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Abstract: This paper reviews some algorithms from uncon
strained optimization and their application to optimal shape design 
problems. The methods presented include classical algorithms like 
the gradient method and Newton's method. They also incorporate 
modern versions of quasi- Newton algorithms and inexact Newton's 
method which arc especially suited to solve these kinds of problems. 
We discuss a special class of optimization problems and show the ap
plicability of these methods. The paper concludes with a discussion 
of numerical algorithms for optimal shape design problems solved 
by the mapping method. Numerical results are presented in the last 
section. 

1. Introduction 

Optimal shape design problems constitute an important class of applications 
of mathematical methods. On the theoretical side there arc many challenging 
questions in connection with the theory of partial differential equations and also 
with optimization theory. In the numerical solution of these types of problems 
there arc numerous interesting issues with the numerical solution of partial 
differential equations, for instance finite element codes. 

On the other hand efficient optimization routines are important to keep 
the overall computation time within reasonable limits. It is the primary goal 
of t his paper to give some insight into optimization methods in the light of 
optimal shape design problems. Since various codes in this area use gradient 
type algorithms we pr.csent these methods together with other more modern 
developments in optimization. We keep the technical details of this paper at an 
introductory level. It is hoped that the reader not so familiar with optimization 
will obtain some information on modern technology of numerical optimization 
algorithms. 

Among the numerous applications of optimal shape design problems we men
tion only a few examples such as the design of a nozzle by Pironneau (1991), a 
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thermal diffuser problem by Delfour, Payre and Zolesio (1983;1986), an airfoil 
boundary problem by Pironneau and Vossinis (1991), various beams and plates 
by Haslinger and Neittaanmaki (1988), Sokolowski and Zolesio (1987;1992) and 
thermal tomography problems by Banks and Kojima (1988;1989). 

All of these problems involve a costly evaluation of an objective function. 
This is due to the fact that a solution of a partial differential equation is included 
in this procedure. The resulting optimization problem is very large and the 
special structure should be made use of in the code. 

An optimal shape design problem can often be cast into the form to minimize 
an objective function, see e. g. (16) 

J(v.,y) where a(v,;y,T)) = l(v,;T)) \IT). 

The equality constraint is given by a variational equality described by a bilinear 
form a and a linear functional l depending nonlinearly on the design parameter. 
It is reasonable to expect that for each design variable v, there exists a solution 
of the variational equality which is denoted by y( v,). Then the optimization 
problem can be rewritten as an unconstrained problem 

Minimize f(v.) = J(v,,y(v,)). 

The advantage of this formulation is that the structure of the problem is taken 
care of automatically and that the number of variables for the objective function 
f is equal to the number of design variables v. which is often much smaller than 
the m~mber of the discretized points of the state variable y. 

We want to point out that one could also pursue the approach to minimize 
.J(v,, y) with regard to both variables y and v. under the additional equality 
constraint a(v.;y,T)) = l(v.;T)). This formulation would lead to SQP (Sequential 
Quadratic Programming) methods for a numerical solution. However, in order 
to use the special structure of optimal shape design problems, one would have 
to take special care in selecting special SQP methods. This leads to reduced 
SQP methods which exploit sparsity and the fact that a relatively small number 
of design variables might be present. These methods are not the issue in this 
paper and the reader is referred to Kupfer and Sachs (1991), Kunisch and Sachs 
(1992), Kupfer (1995) , and Sachs (1994). 

In the first sections we review the gradient method in connection with a step 
size rule which has an important impact on the convergence bchavior. Following 
this we discuss Newton 's method and its advantages and drawbacks. 

Quasi- Newton methods arc presented in some more detail including an out
line of the convergence theory due to Dermis and More. We include a short 
description of quasi- Newton methods with structure. Another way of reducing 
the large computing time per iteration is based on the concept of inexac:t New
ton methods. We give the basic framework of these methods and some remarks 
on the implementation of these powerful variants of Newton's method. 
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In the last three sections we apply these methods to optimal shape design 
problems. Given a general structure of optimization problems which often oc
curs in optimal shape design, we show how to compute the gradient and the 
second derivative. We also address the fact that a Hessian-vector multiplica
tion can be achieved at the cost of a gradient evaluation. This issue makes 
inexact Newton methods with iterative solvers for the linear subproblems very 
corn pcti ti ve. 

2. Unconstrained optimization 

Let us consider the following general unconstrained optimization problem. As
sume that 

is a smooth function in the sense given below. Then we arrive at the following 

Optimization problem 

min f(x) 

It is well known that a suitable substitute problem is to look for stationary 
points. 

