vector on an directed outside D. 

Indeed, t he cost functional takes the form 

where 

.J(D) inf / j'Vcpj 2dx 
<pEH~(O)+g ln 

inl [ / j'Vcpj 2dx- 2 / fcpdr(x)] -2 / gjdr(x) 
<pEH5 (0) Jn lr lr 

D=D\S 

an = an u as, an = r 
H1(D) = {cp E H 1 (D)jcp = 0 on S} 

Hl(D) + g = {cp E H1(D)jcp = g on r} 

(27) 

(28) 

(29) 

(30) 

(31) 

therefore, the form of the shape derivative d.J(D; V) is obtained in a standard 
way for the energy type shape functionals. 

We derive the form of the second order shape derivative of the shape func­
tional under considerations which can be used to implement the Newton method. 
To this end we evaluate the material derivatives of solutions to the Dirichlet and 
the Dirichlct-Neurnann problems. We assume that a vector field W(-, ·) is given 
with the compact support in D, and define the mapping Tt = Tt(W). For the 
solution Wt E H 1 (Dt) of the Dirichlet problem defined in the domain Dt = Tt(D) 
we have 

6.'U!t = 0 in Dt , 'Wt = 0 on St = Tt(S), Wt =gon aD (32) 

therefore, for v/ = Vlt o Tt E H 1 (D), 

-div ( r(t)DTt- 1 
· * DTt- 1 

· V'v/) = 0 in D , 

v/ = 0 on S, v/ =gonaD 

and the material derivative 

1 
1i1 = ?i1(S; W) = lim- ( v/ - w) 

t->0 t 

is given as the unique solution to the following elliptic equation 

-6.w = -div [(divW- DW- * DW) \i'w] in D, 

w = 0 on S, ?i1 = 0 on aD 

(33) 

(34) 

(35) 
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In the same way the material derivative ?J, of the solution to the Dirichlet­
Neumann problem is obtained, 

- 6.1i, = -div [(divW- DW- * DW) Vu] in D , 

v, = 0 on S, 
av, 
-a = 0 on aD 

n 

5. Second order derivative 

For Dt = Tt(W)(D) we have the first order derivative in the direction V(t) 

where 

Therefore 

d.J(Dt; V(t)) 

/ [ ( a'ut ) 2 
( awt ) 2

] = .J.B, an - an V(t) . ntdU 

= / Gt V(t) · ntdu 
./z.;, 

= / Gt o Tt [V(t) · nt] o Tt w1:du 
./z.; 

d.J2 (D; V, W) 

= / GV·n+G[wV·n+V·n+V·n,]di; 
./z.; 

(36) 

(37) 

(38) 

(39) 

where G, w, n, denote respectively the material derivatives of functions Gt ) Wt ) nt 
defined on I;t = Tt (W) (I;) in the direction W. 

When V = 0 the second order derivative takes the following form 

a2 J(D; V(O), W(O)) 

= / GV · n + G[wV · n +V· il,]di; 
./z.; 

(40) 

we refer to Khludncv, Sokolowski (1996), for the definition of a2 J(D; V(O), W(O)) 
in the general case and the properties of the second order shape derivatives using 
the material method. 

In particular, the latter formula for the second order derivative holds when­
ever the method of the pcrturbations of identity is used for the computation of 
shape derivatives, since for this method the condition V = 0 is always satisfied. 
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To evaluate G we need the material derivatives v., w (or the shape derivatives 
u' , w') in the direction of the vector field W of solutions u, w to elliptic equations. 
It follows that 

G :t [(nt · * DTt- l · V1i) 2 (41) 

( t *DT-l n t)2] n · t · vw it=D 

[ * l av. 2 \lu · n + \lv. · ·h - n · DW · \lu ~ 
un 

+ 2[\lw · n + \lw · il. - n · * DW. \lw] ~w 
un 

6. Integral equations 

In this section we introduce the integral equations used in our algorithm to 
compute the solution of the Dirichlet problem (I) and the Dirichlet-Neumann 
problem (II). 

We start with the integral representation of the solution to the second or­
der elliptic equation for the La place operator in a bounded domain D c IR?. 
Namely, if wE H 1 (D) is a solution to 

-6.'UJ = 0 in n 
Le. W is harmonic: in f2, W can be represented as 

w(x) = 

1 ;· a In 1 ;· aw - [w(y)]-;:;-l x - yldO"(y)-- [-;;-(v)]lnlx- vldO"(y) , 
27f . an un11 21f . an un11 

X E D. 

