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Abstract: The present work is devoted to the theoretical and 
numerical presentation of the basic shape optimal design approach 
with, as a learning example, the harmonic linear acoustics model. 
Some numerical results are presented . 

1. Introduction 

The general problem is to find, amongst all of some admissible domains i.e. 
belonging to a prescribed class of domains, the one that minimizes a given cost 
J(n). 

The cost iH usually obtained by means of ar~ obser-vation functional .ln: 

J(n) = Jn(v.n) 

where v.0 is itself the solution of some partial differential equation posed over 
the domain n. 

The bibliography related to this field is very large, see e.g. Cea (1986), 
Simon, Murat (1976), Masmoudi (1987), Sokolowski and Zolesio (1992), Piron­
neau (1984), Habbal (1992), etc. 

In our case study, the optimal design problem is the following: 
Let n be a bounded open subset of JR?, with a regular enough boundary 

on = f 1 u f 2 . A time-harmonic acoustical source, located inside n, generates 
an acoustical pressure Pn, which depends on the shape of the domain n. Given 
a subset z of n, the optimization problem is to find the shape of rl which 
minimizes an objective function, explicitly depending on Pn and , eventually, on 
n. 

The problem set above is an approximation of real-world situations, where 
the source is machinery, air duct or any noise generating system, and Z is a 
region to be protected against the noise annoyance. 
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Figure 1. Example of domain geometry. 

In Section 2., we recall the classical mathematical framework, where the 
Helrnholtz equations are stated. Then, is Section 3., we define the basic mathe­
matical tools that arc needed in the framework of optimal domain design , with 
an emphasis on the domain deTivative concept. Then, in Section 4., we apply 
the results of the Section 3 . to the Helrnholtz model. Afterwards, Section 5. 
describes with details the numerical implementation, with some remarks on the 
optimization software design. 

F inally, in Section 6., we present some numerical optimization results, for 
two differentiable cost functions and a nondifferentiablc one. 

2. The Helmholtz equation 

The propagation of acoustical waves of small amplitude, in a compressible, invis­
cid, isotropic homogeneous fluid, is governed by the lineaTized Ev.leT equations, 
sec e.g. Morand, Ohayon (1992). 

vVhen the emitting sources arc time-harmonic, t he resulting acoustical pres­
sure is too. We assume, for simplification, that the domain occupied by the 
fluid is bounded, with a sound-haTd boundary. Then, if the acoustical source is 
of the form 

S(x, t) = S(x )cos(wt) 

the pressure field, solution of t he linearized Euler equation, is of the same form, 

p(x, t) = p(x)co.s(wt) 

where x is the spatial variable, t the time variable, and w the pulsation of the 
source. 
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The unknown of the problem is now p(x), which is the solution to the 
Hclmholtz equation: 

s inn 

0 over an (1) 

where k = ~ is the wave number, c is the speed of sound inside the fluid. 
Since the domain n is bounded, the operator -.6. has real, positive eigen­

values depending on n. We assume that k2 is not one of them, which implies 
that for any source SE L2 (D), there exists one and only one solution p to the 
Helmholtz equation (1), known to belong to the Sobolev space H 1 (D), see e.g. 
Trudinger, Gilbarg (1977). 

The above equation has an equivalent vaTiational form: 
Find p E H 1 (D) such that 

'iq E H 1 (D), an(P, q) = Ln(q) 

where 

Ln(q) = { S.qdD 
.In 

(2) 

Remark 2.1 It is shown in Rov,sselet (1982), that the mapping D f----7 An , 
where An is an eigenvalv.e of the Laplace operatoT, is continuous. Then, if k2 is 
not an eigenvalv.e joT a given n, it is not one joT any domain S1J.Jjiciently close 
to D. 

The optimization pmcess will peTinTbate the init?:al domain n, giving a new 
domain D', and we have to check, nv.rneTically at least, that k2 is not an eigen­
val?;,e of n'. 