Stationary points for optimization problem 

Find x* with \7 f(x*) = 0. 

There are various applications in the literature and in practice. 

Examples 

• Optimal Shape Design 
• Optimal Control 
• Design of Feedback Control Laws 

In the sequel we use the following notation 

current iterate Xc, 

new iterate x+, 
previous iterate x_. 

3. Gradient method 

The most popular gradient method is the method of steepest descent. It is easy 
to implement and consists of the following steps. 

vVc assume that a starting point or a current iterate Xc E IRn is given. The 
new iterate x+ is then computed as follows 
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Algorithm 1 

Given 
Com.pv.te 
Set 
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Xc 

V f(xc) 
X+= Xc- O'.cVf(xc) 

Here the step size O'.c E lR could be constant or is determined by a line search 
technique such as Armijo's rule as presented in the next section. 

We make the following assumption for convergence statements 

Assumption 1 Let the following hold for· the function f 

f contiov.sly d~[j'er-entiable 
V f L ipschitz-continv.ov.s 

f str-ictly convex 

The last assumption on the global strict convexity can be relaxed to a local type 
at the expense of a local convergence statement instead of the following 

Theorem 1 Let Assumption 1 hold. Consider- a sequence of iter-ates pTOdv.ced 
by the Algor-ithm 1.1, the steepest descent method. Then ther-e exists c E (0, 1) 
such that 

i.e. a q-linear- mte of convergence holds. 

If one cannot show a local strict convexity around the optimal point then 
the rate of convergence can deteriorate to an estimate like 

for some c1 > 0 and all k E IN. As one can check easily this is an extremely slow 
convergence rate for the convergence of Xk to x •. References and proofs of these 
theorems can be found in many textbooks on optimization, sec e. g. Gruver and 
Sachs (1980). 

4. Gradient method with step SIZe rule 

Gradient methods without step size rules can be found in several applications of 
optimal shape design. Unless one tries to avoid with this strategy local minimum 
early in the iteration process it is more advisable to incorporate a step size rule 
like Armijo's (1966) rule. There arc many other step size strategies but we will 
concentrate on this one. Armijo's rule can be used for any algorithm using a 
descent direction, i. e. a direction d E JRn with V f(xc)T d < 0 at any point 
.Tc. An example for such a direction is the negative gradient d = -\lf(xc)· The 
Arrnijo rule can be implemented in the following way. 
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Algorithm 2 Choose p E (0, 1), 1 > 1, (3 E (0, 1) 

Given 
Cornp. a descent direction 
Incr-ease j E IN until 
Set 
Incr-ease j E IN v.ntil 
Set 
Set 

Xc 
\1 f(xc)T d < 0 
f(xc + !jd)- f(xc) > Plj\1 f(.rc)T d 
ao = /j 
f(xc + (3 7 aod) - f(xc) :S p(3j ao \1 f(.rc)T d 
ac = (3jao 

X+= Xc- acd 

This step size rule ensures that the new point will have a sufficient decrease 
and also that the step size rule cannot become arbitrarily small which could 
destroy the convergence of the method. Both properties are used in the following 
convergence theorem. 

Theorem 2 Let Ass?J,rnption 1 hold except for- the convexity reqv.irernent. If f 
is bounded from below then we have 

lim \lf(xkf dk = 0. 
k--HXJ 

In the case of steepest descent, dk = - \lf(xk), we obtain \lf(xk)----> 0, i.e. each 
accwrw.lation point of the sequence Xk is a stationary point. 

5. Newton method 

A method which improves dramatically the convergence behavior locally is New
ton method. 

Algorithm 3 

Given 
Solve 
Set 

Xc 
\12 f(xc)s = -\1 f(xc) 
X+= Xc + S 

The smoothness requirements for f are as follows. 

Assumption 2 Let the following hold joT the function f in a neighbor-hood of 

the optimal point x*. 

twice continv,ov.sly d~fferentiable 
Lipschitz-continv.ov.s 
1:nvertible 

The rate of convergence which can be shown is quadratic . 

Theorem 3 Let Ass11,mption 2 hold. If llxo- x* 11 is svfficiently small, then the 
Algorithm S is well defined and the distance fr-om the solution can be estimated 

by 

i.e. a qv.admtic mte of convergence. 
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References for Newton method are the books by Ortega and Rheinboldt (1970) , 
Dermis and Schnabcl (1!J83) and Kelley (1995) . Due to this theorem the con
vergence of Newton method within the region of convergence is extremely fast 
and often offsets the additional cost of the computation of the second derivative. 
However, improvement can be made on certain aspects of Newton method. 