When w = 0 in ne = IR? \ D the jump relation on aD implies that the following 
cqualitics hold on the boundary aD, see Kress (1982): 

and 

1 1 ;· aln -
2

w (x) - w(y)-, -lx- y ldO"( y ) 
27f. an any 

1 a 
--v(x) 
2 anx 

1 /' aw - -;;-(y)ln lx - yldO"(y), x E aD 
27f. an un11 

1 a ;· a ln 
1 1 

( ) -- v(y) --;:;- x- y dO" y 
27f anx . an uny 

-- -lnlx- yldO"(y), x E aD 1 a;· av 
27f anx . an any 

(42) 

(43) 

Therefore, for a solution to the Diric:hlet problem (I) the following integral 
equation is obtained for the unknown density if; E H-~+"(aD) 

/
. a ln 
(g(y)- g(x))-;:;-lx- y jdO" (y) 

. r un11 

(44) 
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= /' 1>ln lx- vldo-(y) + / 1> ln lx- yldo-(y) . 
. r Jr. 

The ~<>sociated integral operator is denoted by 

(Van1>)(x) 1 ;· -2 lnlx- vl1>(y)da-(y). 
7r. an 

( 45) 

The latter boundary integral operator from H-!+"(8D) into IJ!+"(8D) is 
continuous if lo-1 :S ~· Let us recall that this integral operator is not always 
invertible. For N = 2 the invertibility of Van depends on 8D. 

For any given ~ E IR the augmented integral equation, 

Van1>- w 

/ 1>(y)do-(y) 
.fan 

0 ( 46) 

(47) 

has a unique solution et> EH-! (aD), wE ill.. The map~---> w being linear, there 
is a well-defined constant such that w = can~· By definition, the logarithmic 
capacity cap(8D) satisfies, sec Costabcl, Dauge (1995): 

1 
- 27r log( cap( aD)) =can . (48) 

The operator Van is invertible if and only if can =f. 0 and positive definite on 
H-!(aD) if and only if can> 0, Costabcl, Daugc (1995) . 
For example if an is a circle of radius R, Van is non-invertible if and only if 
R = 1. In general Van is non-invertible if and only if the logarithmic capacity 
is equal to 1, see also Schmidt (1994), Symm (1967). 
In the case of the Dirichlct- Neumann problem (II) the integral equations take 
the following form: 

For X Er, 

1 au( X) 1 a /' ( ) a ln I I ( ) --- - -- 7J, 1J - X- 1J do- 1J 
2 onx 21f 8nx . r 8ny 

( 49) 

+ I_~· au(y) a1n 1 _ Id ( ) _ h( ) X 7j .0"7j- . X 
27f . r, any anx · · 

with the right-hand side, 

h(x) = -- f(y)-lx - yldo-(y). 1 ;· a ln 
27f. r 8nx 

(50) 

Furthermore; for x E ~ ' 

1 ;· 8ln - v.(y)-a lx- yldo-(y) 
27f r n 11 

(51) 

- -,-'-ln lx- yjdo-(y) = m.(x) 1 ~· 01/,( 1J) 
27f . L: any 
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where 

1 / 
m(x) = 

2
7f Jr f(y) ln Jx- yJdo-(y). (52) 

The following boundary integral operators are related to the above system of 
integral equations, 

1 1· 8 ln (Kancf;)(x) = - - ~lx- yJcj;(y)dCJ(y), 
27f an uny 

(53) 

1 8 ;· (K~ncf;)(.T) = --~ ln Jx- yJcj;(y)dCJ(y), 
27f unx . an 

(54) 

18/"0ln (Dancf;)(x) = --~ ~lx- ylcf;(y)dCJ(y). 
27f unx . an uny 

(55) 

It is well known, Costabel and Stephan (1988), that the following integral ope­
rators are continuous for ICJI ~ ~' 

Kan: H~+u(8D)---+ H~+u(8D) (56) 

K~n : H- ~ +u(8D)---+ H-~+u(8D) 

Dan: H~+u(8D)---+ H~+u(8D) 

(57) 

(58) 

With this notation the integral equations (46) and (47) can be rewritten in the 
following form . 

[Dru](x) + [K~ ~~](x) = [(I+ K~)f](x) if x E f 

[Krv.](x) + [VL: ~u](x) = [-Vr)f](x) if x E I;. 
un 

(59) 

(60) 

When the boundary I; posseses the property that the operator VL: -l from H~ (I;) 
in H- ~(I;) is well defined, there exists the unique solution in H~ (f) x H-~ (I;) 
of equations (49)(51), we refer the reader to Costabel and Stephan (1985), for 
the proof. 