3. Optimal domain design 

In the classical optimal control problems, the space of the control variables 
is generally a Banach or a HilbeTt one, which allows to define and compute 
deTivatives and gradients that can be used as descent diTections in optimization 
procedures. 

The problem in our context is that sets of domains in JR? have no vectoT 
space strv.ctv.r-e! making it impossible to define classical derivatives with respect 
to the domain variable ... 

In order to bypass this lack of structure, we shall use a transport method, 
see Simon, Murat (1976), which consists in choosing a reference .fixed domain D, 
regular open bounded subset in JR?, and then define geneTic admissible domains 
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n as the images of D, by generic mappings T, elements of the Banach space 
w1,oo(D; m?)l. 

The differentiability framework could now be set in the above Banach space, 
the transport method being the tool that makes the link between the classical 
derivative notion in a Banach space, and the domain derivative concept. 

Remark 3.1 The Teason joT the choice of the space W 1•00 instead of moTe 
TegulaT Spaces wm,p is twofold: 

• it is large enough to not smooth coTner·s {which aTe often pTesent in acov.s­
tics pmblems). 

• it 1:s restricted enough to not allow cTeation of cracks {loss of Tegular-ity 
for· the uo var-iable) . 

Remark 3.2 The tmnspoTt method does not peTmit topological modifications 
of the domain. All the admissible domains as defined below, aTe topologically 
similaT to the r·efeTen ce domain. TheTejoTe, within a covpled acov.stic-slir'uctnr-e 
fmm ewoTk for- example, it is not possible, 11.sing the tmnspor-t method, to cTeate 
OT Temove holes in a mdiating stTv.ctv:re. 

When looking joT such a mod~fication, specific appTOaches rri.1J.st be used, see 
e. g. Kahn, AllaiTe {1993). 

3.1. The domain derivative 

Let us make some notations more precise: 
D is a fixed open bounded subset of JR2 , with a piec;:ewise C 1 boundary, 
w = wl,oo (n; IR2 ) 

A A A A '" 0 A AA 2 
U = {T E W , T 1.s bzJectwe, r-1 E W 1•00 (T(D); JR )} 
(; is an open subset of W. 
The set of domains that will be considered is: 

Let now be a generic domain functional , j , such that: 

j : D(D) ----; IR 

n f.-----> j(D) 

we then associate to j, a functional J defined by: 

J (; ----; IR 

i' f.-----> J(T) = j (D) 
where n = i'(D) 

(3) 

1W1 ·"" (0; JR? ) = {t: n >--> JR.2 s.t. T E L"" (O) , DT E L"" (O)} where DT is t he J aco­

bian matrix of T. 
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The functional j is now defined over an open subset of the Banach space W, 
and we can define the Frechet der-ivative of j, in any element To E U. 

The domain der-ivative of j , in a given Do E D(D) is therefore defined as 
follows: 

Definition 3.1 Let be To E U such that To(D) = D0 . 

The functional j is said to be differ-entiable in Do, if the mapping j is Prechet 
differentiable in To. We then set: 

d d A A 

----nJ(Do).V = -A j(T0 ).(V o T0 ) 
d~~ dT 

(4) 

Remark 3.3 It can be easily shown that the domain derivative is independent 
from the mapping which repr-esents the domain Do . 

Remark 3.4 When a domain functional j is differentiable, its directional deriva­
tive d~j(D).V as defined above corresponds to the intuitive finite difference ap­
pTOxirnation: 

_:!:_j(D).V = lim j(D + tV) - j(D) 
dD t~o t 

From a numerical point of view, this is a simple and good tool to check the 
validity of der-ivative values, computed using e.g. the adjoint state method . 

R emark 3.5 It is proved, in Simon, Murat {1976), v.nder some Tegv.larity as­
sv.rnptions on the vectoT .field V (V of bounded second derivatives), that joT any 
difj'e'f'entiable domain functional, the der-ivative depends only on the trace of V 
ove'f' the boundar-y. 