• Computation of \72 f(xc) 
• Solving a linear system of equations at each iteration 
• Local convergence 

All these disadvantages have been addressed in the literature and we list some 
of the possibilities to alleviate these drawbacks. 

• Quasi-Newton updates, Shamanski's method (evaluate new Hessian after 
r steps) 

Xk+.i+l = Xk+.i- \72 f(xk)- 1\7 f( :xk+i), j = 1, ... , r 
• Nested iteration (infinite dimensional problems) 
• Globalisation (Step size rule, Trust- Region- method) 

In the sequel we will address some of the points mentioned previously which 
increase the ef£ciency in the use of optimization algorithms. 

6. Quasi- Newton method 

Quasi- Newton methods which arc sometimes also called variable met ric meth
ods or secant methods have been successfully applied to various unconstrained 
optimization problems in the past decades. We do not give reference to the 
original papers but refer the interested reader to Dennis and Schnabcl (1983) 
where an overview of the literature is given. 

T he main idea is to replace \72 f(xc) by some approximation B e E JRnxn 

The basic algorithm can formulated in the following way. 

Algorithm 4 

Given 
Solve 
Set 
Compv.te 

Xc,Bc 
Bcs = - \7 f(xc) 
X+= Xc + S 

B+ 

In the next paragraph we give some motivation on how to choose the new update 
for the approximation of the Hessian. In the one-dimensional ca..c;e the secant 
method determines uniquely a number B+ by 

This equation can be gcncrali:,-;cd to the more dimensional case as a requirement 
which a new update should fulfi l. It is called the secant equation 

(1) 
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or 

(2) 

If n > 1 then there arc infinitely many B+ E IRnxn which satisfy (1). On the 
other hand Be contains already information on the Hessian accumulated from 
the previous steps. Therefore one wants to retain this information also for Be. 
Hence one chooses B+ as the matrix being closest to the previous update Be 
which satisfies the scant condition (1). 

B+ solves min IlB- BeiiF with Bs = y, BE IRnxn . (3) 

Here II · IIF denotes the Frobenius norm which yields a unique solution to (3). It 
can be shown that the solution of (3) can be computed explicitly and is given 
by the 

Broyden update 

It is obvious that this update does not preserve the symmetry. Another update 
which has this property is the Symmetric-Rank-1 update. 

SRl update 

In the sufficiency condition for minimal points it is required that the Hessian be 
positive definite at the optimum. Hence it is reasonable to require this property 
also for the approximation of the Hessian. We give two examples of updates of 
this type. The first one was introduced by Davidon, Fletcher and Powell. 

DFP update 

The next update is attributed to Broyden, Fletcher, Goldfarb and Shanno. It 
is the most widely used update in the context of unconstrained optimization. 

BFGS update 
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7. Convergence analysis 

A detailed convergence analysis has been given by Dennis and More which can 
be read in the books by Dermis and Schnabel (1983) and Kelley (1995). The 
convergence of quasi- Newton methods can be split into two parts. The first 
condition guarantees the convergence and the q-linear rate. This condition 
describes in which way the distance of the new approximation from the true 
Hessian can be estimated by the corresponding distance of the old one. 

Assumption 3 (Bounded deterioration property) Let x. denote a statio
nary point. An v,pdat;e formula for n satisfies the bounded deteriomtion propeTty 
if there is a constant c1 such that for all Xc, Be the new x+, B + satisfy 

If an arbitrary update formula satisfies this property then the following theorem 
ensures linear convergence. 

Theorem 4 Let an update formula satisfy the Bov:nded Deteriomtion Property 
( Assv.rn.ption S). Let Assumption 2 hold for :r, . If IlB a- \72 f(x.) 11 and llxo -x. 11 
aTe sufficiently small, then the q11.asi-Newton method is well defined and there 
is c E (0, 1) such that 

q-linear conve·rgence, holds. 

If a faster rate of convergence should be obtained then a more stringent require
ment on the closeness of the approximations of the Hessian to the true Hessian 
is required. The following property ensures the superlinear rate of c:onvergec:e. 
Note that this does not require the convergence of the approximations to the 
true Hessian . 