6.1. Integral equations in the 3-dimensional case 

For N = 3 and D c 1R.3 a bounded domain, if w E H 1 (D) is a harmonic function 
in D i.e. J::,.w = 0, the following jump relation on 8D = r U I; is obtained, see 
Nedelec (1977). 

w(x)lint + w(x)lext 
2 

1 ;· 8 1 - [w(y)]~-~ -~dCJ(y) 
47f . an uny .1: - y 

1 1· Dw(y) 1 . - [-~-J-1 -

1

dCJ(y) 1f .1: E 8D. 
47r an uny x- y 

(61) 
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8w(y) 8w(y) 8w(y) 
Here q(y) = [-~-·-]=-~-·-lint- -~-·-lext denotes the jump of the normal 

un11 un11 uny 
derivative on an. For the function w sufficiently regular in the boundary an 
we have 

1 ; · 1 w(x) = - - q(y)-
1 
--

1 
dO'(y) , 

4Jr. an x- Y 
(62) 

Given g E H~ (on) the interior Dirichlet problem (I) in integral formula­
tion has a unique solution with respect to the unknown density q E H-~(on) . 
Moreover, the following variational formulation is obtained, 

b( (j, q') = (g, q') (63) 

where the biiincar form is given by 

, 1 ;· ~r· q(x)q'(y) b(q,q) =- I I dO'(x)dO'(y). 
4Jr an . an x - Y 

(64) 

The bilinear form is coercive, i.e. there exists a constant c > 0 such that 

(65) 

So the solution to the Dirichlet problem (I) is given by (62), where q is the 
unique solution to (63) . In the three-dimensional case there is no restriction on 
the capacity of an to assure the invertibility of the integral operator associated 
with the Dirichlct problem. In the same way as in the two-dimensional case, 
assuming that u = 0 in ne) for X E r we have the following integral equation 

1 8v.(x) 1 8 ~r· 8 1 --.- - -- v.(y)---dO'(y) 
2 on, 47r on, . r 8ny lx - vi (66) 

+ J_ / 8v.(y) ~-1-dO'(y) = h(x) 
47r .J.E Ony Onx lx - VI 

where 

11r' [) 1 h(x) = - - f(v)--l -
1
dO'(y) . 

47r . r 8nx x - V 
(67) 

Furthermore, for x E I;, 

11r' [) 1 - v,(y)-;::;- -1 --1 dO'(y) 
47r . r un11 x - y 

(68) 

1 ~· 8u(y) 1 
- -~--~ --

1

dO'(y) = rn(x) 
47r . E un11 x - y 

where 

1 /' 1 m(x) = - f(y) -1 - 1 
dO'(y). 

47r. r x - y 
(69) 
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13y the same argument as for the two-dimensional problem the existence and 
uniqueness of the solution to the equations (63)(64) can be shown, see Nedelec 
(1977). 

It is important for our purposes, that the weak solution to the system of 
integral equations (63), (64) satisfy the integral identities in the following form. 

Find q = ( q1, q2) E H! (f) x H-! (I',) such that, 

1j·o 1 ;·a 1 -
4 

~1 ,q1 (x) ~q1(y) -1 --1 dO"(y)drJ(x) 7r r us . r us .x - y 
(70) 

+ 1;·1 j. () 1 
- q1 (x) q2(Y)--;:;--

1 

-

1 

dO"(y)dO"(x) 
4 7r . r E unx x - y 

- q}(.x)f(x)dO"(:r) 1 j. 
47r r 

+ 1;·1 j. () 1 - q1 (x) f(Y)--;::;- -
1 

-

1 

dO"(y)dO"(x) 
47r. r E unx x- y 

and 

(71) 

+ 

for a ll test functions q = (qi,q1) E H!(r) x H-!(I',). Note, that in (70), (71) 

we have the tangential derivatives ,~ q1, ~ q1 instead of normal derivatives. 
us us 

The numerical method combines the boundary element technique with Quasi-
Newton method in shape optimization. 

7. Numerical method 

For the numerical methods the continuous problem is approximated by a family 
of finite dimensional problems. To this end the integral equations are solved by 
the finite element technique. The resulting optimization problem is solved by 
an appropriate variant of Newton or Quasi-Newton methods. 