3.2. The adjoint state method 

Using the same notations as above, our optimal design framework can be stated 
as follows: 

• W is the Banach space of contTOls, 
• U is an open subset of admissible controls of W, 
• For any T E U, we associate a Hilbert space V(D), where D = T(D), and 

a state eqv.ation: 
Find un, E V(D) such that 

'Vv E V(D), an,(v.n,, v) = Ln(v) (5) 
The solution v.n, is called the direct state variable. 

• an is a continuous bilinear form over V(D) x V(D). It is assumed sym­
metric and elliptic2 

2 The ellipticity condition is, in fact, sufficient but not necessary. The same results hold if 
the associated l·inear operator defined by (Au , v) = a( u, v) is an isomorphism from V onto its 
dual V'. 
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• Ln is a continuous linear form over V(D) 
H is demonstrated, in Rousselct (1982), that if the mappings D !--; an 
and D !--; Ln arc differentiable, t hen the mapping D ~--; v.n is also 
differentiable (in the sense of definition 4). 

• Given an observation: 
Jn : V(D) ---+ lR 

v ~--; Jn(v) 
we define the cost j by : j(D) = .Tn(v.n) 
If we assume that the mappings n ~--; Jn and v ~--; Jn ( v) are contin­
uously differentiable, then, using the composition theorem, we conclude 
that the cost j is differentiable with respect to the domain variable. 

• We then define the adjoint state variable, as the unique solution of the 
adjoint state equation: 
Find Pn E V(D) such that 

'<lw E V(D) , an(pn,w) 8Jo. ( ) = ---;;;-- v.o. 'w 
uv 

• The domain derivative of the cost j is then given by: 
d . 8an 8Lo. 8Jo. 

dDJ(D).V - aD. (v.o.,Po.).V + aD. (po. ).V + aD. (v.0 ).V 

V V E W 1 '00 (D.; JR2 ) 

(6) 

(7) 

From a mJ,me-rical point of view, the adjoint state variable can be computed, 
using e.g. the same finite element solver that computes the direct state. 

The computation of the derivative of j requires, however, the implementation 
of the subroutines 

We give, hereafter, some formula..'> (without proof) that may be useful, at 
least when implementing domain derivatives for second oTdeT elliptic problems. 

3.3. Formulas 

• D. c JR2 is an open domain, with a piecewise C 1 boundary, 
• T : unitary tangent vector to the boundary 80, 
• j, g : D. ---+ lR 

h : 8D. ---+ lR 
arc given functions , 

• V = (V1, V2) E W 1·00 (D.; IR2), 
•Vi ·= £Yi. ,.1 ax.i 

• div(V) = V1,1 + V2,2 
• (DV) i.i = (Vi .. i) (DV) is the Jacobian matrix of V, 
• [DV] = (DV) + (DV)T 
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Using these notations, one gets: 

a~ (.J~ jdD) .V 

a~ (.j~ V f. \lg dD) . V 

.f~ j.div(V)dD 

.f~ V f .\lg div(V)dD- .f~ < [DV]\! j, 
\lg > dD 

.f~n < T, (DV)T > h df 

923 

(8) 

Remark 3.6 Under- r-egular-ity a.sw.mptions, the two .fir-st domain integml.s above 
can be expr-essed as bov:ndaTJJ integrals. Instead of being cost-less, this appmach 
leads to worse rw.mer-ical r-esults, see Masmov.di {1987), which may cost moTe 
expensive .finite element analyses, d?J,Ting the optimization pmcess. 

4. The application to the Helmholtz model 

Within the optimal design framework set in the previous section, we consider a 
given reference domain D., e.g. the one of Fig. 1 with a rectangular barrier r 1 . 

The space of controls W, the open subset (;of W and the set of admissible 
domains arc the following: 

• w = W 1
•
00 (D; m?) 