Assumption 4 (Dennis-More condition) Let x, be a stationary point. An 
1r.pdate formv.la joT B satisfies the Dennis- MoTe condition, if the steps sk = 
:rk+1 - Xk pTDd11.ced by the qv.asi- Newton method satisf7J 

. 2 Sk 
hm ll(flk- V f(x.))-ll .-11 11 = 0 

k-->oo .Sk 

with the v.pdates nk. 

This assumption is necessary and sufficient for the superlinear rate of conver
gence. 
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Theorem 5 Let an v,pdate formvJa for B be given and consider· a seq71,ence 
.Tk, Bk pmdv.ced by the q71,asi-Newton method. Ass71,me that the itemtes converge 
to a stationary point x*, i. e. xk -> x*, which satisfies Assumption 2. Th en the 
q-sv.perlin eaT mte of convergence 

holds if and only if the Dermis- More condition holds. 

This framework can be applied to Broyden, BFGS, DFP and other updates 
to obtain a convergence statement of the following type: 

Theorem 6 Sv,ppose that Ass71,rnption 2 holds. If (xo, Bo) are svfjiciently close 
to (x*, \72 f(x*)) then the q71,asi- Newton method with the Broyden, DFP OT' 

BFGS v.pdate is well defined and the mte of convergence of Xk to x* is su
per-linear-. 

8. Quasi-Newton methods with structure 

In various applicat ions it is possible to compute a certain part of the Hessian 
at reasonable cost whereas other parts are prohibitively expensive to calculate. 
The standard examples are minimization problems of nonlinear least squares 
type which can also be found among optimal shape design problems. 

Let R : IR"' -> IRm. be a nonlinear map such that 

Then the first derivative is 

'Vf( x) = .J(x fR( x), Jacobian .J(.r) of R(x) 

and the second derivative is given by 

m 

\72 f(x) = J(x)T.J(x) + L T!(x)\7 2rl( x). 
1=1 

In a standard quasi-Newton method one would approximate all of the Hessian 
by an update. Since one has to compute the Jacobian .J(.r) in any case to 
evaluate the right hand side of the linear system to be solved, the first term in 
the sum of the Hessian is known exactly and would not need to be approximated. 

In structured quasi- Newton updates one distinguishes between a computed 
part C(:~:) and an approximated part A(x) of the Hessian: 

\72 f(x) = C(x) + A(x). 
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Clearly, in the case of nonlinear least squares we choose 

m 

C(x ) = .J(xf J(x), A(x) = 2::= rt(x)V2rt(x). 
l= l 

The step for a structured quasi-Newton method requires the solution of 

(C(xc) + ~c)s = - Vf(xc)· 

T he update for the matrix A should satisfy the secant equation (2) and from 
that we obtain a modification y# of y for the update formula. Altogether we 
obtain the following algorithm in the case of a structured Broyden update. 

Algorithm 5 

Given 
Solve 
S et 
S et 

Set 

Xc,Ac 
(C(xc) +Ac)s = - Vf(xc) 
X+= Xc + S 

y# =V f(x+)- V f(xc)- C(x+)s 
(y# - Acs)sT 

A+= Ac + T s s 

Note that indeed the secant equation holds 

In the last section have outlined a principal concept for the convergence proof 
which can be adapted to various special cases. W ith regard to this one has to 
check the Bounded Deterioration Property and the Dennis- More condition for 
the approximations C(xk) + Ak of the Hessian. The following theorem holds for 
the structured Broyden update. 

Theorem 7 Let the Assumption 2 be satisfied. If (xo, Ao) are S1J.fficiently close 
to (:r;*,A(x*)) then the itemtes Xk pmdnced by the strv.ctv.red Broyden- v.pdate 
are well defined and converge to x* at a S1J.peTlinear mte. 

Similar theorems hold for the DFP and BFGS update and under additional 
assumption for the SR- 1 update. For proofs of these methods we refer to Dennis 
and Schnabel (1983). 

In a more recent publication, Huschcns (1994) exploits not only additive 
structure as in this section but also multiplicative structure. T his yields an effi
cient modification of the Gau13- Newton method to solve nonlinear least squares 
problems. 
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9. Inexact Newton method 

At each step of Newton's method a linear system of equations has to be solved. 
There is an abundance of methods available to solve these subproblems. 

If one has to solve large scale linear systems which easily occur in the pre
sence of discretized differential equations, one has to use iterative methods like 
Conjugate Gradient or GMRES. The main advantage of these methods is that 
they only need a subroutine which outputs the result of a matrix-vector product 
but not the matrix itself. 