7 .1. Approximation of continuous problem 

An optimal domain satifies the necessary optimality conditions in the form of 
the following equation, 

rl.J(D ; V) = 0 
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for all admissible vector fields V(.,.). The equation is obtained by an application 
of the material derivative method, Sokolowski (1993), and can be used also 
in the framework of the so-called perturbation of identity technique for shape 
optimization. It means that the admissible vector fields are defined in such 
a way that admissible domains coincide with those constructed by the latter 
technique. The relation between both techniques is described in Sokolowski 
(1993). Numerically, we want to evaluate an approximation of the optimal 
domain i.e. such that the continuous shape derivative of the cost functional (27) 
vanishes for all admissible vector fields. To this end we construct a minimizing 
sequence of domains [lk, more precisely, we consider a sequence of domains 
defined by their boundaries rk U ~k. In practice, in the two dimensional case, 
by fk we mean the piecewise linear closed Jordan curve with n edges [x~, .T~+ 1 ] = 

Li, i = 1, ... , n and x~+ 1 = x~. In the same way ~k is defined as a piecewise 
linear closed Jordan curve with m edges [yf, yf+- 1 ] = Ni; j = 1, ... , m. In fact, at 
each iteration we set rk = r 0 ' but ~k changes by local perturbations of vertex. 
To each vertex Y? of ~k is associated the direction Z.J E m. 2 , ZJ is the mean 

value between the normal vector associated to two finite elements with Y? as 

vertex. We construct a continuous piecewise linear function Zf : fk ___, IR 2 such 
that: 

Z k ( k) z' k, . . 1 i Yi = i ui.i ?.,J = , ... m., 

where bii is the Kronecker symbol. The support of Zf is equal to [yf_1 , yf] U 
[yf, yf+ 1]. Given the surface ~k, at iteration k + 1 we compute the vector 
field zk (y) := ~~~ 1 siZf (y), y E ~k. The surface ~k+1 is constructed in the 
following way, 

m 

~k+ 1 ={X=x+L,siZf(x);si E IR,x E ~k} 
i = 1 

(72) 

where :c/ = (s1 , .. . sm) is the vector of unknown parameters which determine 
the form of the surface ~k+1 . This procedure gives the family of domains 
nk+ 1 ' k = 1, 2, ...... , with the piecewise linear boundaries ~k+ 1 corresponding 
to ( 81' ... ' Sm.) E IR m. In the 3-dimensional case f 0 is the piecewise linear ap­
proximation of the exterior boundary r. ~k' k = 1, 2, ..... , is the approximation 
of the inclusion boundary in the form of the union of triangles Tl in IR3 . Each 
triangle is parametrized with the help of a reference triangle in coordinates C, 
and TJ· The vertices of the triangle Tl arc denoted by x 1'1 , x1'2 , :r;1'3 so that if 
x E 7l, the function defined on Tz can be expressed in the following way 

3 

x = x(f.,TJ) = L.xl ,iNi(CTJ) (73) 
i=1 

where N;(., .) are given functions, 

(74) 
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where DL'(sk, Ak) is given by: 

(95) 

the matrix Hk(sk) evaluated at ·'h by the B.F.G.S. algorithm is an approxima­
tion of the Hessian of the cost function J(.9). Therefore, we obtain the following 
shape identification algorithm: 

Algorithm; 
Data. Initial guess for ~0 and r 0 . The exterior boundary f. The boundary 
data g and f on r. 
For k = 0, .... until convergence test 
Step 0. Initialise Hk =Identity matrix in JR.m x JR.m 
Step 1. Compute the gradient of .J. 
i) Solve the Dirichlet problem; 

6.w = 0 in D.k 

w = g on r 
w = 0 on ~k 

ii) Solve the Dirichlet-Neumann problem; 

6.v. = 0 in D.k 

fJv. = j Oil f 
on 
v. = 0 on ~k 

iii) Compute the shape gradient of .J. For l = 1, .. , m. 

(96) 

(97) 

(98) 

(99) 

(100) 

(101) 

(102) 

Step 2. Compute the descent direction using a B.F.G.S . approximation of the 
Hessian of .!8 • 

For gk = d.l8 (.9k)- dJ5 (sk-l) and 6k = Sk- Sk-l we compute the update 

Hk+l· 

(103) 

Step 3. Compute 6.sk and 6Ak solution of the linear system. 



Numerical methods for shape identification problems 883 

REMARK 7.1 The .fir-st valne r-0 for· the penalty parameter- r- must be chosen in 
snch a way that the penalty ter-m is of the same or-der- as the gradient of J, 
other-wise nv,mer-ical instabilities may OCC?J,T. After- solving the ?Pnconstrained 
pr-oblem J,.a only two or- thr-ee steps in the parameter- T ar-e neccesar-y to Teach 
rw.merical convergence. 

REMARK 7.2 This algor-ithm reqv.ires the per-iodical r-einitialisation of the matrix 
Hk by the identity matr-ix in order- to obtain a minimisation pmcedv,r-e even in the 
case where Hk is not positive definite. At each iteration the condition 15k9k 2 0 
shov.ld be ver-~fied to assv.r-e that Hk+l is positive de.finite. If it is not the case 
a gradient iteration is perforrned and after·war-ds the matrix Hk is set to be the 
identity matrix. 