' ' '' '1 1 '' 2 • U = {T E W, T is !Jijective, T- E W '00 (T(D); 1R )} 
• D({2) = {D = T(D) I T E U} 

4.1. The state equation 

To any domain n E D(D), we associate a dir-ect state equation: 

{ 

-D.pn - k2pn 
opn 
8n 

Sn over n 
0 oveT DD 

(9) 

If the acoustical source Sn belongs to the space L2 (D), then the solution Pn 
belongs to the space H(D) , defined by: 

where D' c D' c n is any open regular set, sufficiently far from the boundary 
of n, sec e.g. Necas (1967). 

The strong linear operator A(D) associated to the Helmholtz equation: 

A(D) : H(D) __, L 2 (D) 

p f----+ A(D).p = -D.p- k2p 

is then an isommphisrn from H(D) onto L 2 (D). 

(10) 
(11) 



924 A.HABBAL 

As the mapping S1 f------+ A(D) is differentiable, see Simon, Murat (1976), 
we conclude using the implicit function theorem, that, provided the mapping 
S1 f------+ Sn is too, the mapping S1 f------+ Pn is differentiable from D(D) onto H(D) , 
and hence, a foTtioTi, from D(D) onto the Sobolev space H 1 (D). This allows us 
to consider the equivalent weak form: 

L(fl; q) (12) . 

where: 
• a(D;p,q) = fn 'Vp'VqdSl - k2 j~p.qdSl 
• L(D; q) = fn S.qdSl 

which will be subsequently used in order to derive the adjoint state equation, 
and to compute the cost gradient. 

4.2. The observation 

The target zone i.e. the region where we want to minimize noise, denoted Z, is 
an open, regular enough, subset of the whole domain D, which is assumed to be 
far enough from the acoustical source, and from the boundary of n. 

We also make the assumption that Z is stable for any mapping T E U i.e. 
i'(z) = z = z. 

This is a natural and realistic assumption, since the taT:qet element i.e. the 
geometrical piece of the domain to re-design is the barrier r 1' and not the 
sensitive area Z! 

Then, we consider a family of observations: 

1 

.Im(P) = (/~ lp(x)lmdz)"' 2 ~·m < +oo 

It is important to notice that the considered observations do not depend on n. 
Due to the Sobolev embedding theorems, the space H 1 (D) can be continu­

ously embedded in Lm(D) for 2 ~ m< +oo. Hence, the observations .Im.(P) are 
well defined for any p, element of H 1 (D) . 

The cost fv:nction, given by Jm(fl) = .Im(Pn), is differentiable from D(D) 
onto IR w.r.t. the domain variable f.l (in the sense of definition 4), as a compo­
sition of the differentiable mappings p f------+ .Im(P) and S1 f------+ pn . 

4.3. The domain derivative 

In order to compute the domain derivative of the cost ]m, we introduce an 
adjoint state variable Pn E H 1 (D), which is the unique solution to the adjoint 

state eq71.ation: 

(13) 
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where 

a~~t (S1; Pn).q = (L jp(x)lmdz ) r};-l . . fz jp(x)lm-l_qdZ 

Thcderivativeofjm.(S1) inagivenS1, along some direction V E W 1•00 (S1; JR?) 
is then obtained by the formula (7). Using the results of section 3.3. and the 
same notations, one has: 

d 
dSljm(Sl ).V - / Vpn.Vp;l div(V)dst + 

Jn;z 

+ / < [DV]Vp0 , Vp;l > dSl 
.fo;z 

+ / S.p;l div(V)dSl 
.fo;z 

(14) 

Remark 4.1 Remember that the target zone must remain stable when the initial 
domain S1 is pert?J.rbed by a .field V, giving a domain S1 + V (Sl). In order to 
ass1J,Te this, one can impose the condition V = 0 over- the region Z. 

That; is the r-eason why the above integr-als ar-e set over- Sl/Z, and not over 
the whole Sl. 

5. Numerical implementation 

There are mainly three kinds of approximation that intervene in shape optimal 
design: 

• The dom.ain appmximation, which consists in discretizing the infinite di­
mensional space of controls, using geometrical approximation tools, e.g. 
cubic splines, to approximate the boundary of the domain . 