The reason for the need of iterative methods is the size of the problem. In 
many cases it is no longer possible to store a matrix due to the size or due 
to the way it enters the problem. The linearized state equation which is a 
matrix-vector product might be solved with a special finite element software. 
Hence no explicit matrix formulation describing the linear transformation for 
the linearized state equation is available. 

Another reason for using iterative methods is the condition number which 
occurs for some discretized problems being prohibitively high for a direct method 
leading to an incorrect solution. Here preconditioned GMRES or CG methods 
are a useful approach to this difficulty. 

If a linear system is solved iteratively the question of a proper termination 
criterion arises. Although one could run the iteration up to the accuracy of 
the roundoff error this might not be advantageous. When far away from the 
solution it could be sufficient to obtain only an approximate solution of the 
linear system. This way one could save computing time in the initial process. 
This concept is called inexact Newton method. 

Algorithm 6 Choose a seqv.ence 'r/k > 0. 

Given 
Finds with 
Set 

Xc 

IIV2 f(xc)s +V f(xc)ll :S: 'T/ciiV f(xc) ll 
X+= Xc + 8 

The next theorem deals with the question of how small the tolerance should be 
to keep the f&c;t rate of the overall algorithm. 

Theorem 8 Let Assv.mption 2 hold. If x 0 is sufficiently close to x. then ther-e 
is 'Tl• > 0 .mch that in dependence of the choice for 'r/k the following rates of 
convergence ar-e obtained for the seqv.ence x~,, which is pmdv.ced by the inexact 
Newton method. · 

0 < 'r/k ::; 'f/• 
'r/k ___, 0 

'r/k :S: ell V f(x~,,) 11 

=? linear- convergence, 
=? super-linear convergence, 
=? q11.adratic convet:gence. 

A proof has been given by Dernbo, Eisenstat and Steihaug (1982) . The theo
rem clearly states that the residual of the solution of the linear system is the 
measure for the termination criterion of the iterative linear solver. The closer 
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the iterates Xk approach a stationary point the more accurate the solution has 
to be. Extensions of these methods have been investigated in various recent 
papers, c. g. by Brown and Saad (1994), Eisenstat and Walker (1994). 

10. Special optimization problems 

In this section we take a look at optimization problems with a particular struc
ture. This structure shows up in many optimal shape design problems. We use 
this simplified structure in order to clarify some of the implementational details. 

Minimize cp(y,x) such that e(y,x) = 0. (4) 

If e(y, x) = 0 denotes a differential equation with y being the solution and x the 
design parameter, then this equation can often be solved uniquely in y for each 
x. This is true under the following assumption. 

Assumption 5 Let e : IRn+m. ----t JRm. and cp : JR"+m. ----t lR continv,ov.sly difj'eT
entiable on JR"+m.. Let ey(y, x) E JRm.xm. be inve·rtible joT all (y, x) E JR"+m.. 

The implicit function theorem allows to define the following map. 

Lemma 1 Let Assumption 5 hold and let x* and y* satisfy e(y*, x*) = 0. Then 
theTe exists a 7J,niqv.e mapping in a neighbor'hood U of x* 

with 

e(y(x), x) = 0 Vx E U. 

Fv.TthennoTe, y(-) is contin7J,ov.sly d~ff'eTentiable and its der·ivative y' ( x) E JRrn. x n 
is given by 

(5) 

Then one can defi.ne the following optimization problem which is equivalent to 
(4) 

Minimize f(x) = cp(y(x),x) (6) 

This is an unconstrained optimization problem. The gradient of this function 
can be computed if y'(x) is known. Note, however, that this requires the com
putation of the m x n matrix y'(x) of sensitivities, i.e. the solution of n linear 
system:,; of the size m, x rn. 

An alternative approach via the idea of an adjoint variable is shown in the 
next lemma. In this case only one linear system (7) of m equations in m un
knowns has to be solved. 
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Lemma 2 Let Assnrnption 5 hold. Define for· x E JFC a vector p( x) E IF{" as 
the uniqv.e solv.tion of 

Then 

Vf(x) = e,(y(x),xfp(x) + 'lxcfJ(y(x),x). 

Proof 
The proof follows from the chain rule and (5). 

Vf(x) y'(x)TV11 cp(y(x),x) + 'Y'xcfJ(y(x),x) 
-ex(y(x), x)T e11 (y(x), x)-T'lycp(y(x), x) +V xcfJ(y(x), x) 
ex(y(x),x)Tp(x) + 'lxcfJ(y(.r),x). 

The next step is to compute the second derivative. 