7.3. Lagrange-Newton Method 

We describe briefly another numerical method based on the Kuhn-Tucker opti­
mality conditions for the minimization problem. The method can be applied in 
the case of equality constraints. We introduce the following Lagrangian: 

L(:s, A) = J(.s) + A(w(s)) (91) 

where .5 E IRm and A E JR. 

PROPOSITION 7.1 Let J(s) and w(s) be two fu:nctions with the first der-ivatives 
continv.ov.s at s*. We sv,ppose that w(s*) = 0 and dsw(s*) =1- 0, then a necessar-y 
condition that s* is a local minimv.rn of .J(s) with the constraint w(s) = 0 is the 
existence of the Lagrange multiplier A* E lR sv.ch that: 

(92) 

see e.g. Fiacco, McCo·rmick (1968) for a pmof. 

Then a numerical method to find a local critical point s* of the cost func­
tional .J(s) subject to the constraints w(.s) = 0 consists in computing a solution 
to the following set of the first order necessary conditions: 

(93) 

A Quasi-Newton method to solve the Kuhn-Tucker equation (92) consists in 
computing a sequence of solutions (.sk> A k) to the linearized equations obtained 
from (92). This leads to the following algorithm: 

l Given so and A 0 

Compute 
(sk+l, Ak+l) = (sk> Ak) + (15sk, 15Ak); 15sk E lRm; 15Ak E lR 
defined by: 
DL(.sk, Ak) + DL'(sk, Ak)(15s~.., 15Ak) = 0 

(94) 
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The direction of the displacement at each vertex of L:k is given by a piecewise 
linear vector field 

Zk(x) = { ZkNi(e,~) if x E T1 and (Cry)= x1
•j E Tz 

0 otherw1se. 
(75) 

Then, as in the two dimensional case, at the iteration k + 1 the update of the 
boundary L:k is given by 

m 

L:k+1 =(I+ 2.:= siZf)(L:k), st = (s1, ... , sm)· (76) 
i=l 

This method of evolution of the boundary has the important advantage that 
there is only one degree of freedom at each vertex, for N = 2 as well as for 
N=3. 
Finally, to perform the shape optimization, the vector ;sk+l E IRm is computed 
at each iteration by a minimisation procedure in such a way that: 

(77) 

See Pierre, Roche (1993) for a related approximation technique in shape opti­
misation. 

7.2. Penalty method 

For the problem under considerations it is convenient to introduce constraints. 
Constraints on the position of the inclusion, can be introduced, for instance 
stipulating that the distance of the inclusion to the boundary is greater than a 
given constant E > 0. Another constraint can reflect the requirement that the 
surface of the inclusion is prescribed. We denote by w(s) = 0 or w(.s) :::; 0 such 
constraints in terms of the parameter of optimization s E IR m. Let us consider 
the following penalized cost functional 

.!r(s) = .!(.5) + ~(w(.5)) 2 (78) 

for the equality constraint or, in the case of inequality constraints: 

.!r(s, t) = .J(s)+ ~(w(.5)- t) 2 (79) 

In both cases r is the parameter which is large enough, theoretically r / oo, 
see e .g. Fletcher (1987), and Minoux (1983), for a description of such methods. 

We propose the following scheme to evaluate the unknown crack boundary 
L: by the penalization technique. 
Algorithm; 
Data. Given L:0 and r0. The exterior boundary f. The boundary data g and f 
on r. 
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For r = r 0 , r 1 , .... solve the unconstrained optimization problem. 

Min{.lr(s), sE IR"} 

For k = 0, .... until convergence test. 

Step 0. Initialise Hk =Identity matrix in IRm x IRm 
Step 1. Compute the gradient of lr. 
i) Solve the Dirichlet problem; 

!::.w = 0 in nk 
'W = g on r 
w = 0 on :t:;k 

ii) Solve the Dirichlet-Neumann problem; 

!::.v. = 0 in nk 
(Jv, = f on r 
on 

11. = 0 on :t:;k 

iii) Compute the shape gradient of .lr. For l = 1, .. , rn 

(80) 

(81) 

(82) 

(83) 

(84) 

(85) 

(86) 

(87) 

Step 2. Compute the. descent direction using a B.F.G.S. approximation of the 
inverse of the Hessian of .lr. 