• The direct and ad.foint state appmximation 
• The gr-adient appTOxirnation 

In the following, we give more details about each of the above approximations. 

5.1. The domain approximation 

In a first step, we choose to approximate the general shape of the target element 
by C1J,bic splines, as shown Fig.2, using a finite number N of interpolation nodes, 
which arc called master- nodes. T he optimization variables become now the 
master· nodes coordinates. 

In order to get a finite dimensional space W N, which approximates t he space 
W 1•00 (Sl; JR2 ), necessary for the gradient approximation, we first compute the 
N basic elements Vi, i = 1, ... , N such that: 

0 over Sl/Z 
0 over r2 u az 
Si over rl 

(15) 
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Figure 2. Approximation of the target clement 
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where the functions 8; arc the N basic cnbic 8-splines3 depending on the N 
master nodes. 

T he discrete space W N is theu the one spanned by the Vi's, i.e. the successive 
domains will be of t he form : 

i=N 

nk + L a;.Vi(D1") 

i = l 

5.2. The state variables approximation 

Tlw method used to compute approximations of the (Vi) defiued above, of the 
acoustical pressm:e and of the adjoint state variable is the Finite Ele-ment lll!ethod 
(FEM). 

In the present paper, we used piccewise linear triangular finite element ap­
proximation, which is of first order precision. The choice of this low order 
method is guided by the fact that the optimization process needs many FE 
computatious, a11<l one has to make a compromise between cheap computations 
a11<l precise results. The method used tmncd out to be optimal from this point 
of view. 

5.3. The gradient approximation 

The exact derivative of ]m w.r. t . the domain variable is given by the formula 
(14). This derivative is called a continnons deTivative, in the sense that it is 
diTecUy de'rived from the continno11,s model. 'Ne define the discTef;ized continuous 

3S-spline bas is is not B-spline one. In particula r, one has s; (::r:j ) = 8;j where Xj is the jth 
mast er no<ie 
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in it 

/._ PRE-PROCESS 

/ 

t 
I 

FINITE 
simulator ---- ELEMENT 

SOLVER 

r-----, ~ ------~------- L-----~ 

t ~ POST-PROCESS 

L---------' ' [ ______ o_p-ti-m-iz-cr--~---
Figure 3. The general software structure 

gmdient DCG as a numerical approximation to the quantity: 

(16) 

As the domain n is triangulated, and approximate numerical values of the 
Vi, po. and p0_ arc provided by the FE solver, it is possible to compute a 
numerical approximation to the G/s, by means of any quadmture forrn.v.la that 
approximates accmatcly volume or surface integrals. 

Remark 5.1 It is shown, in Mw3rn.ov.di (1987), that the order of pr-ecision of 
the appTOxirn.ate val11.e of Gi is the sam.e as that of the .finite element ·method 
11.sed to corn.pvJ;e the di'!'ect and adjoint states. 

5.4. The software design 

The strnctmc of the implemented software is the one recommended by the 
MODULOPT project of INRIA, France, as shown in Fig. 3. The keywords arc 
simulator- and optirn.ize'!'. 

• init : read initial data; select master nodes; compute the Vi; .. . etc 
• simulator : 

given a new geometry of the target element rik) , update the mesh, 
and save the new domain nC"'l, 

test the mesh quality : re-mesh and go to init step if necessary, 
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compute the direct state approximation p(k), 

evaluate the cost J.(k) 
m' 

A.HABBAL 

update the second member of the adjoint state equation, and compute 
the adjoint state approximation p*(k), 

given fl(k), the Vi's, p(k) and p*(k), compute the DCG(k) components, 

- output I'lkl, j~l and DCG(k) to the optimizer 

• optimizer : It is the actual contr-oller· of the whole optimization process. 