(7) 

(8) 

D 

Assumption 6 Let e : IR."'+m. --> mm. and cp : mn+m --> JR. twice continv.onsly 
di.ffer-erl.tiable on mn+m.. Let ey (y) X) be invertible for all (y) X) E mn+m.. 

In order to simplify the notation we define the Lagrangian L : IR.2m.+n --> JR. as 

L(y,x,p) = e(y,xfp+ cp(y,x). 

Then equation (7) can be rewritten as Ly(y(x),x,p(x)) = 0. The gradient off 
is given by 

Vf(x) = Lx(y(x),x,p(x)). 

Differentiating f a second t ime requires the differentiation of p. 

Lemma 3 Let Assnrnption 6 hold. Then p(x) as defined in (7) is differ-erl.tiable 
and 

p'(x) -ey(y(x), x)-T hx(p(x), X) (9) 
ey (y(x), x )-T (Lyx (y(x), x, p(x)) + Ly11 (y(x), x, p(x) )y' (x)). 

Proof 
Define a map h : mm.+n --> IR.m. by 

h(p, x) = Ly(y(x), x,p(x)) = ey(y(x), xf p + Vyc/J(y(x), x) 

where by (7) p(x) solves h(p(x) ,x) = 0. Since hp(p,x) = ey(y(x),x)T is invert
ible by Assumption 5 the implicit function theorem, Lemma 1, can be applied 
again and (9) follows. 

D 
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Similarly to the sensitivity equations for y' (x) the computation of p' (x) requires 
the solution of n systems of the size m x m . 

The Hessian of f can be represented by using the Lagrangian. 

Theorem 9 Let Assv,m.ption 6 hold. Then f is twice #fj'eTentiable. 

Lxx(y(x), x,p(x)) + y'(xf L 11 x(y(x), x,p(x)) (10) 
+Lx11 (y(x), x ,p(x))y'(x) + y'(x)T L 1111 (y(x), x,p(x))y'(.r- ). 

Proof 
We use the representation Vf(x) = Lx(y(x), .r-, p(x)) to derive 

With (9) and (5) 

V 2 f(x) 

d~Lx(y(x), x,p(x)) 
ex(y(x), x)T p' (x) 
+ Lxx (y(x), .1:, p( x)) + Lxy (y(x), x , p(x) )y' (.1:). 

ex(y(x), x)T e11 (y(x), x)-Thx(p(x), .1: ) 
+Lxx(y(x), x,p(x)) + Lx11 (y(:~; ), x,p(.r-))y'(x) 
y' (x )T hx (p(.1:), X) 
+Lxx(y(x), x,p(x)) + Lx11 (y(x), x,p(x))y'(x) 

which proves (10) using 

hx(p(x), x) = L 11x(y(x), x,p(x)) + L 1111 (y(x) , x, p(x) )y' (x ). 

(11) 

0 

It is important to note that the computat ion of the Hessian with this Theorem 
g requires the solution of n linear systems of the size m. x m for y'(x:). The 
computation of p'(x) is not needed in this case. 

If iterative methods are used to solve Newton equation V 2 f(x)s = -V f(x) 
like in inexact Newton methods the following theorem describing the matrix
vector multiplication is an alternative. 

Theorem 10 Let Assv,m.ption 6 hold. Then joT s E IRn the m.v,ltiplication 
V 2 f(x)s can be caTTied ov.t as follows. Solve 

e11 (y(x), x)v = -ex(y(x), x;).s (12) 

for V E JRm and 

e11 (y(x) ,.r-)T w = L 11x(y(x), x,p(x)) + L 1111 (y(x), x,p(x))v (13) 

for- VJ E JRm.. Then we have 

V2 f(x)s = ex(y(x), x)w + Lxx(y(x), x,p(:r:))s + Lx11 (y(x), x,p(x))v (14) 
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Proof 
From (5) we obtain that v = y'(x)8. Equation (9) shows that w = p'(x)8. Then 
(14) can be rewritten as 

ex(y(x), x)p'(x)8 
+Lxx(y(x), x,p(x))s + Lxy(y(x), x,p(x))y'(.x)s, 

which proves (14) using (11). 

D 

This shows that at each iteration of an iterative solver for Newton equation the 
solution of two linear systems of the size m x m is required in contrast ton for 
the computation of the complete Hessian. 

It is very much problem dependent which of the two approaches outlined 
above should be preferred . 