For .9k = d.lr(.<;k)- dlr(sk-1) and {jk = Sk- Sk-1 find the update Hk+1 

H _ H [ 1 + .9kHk6k] 6k6k _ DkgkHk + Hkgk6k 
k+l - k + {jt {jt {jt 

kgk kgk kgk 

Step 3. Compute .;;k+ 1 . 

where p is found by of the Armijo's line search procedure. 
Step 4. Update the boundary of ~k to obtain ~k+1· 

m. 

~k+ 1 =(I+ L {sk+d1Z,)(~k) 
1=1 

Go back to step 1. 

(88) 

(89) 

(90) 
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Step 4. Compute sk+l = Sk + pk8.'h where pk is found by the Armijo's line 
search procedure. 
Step 5. Update the boundary of I:k to obtain I;k+ 1 . 

m 

I:k+1 =(I+ L {sk+l}zZz)(I:k) (105) 
l=l 

Go back to step 1. 

T his scheme describes the algorithm with a superlinear rate of convergence 
if the first guess 2::0 is close enough to the solution . In general, such a procedure 
starts with a steepest descent method to obtain 2::0 and applies a Quasi-Newton 
technique to refine the result of optimization. 

In the next section we are going to explain the numerical method which is 
used to find approximations of the solutions to the Diriehlet problem (I) and 
Dirichlet-Neumann problem (11) by the boundary element method . 

7.4. Integral equat ions 

At each iteration we evaluate a numerical approximation of normal derivatives 
ow 0'11. " OW "' . 
-;:;-, ~ on I;k and -;:;-, v, on rk m order to approximate the continuous gradient 
un un un 
and the value of the cost functional. 

J(Dk) .l nk g(x) a~;.:r.) drJ(x) (106) 

+ ;· f(x)v.k(x)drJ(x)- 2 ;· g(x)f(x )drJ(x) 
ank . ank 

The integral equations for density q(x) associated to the Dirichlet problem take 
the following form. 
For yE rk , 

!. a ~ ;· (.q (:r)- g(y) )~lx- yJdrJ(x) = q(x) In Jx- yJdrJ(.r.) 
' ank unx .. ank 

(107) 

and for yE I:k, 

!. . 8 ln ;· 
g(.r.) ~lx - yJdrJ(x) = . q(.r.) lnJx - yJdrJ(.r.) 

. ank unx , ank 
(108) 

In order to solve the above system of two integral equations, the Galerkin 
method, Costabel and Stephan (1985), Schmidt (1994), is used. In t he con­
tinuous ease t he following variational fomul ation is obtained, 

with 

q EH-~ : b(q, q' ) = l(q')Vq' EH-~ (109) 

b(q, q') = ;· ;· q(y)q'(x) In Jx - yJdrJ(y)drJ(x) 
. an. an 

(110) 
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and 

l(q') = / / (g(y) - g(x)) aaln lx - yida(x) 
./r ./r ny 

(111) 

T he bilinear form b(. , .) is coercive, i. e. there exists a constant c > 0 such that 

(112) 

for all q E H - !(oD) with .f~n q(y)da(y ) = 0. Then, if 8D has the property that 

there exists the inverse mapping V801 , the equation has the unique solution in 

H-! (8D) . The same formulation is used for 8Dk in the discrete case. 
The equation (109) is discretized by using a finite element representation qk 

of q. We introduce the basis functions {ei }i=l,. ,non rk and {f1} 1=1, ... ,m., on 
I;k which are both piecewise constant . 

T hen, qk(x) for x E r is obtained as qk(:r;) = I:j·=1 q} e1(x) and qk(x) for 

x E I;k takes the form qk (x) = I:j= 1q}Ji(x) where {qi}i=l, .. n E IR" and 
{qJ}'i= l , .. m E IRm. are the solutions of the following linear system: 

here 

and 

qi 

A B q} 

c D q'f 

q~ 

ai.i = / / lnlx- y ida(x) da(y) 
.J L; .J L ; 

bii = L, .L; ln lx - yida(x)da(y) 

ci.i = .IN, ./~ ; ln lx - yida(x )da(y) 

dij = ./~, .IN; ln lx - yida(:r)da(y) 

h 

f i 

fi 

f N+M 

. - { .1~ , .f~k(g(y) - g(x)) g~: lx - vida(y)da(x) 
fi -

.1~, .f~ k g(y) g~-~ lx - vida(y)da(:~; ) 

(113) 

(114) 

(115) 

(116) 

(117) 
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The above linear system is symmetric and the associated matrix is positive 
definite. 