It runs the optimization algorithm, asks the simulator to output j~) and 
DCG(k) for an input I'lk), and then, performs a new improved geometry -

rik+l)' which is a new input to the simulator ... etc. 
The process stops when one of the following tests is true: 

maximum of simulation/optimization iterations reached, 

III'(lk+l) - I'(lk)ll I < some to erance parameter, 

IIJ.m(k+l) - J.m(k) 11 ] < some to erance parameter, 

IIDCG(k+l) - DCG(k) 11 < some tolerance parameter 

6. Numerical optimization results 

6.1. The optimization model 

• The domain n is the square unit, with hard-sound boundaries. 
• The acoustical source is a Dirac point-wise distribution, with origin located 

at (0 .9 ,0.2) and magnitude 1. 
• The sensitive area Z is a rectangular zone, as represented in Fig. 4. 
• The target element, i.e. the design variable, is the left side of the square, 

approximated by cubic splines. The master nodes are allowed to move 
horizontally, with a box constraint i.e. all the abscissae x; of the nodes 
fulfill the condition -0.05 ::; X; ::; 0.05. 

This model configuration may e.g. correspond to the situation where a 
machine user is in front of a central processor unit box, which is made of sound­
hard material (seck of comfort for the user). The ventilator fixed at the back 
side, generates harmonic acoustical waves that may deteriorate the computer 
performances. We then seek for the front side the geornetries that minimize the 
effects of the ventilator on the electronic chips (this is a simplified approach; 
in fact, a pertinent model must take into account at least the coupled vibro­
acoustic bchavior.) 

The optimization computations arc done for: 
• different wave numbers : k1 = 1, k2 = 4, k3 = 10 
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sensitive area (processor unit) 

Target element 
(front side) 

0.9 

acoustical source 
(ventilator) 

Figure 4. Description of the model configuration. 

• different cost functions : 
]2(D) .f~ IPn(xWdZ 
j10(D) (.!~ IPn(x)l 10dZ)

1110 

Joo(D) maxxEZ 1Pn(x)l2 

6.2. Optimization results 

929 

The MODULEF finite clement library from INRIA was used in order to compute 
the direct acoustical pressure and its adjoint. 

The optimization algorithms used arc a Quasi-Newton program from MO­
DULOPT project (INRIA, France) for the minimization of the differentiable 
costs j 2 and j10, and the bundle algorithm M2FC1 (from MODULOPT) for the 
minimization of the nonsmooth cost j 00 • 

We prer:;ent some resultr:; in Figs. 5-9, obtained for different wave numbers: 
k = 1, k = 4 and k = 10. The figures show the optimal geometry and pressure 
distribution, starting from the above initial configuration. 
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Figure 5. Optimal geometry and pressure distribution for the cost j 2 . k = 1 

Figme G. Optimal geometry and pressure distribution for the cost J2· k = 4 
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: 1 MNEMO 
o. 7004 
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- 0.4960 

0 . 4278 
0.359'1 
0.2915 
0 .2234 
0 . 1553 
8. 7110E-02 

_ 1.8966E-02 

931 

Figmc 7. Optimal geometry and pressure distribution for the cost j 2 . k 10 

1 MNEMO 
1.116 
1.116 

- 0.9015 
- 0.'1940 
- 0. 6865 
- 0.5'1 90 
- 0.4'116 
- 0.3641 
- 0.2566 
- 0 . 1491 
_ 4 . 1 672E-02 
_ -6 . 5802E-02 
- -0 . 1733 
--0 . 2808 
--0.3882 

Figmc 8. Optimal geometry and pressmc distribution for the cost j 10 . k 10 
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: 1 MNEMO 
~ 0.4502 
- 0.4502 
- 0.3577 
- 0.3114 
- 0.2652 
- 0.2189 
- 0.1727 
- 0.1264 
_ 8.0142E- 02 
_ 3.3885E- 02 
_ -1 . 2372E- 02 
_ -5.8629E-02 
--0.1049 
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Figure 9. Optimal geometry and pressure distribution for the cost j 00 • k = 10 
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