11. Optimal shape design problem 

In this section we show how to apply some of the previous results to a problem 
in optimal shape design. For simplicity we state this problem in the infinite 
dimensional setting as presented in the doctoral thesis of Laumcn (1996d). This 
is no drawback because all of the previous results can be extended to the infinite 
dimensional case. Moreover the discrctized finite dimensional optimal shape 
design problem will not only be of the structure shown in the previous section, 
but the infinite dimensional formulation enables us also to compare the infinite 
dimensional iterates with the discretized ones leading to a mesh independence 
behavior Laumen (1996b). 

Let the bounded domain D C IR? be parametrized by a function v. E Uad and 
Uad a subset of a function space U defined on an interval I C JR . Let J : U x V 
be twice Fr6chct-differentiablc and the Sobolev space V be given by 

V(D) = {v E H 1 (D) : /ocP ito = 0} 

with the partition D = fo url and the trace operator /0 E L(H1 (D),H~(fo)). 
Then the optimal shape design problem is 

min .J(v., JJ), where a(y,ii) = Z(iJ) V iJ E V:= V(D), 
u EUad 

(15) 

We use the mapping method to transform the problem onto a fixed domain 
D = (0, 1) x I. For the fixed domain problem we drop the notation with the 
tilde. This yields 

min J(v.,y), where a(u;y,'T)) = l(v.;'T)) V 'T) E V, 
uEUad 

with a general bilinear form 

a(v.;y,'T)) = L (aii(v.)Diy,DiTJ).c2(0) + (b(u)y,'T)).c2(r1 ), 

lii ,Lii:S l 

(16) 
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and an arbitrary linear functional 

l(u;rJ) = L (fi(u),fJ)£2(D.) + (f(v.),fJ)£2(rl)· 
lil9 

In this problem the domain is fixed at the expense of the fact that the coefficients 
in the variational equality depend nonlinearly on the parameter function u E 

Uad· 
Note that this formulation is of similar type as the optimization problem (4), 

where the equality constraint is defined by the variational equality (16). We can 
prove that for each v. there exists a uniq uc y( u) under the following assumption : 

Assumption 7 Let n c JR2 have a Lipschitz continuov.s bov.ndary, a( u; ·. ·) be 
a V-elliptic bilinear form for all v. E Uad, and f(u) E V', ai7(v.) E £ 00 (0), 
IJ( v.) E £ 00 (r 1) . Let f, aii, and IJ be once continv.ov.sly Frechet-differ-erdiable in 
'U .. 

The following statements can be found in Laumen (1996c) for this problem. 

Theorem 11 Let Assumption 7 be tn1.e. FoT each l ( u; ·) E V', theTe exists 
a unique solution y E V and a unique solv.tion p E V of the two vaTiational 
equations 

a(v.;y,rJ) 
a( v.; 7), p) 

l(v.;rJ) 
l(u;rJ) 

Vf)EV, 
'VrJEV, 

(17) 

which define solution opera toTs y : Uad ---> V with y = y( v.) and p : Uad ---> V 
with p = p( u). 

Thus we are able to rewrite the optimization problem (16) as an unconstrained 
one 

rnin f(v.), where f(v.) = J(v., y(v.)) 
nEUad 

(18) 

Under additional smoothness assumptions on the functions involved one can 
prove how to compute the first derivative. 

Theorem 12 The solution opemtor·s y : Uad ---> V and p : Uad ---> V aTe 
Frechet-d~fjeTentiable with y'(v.), p'(v.) E L(U, V). MoTeover-, yv := y'(v.)(v ) 
and pv := p'(v.)(v) aTe the uniqv.e solv.tions of the variational pToblem .. ~ 

with 

and 

a.( v.; f/, T)) 

a.( v.; T)' Pv) 

l11 (u; TJ)(v)- a,1.(v.; y(v.), TJ)(v) 

l.u.(v.; TJ)(v)- a.u(v.; T),p(v.))(v) 

'VTJ E V, 

Vf) E V, 

a.n(v.;y,TJ)(v) = L (a~7 (v.)(v)Diy,'D7 TJ)£2(D.) + (IJ'(v.)(v)y,fJ)£2(rl) 
lil 'Lil:::: 1 

ln(v.; TJ)(v) = (f'(v.)(v),TJ)v'xV· 

(1!3) 

(20) 
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This theorem enables us to compute the first derivative using the concept of 
adjoint equations by setting 1( u; , 'T)) = .ly ( u , y( v.)) ( 'T)) in (17) of Theorem 11. 