For the mixed Dirichlet-Ncumann problem (II) we solve the integral equa­
tions ( 46) in rk and (51) in I:k. This system of integral equations has a unique 
solution in H~(r) x H- ~(I:), sec section 6 for details. We introduce now a 
variational formulation , find ( q1 , q2 ) E H~ (r) x H- ~(I:) such that for all test 
fu nctions ( r.p, 'lj;) E H~ (r) x H- ~ (I:) the following equations arc satisfied. 
For :1; E fk, 

(118) 

For x E I;k 

/ / 8ln 
.fr. 'lj;(x) .fr q1 (y) onx lx - yida(y)da(x) (119) 

+ / 'lj;(x) / IJ2(Y) In lx- yida(y)da(x) 
.fr. .lr. 

- /' '1/;(.r-) /' f(y) In lx - yida(y)da(.r-) 
.fr. ./r 

This equations have unique solutions , Costabel and Stephan (1988) , Schmidt 
(1994) , if the mapping Vr, is invertible. We introduce the basis functions 
Ud.i=l,n where j 1(x) are picccwisc linear on r and satisfy the conditions 
fi(xi) = 15ii · We set IJl(x) := I:'J'= 1vyfi(x) and we approximate IJ2(x) by the 
picccwisc constant function IJ2(x) = I:j~ 1 vJei(x) defined on I:. Then the fol­
lowing linear system is obtained: 

v{ rn1 

r~ :) 
v} 'fni 

(120) 

vf m .i 

vlt m. M 

where 

(121) 
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/ / Oln 
bi.i =- .JLi- lUL; fi(x) .JN; Onx lx- vld(}(y)d(}(.r ) (122) 

and the right- hand side is given by: 

and 

+ 

Tn; = / / f(y) In lx- vld(}(y)d(}(x) 
.JN; .lr 

(123) 

(124) 

(125) 

(126) 

The system (120) is symmetric and dense. It can be solved by LDLt method, 
see Golub, Van Loan (1983). 

In both cases numerical errors of two types appear. The first one is the 
geometric representation error, the error of replacing r and I; by r" and I;''. 

The second one is the approximation error, between q(x) and its piecewise linear 
approximation. An exhaustive analysis of numerical errors in boundary integral 
methods can be find in Nedelec (1977), Rannacher, Wendland (1985 ;1988). 

8. Numerical example 

In the first numerical example we consider as D a ball in JR2 of radius R and 
ccntercd at the origin. As the inclusion (void) S we consider a small ball of 
radius rand centered at the origin. A harmonic function v.(x) , x E JR2 \ S, can 
be constructed by taking v.(x) = In lxl -ln(r). 

To follow the evolution of the iterations of the algorithm we consider five 
parameters. T he first one is Costk/Cost0 which is the quotient of the value of 
the cost function in the k-th shape iteration to the value of the cost function at 
the initial shape guess. The second parameter is V A:/V'o which is the quotient 
of the L 2 norm of the gradient at the k-th step to the L 2 norm of the gradient at 
the initial iterat ion. The third parameter is 11 ~';. -FII£2(iK!) the L2 error between 
the normal derivative of w computed by solving the Dirichlet problem (I) and 
the true value F . The fourth parameter 11 ~~ - F II P(E) is the L 2 error between 
the normal derivative of v. computed by solving the Dirichlct-Neumann problem 
(II) and the true value F on I;. The fif:h parameter llv.- gll£2(r) is the L 2 error 
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Figure 1. 

between t he approximation of v. computed by solving the Dirichlet-Neumann 
problem and the true value g on r. 

The boundary aD is discretised by piecewise linear finite element, and we 
obtain aflh =rh u ~h· 

The numerical method consists in constructing a minimizing sequence 
(S~,v.~,w~) for the discrete shape functional .h(S~t). In fact we consider a 
discretiscd continuous gradient method, which means that we compute at each 
iteration a numerical approximation of the continuous gradient and not the 
gradient of the discrete problem. This implies that at each iteration we compute 
only an approximation of the gradient of the discrete problem. 

In the first run we consider an initial guess ~0 such that it has the same 
shape as~* (the solution) but is not in true position in D. We want to identify 
the position of the void . Then, the sequence of inclusions ~~ is determined by 
a sequence in m?, since ~~- depends on two parameters, the cent er ak = ( a 1 , a 2 ) 

of the circle ~k. 
The minimizing sequence is obtained by locally optimal displacements of the 

vertex of the boundary ~h according to a given vector field V with translation. 
For the vector field pararnetrized by xo, Yo the continuous gradient takes the 

following form: 

d.J(D; V) = /~ [ ( ~~) 
2 

( ~:) 
2

] V· nda = C(xo, Yo, w, v.) (127) 

In Figure 1 we plot the evolution of the iterations, the first guess ~0 is the most 
distant circle. 

In Table 1 we can see the evolution of the five parameters described above. 
'vVe observe that after fifteen iterations the algorithm reaches a good approx­
imation of the real position of the void in the center of D. We spent twenty 
more iterations to improve this position identification. The errors of the com­
putation stabilize after twenty five iterations, only the gradient decreases but 
the precision of the computation of v. and 'W is stable because it depends on the 
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k Costk/Costo Y'k/Y'o 11~- FIIL2(80) II F,;,- FIIL2(E) lln- .9IIL2rrl 
0 1. 1. 2.8331 0.5476 2.1273 
5 9.48e--03 9.23e-02 0.3131 6.10e-02 0.279 
15 8.37e-03 2.21e-03 7.56e-03 2.19e-02 1.72e-02 
25 8.38e--03 5.41e-05 5.76e-04 2.18e-02 1.58e-02 
35 8.38e--03 1.32e-06 5.62e-04 2.18e-02 1.58e-02 

Table 1. Example no 1, n=64. 

Figure 2. 

number n of nodes in the representation of aDk. 
In the second example a first guess is given by a circle of radius r 0 > r . In 

this case we apply the algorithm described in section 7.2, we have one degree of 
freedom for each vertex of I;k . Then the shape gradient D .J (I:k, zk) at iteration 
k is given by: 

k k v u uW j. [ ( ~ ) 2 ( ~ ) 2] {D.J(D ·; z ·)};. = E an - an zi. vdu (128) 

In Figure 2 we observe the results of the subsequent iterations, here the position 
is known but the shape is t he unknown. 

In Table 2 we observe the evolution of the cost function with respect to the 
initial guess cost, the minimum is reached after thirty iterations. The minimum 
error in t he numerical solution of the integral equations is also reached after 
thirty iterations because the error of numerical approximation is at t hat step 
greater than t he error induced by the wrong shape. The last twenty iterations 
arc used to improve the shape, then the gradient decreases. 
In Figure 3 we consider an example where we add the two problems, the first 
guess is in a wrong position and it has a wrong radius r0 . In this case we have 
also one degree of freedom for each node of the I; boundary. 

In Table 3 we observe that the same precision is reached in t he numerical 
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k Costk/Costo 'h/Vo 11 ~- FIIL2<am 11 ~ - FII£2(I:l llv.- gll£2(r) 
0 1. 1. 8.44 48.8 6.16 
5 0.47 0.61 4.74 38.27 5.19 
10 0.19 0.40 2.20 24.6 3.68 
20 3.62e-03 8.38e-02 0.15 2.79 0.47 
30 7.88e-04 6.08e-06 3.87e-03 6.08e-02 2.31e-03 
40 7.88e-04 2.00e-10 3.87e-03 6.08e-02 2.28e-03 
50 7.88e-04 3.69e-14 3.87e-03 6.08e-02 2.28e-03 

Table 2. Example n° 2, n=64. 

Figure 3. 
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k Costk/Costo Vk(\lo ll%;w- Fll£2(8[1) ll%u- FIIL21E) llv.- giiL2<n 
0 1. 1. 5.32 18.52 2.77 
10 0.31 3.74e-02 1.44 18.49 2.67 
20 9.68e-03 3.36e-03 1.55e-02 0.29 5.99e-02 
30 9.94e-03 1.03e-05 3.88e-03 6.09e-02 2.28e-03 
40 9.94e-03 7.35e-06 3.88e-03 6.09e-02 2.28e-03 
50 9.94e-03 6.67e-06 3.88e-03 6.09e-02 2.28e-03 

Table 3. Example n° 3, n=64. 

approximation of the integral equations solutions as in example 2. The rate of 
convergence of the gradient is compared to example 2 because of the presence 
of translations and shape deformations in the shape perturbation vector fields. 

In conclusion we observe that the presented shape optimisation technique 
will be able to identify the position and the shape of inclusion via boundary 
data. 

As shown in Tables 1, 2 and 3 the precision of the results depends on the 
performance of the numerical solution of the integral equations. Computational 
errors in numerical approximation of u and w include errors in shape gradient 
and cost function computation which cause a lower rate of convergence of the 
optimization procedure. 

The numerical technique proposed here can be used in other shape identifi­
cation problems, for example electromagnetic casting, see P ierre, Roche (1993). 
Purely Newton techniques can be also used if the shape Hessian is available 
and its numerical computation is not too expensive in terms of floating point 
operations, see Novruzi, Roche (1995). 

The computations were carried out with the Silicon Graphics Parallel com­
puter of the C.C.H high performances computer center of Nancy, France. 

Acknowledgement. The authors are indebted to Dr Ewa Bednarczuk for 
reading the manuscript and her useful remarks . 
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