Theorem 13 Ther-e exists a uniqv.e solution p E V of the a~joint equation 

a(u;'T},p) = J11 (v. , y(v.) )('TJ ) (21) 

and a unique solution opemtoT p : Uad _, V with p = p(v.). Mor-eove-r, the cost 
funct ion f is also Fr-echet-di.ffeTentiable and the action of f' ( v.) E L(U, IR) on 
v E U is defined by 

J'(u)(v) = .lu(v., y(n))(v) + lu(v.;p(v.))(v)- au(v.; y(v.) ,p(v.))(v). 

For the second derivative we give the result for a Hessian applied to a vector. 

Theorem 14 The deTivative p := pw := p'(v.)(w) of the a~joint eqv.ation is 
defined by the solution of the var·iational pmblern 

a(v.; 'T),p) = .l11u(v., y(v.))('TJ)(w) + .ly11 (v., y(v.))('TJ)(y'(v.)(w)) 
- a,1 (v.; 'T) ,p(v.))(w) V'T] E V. 

The cost fun ction f is also twice Frechet-di.ffer-entiable and f" ( v.) E L(U, L(U, IR)) 
is defined by 

with 

and 

f"(v.)(v)(w) 
= .ln,1 (v., y(v.), z(v.))(v)(w) + .luy(v., y(v.), z(v.))(v) (y'(v.)(w)) 
-a,1.(u; y'(v.)(w), p(v.) )(v)- a,1,(v.; y(v.),p'(v.)(w))(v) 
-O.un(v. ; y(v.),p(v.))(v)(w) 
+l,Jv.;p'(v.)(w))(v) + luu(v.; p(v.))(v)(w) 

O.un(v.; y ,p)(v)(w) 

= L[i[,lil:Sl (a~'1 (u)(v)(w)Diy, D 1p)L2(f:l) + (l/'(v.)(v)(w)y,p)L2(r,) 

ln,1 (v.;p)(v)(w) = (J"(u)(v)(w),p)v'xV· 

12. Numerical results 

The numerical results were obtained for an example of an optimal shape design 
problem presented in Laumen (1996a). The minimization problem (16) is based 
on a discretization of the state space V and the control space U. Both spaces are 
discretized by linear spline functions on JR2 and JR1

, respectively. The problem 
specific structure has been exploited comprehensively as outlined in Laumen 
(1996c). 
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it t ime II!Iv(v.f1)11 
0 8 0.167E- 01 

100 719 0.120E - 03 
500 3327 0.187E- 04 
1000 6350 0.336E- 05 
1500 9234 0.626E- 06 
2000 11990 0.117E- 06 
2500 14623 0.220E- 07 
2737 15826 0.997E- 08 

Table 1. Gradient method without line-search technique 

it time ll!Iv(v.f1)11 
0 8 0.167E - 01 
50 1147 0.386E- 04 
100 2205 0.496E- 05 
150 3216 0.664E- 06 
200 4168 0.932E- 07 
250 5072 0.297E- 07 
265 5333 0.844E - 08 

Table 2. Gradient method 
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it time llf~(v.p" )11 
0 8 0.167£-01 
1 395 0.245£-03 
2 654 0.620£-05 
3 840 0.865E- 06 
4 996 0.202£-06 
5 1131 0.599E- 07 
6 1251 0.230£-07 
7 1347 0.102£-07 
8 1442 0.513£-08 

Table 3. Newton's method 

In Table 12.1 the iteration for a gradient method without line search is 
presented. It shows an enormous number of iterations until the convergence 
criterion is satisfied. 

The numerical behavior of the gradient method can be improved vastly if a 
line search is incorporated. This is illustrated in Table 12.2. 

Newton method clearly outperforms the gradient method in terms of itera
tions. However, note that also with regard to timing Newton method is faster 
by a factor of 3 than the gradient method with line search. 

Among the quasi- Newton methods tested the SR- 1 update showed the best 
performance. In Table 11 .4 it shows clearly that although the number of iter
ates is higher than for Newton method it has a much lower computing time. 
Comparing Table 12.4 with 12.1 it shows a dramatic improvement although in 
this algorithm only first order information, i. e. the computation of gradients, 
is required . 
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it time Jlf~(ufl)JJ 
0 8 0.167E- 01 
5 46 0.407E- 03 
10 85 0.105E- 03 
15 121 O.S31E- 04 
20 156 0.113E- 04 
25 101 0.742E- 05 
30 224 0.975E- 06 
35 256 0.116E - 06 
40 288 0.769E - 07 
45 319 0.155E- 07 
46 32:::> 0.023E- 08 

Table 4. Quasi-Newton method with SR1-update 
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