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Abstract: The present work is devoted to the theoretical and
numerical presentation of the basic shape optimal design approach
with, as a learning example, the harmonic linear acoustics model.
Some numerical results are presented.

1. Introduction

The general problem is to find, amongst all of some admissible domains i.e.
belonging to a prescribed class of domains, the one that minimizes a given cost
2(82).

The cost is usually obtained by means of an observation functional Jg:

Q) = Ja(ug)

where ugq is itself the solution of some partial differential equation posed over
the domain Q.

The bibliography related to this field is very large, see e.g. Céa (1986),
Simon, Murat (1976), Masmoudi (1987), Sokolowski and Zolesio (1992), Piron-
neau (1984), Habbal (1992), ctc.

In our case study, the optimal design problem is the following:

Let © be a bounded open subset of R?, with a regular enough boundary
o) = T'; UT'e. A time-harmonic acoustical source, located inside (2, generates
an acoustical pressure pg, which depends on the shape of the domain €. Given
a subset Z of (2, the optimization problem is to find the shape of I'y which
minimizes an objective function, explicitly depending on pq and, eventually, on
€

The problem set above is an approximation of real-world situations, where
the source is machinery, air duct or any noise generating system, and Z is a
region to be protected against the noise annoyance.
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Figure 1. Example of domain geometry.

In Section 2., we recall the classical mathematical framework, where the
Helmholtz equations are stated. Then, is Section 3., we define the basic mathe-
matical tools that are needed in the framework of optimal domain design, with
an cmphasis on the domain derivative concept. Then, in Section 4., we apply
the results of the Section 3. to the Helmholtz model. Afterwards, Section 5.
describes with details the numerical implementation, with some remarks on the
optimization software design.

Finally, in Section 6., we present some numerical optimization results, for
two differentiable cost functions and a nondifferentiable one.

2. The Helmholtz equation

The propagation of acoustical waves of small amplitude, in a compressible, invis-
cid, isotropic homogeneous fluid, is governed by the linearized Euler equations,
see ¢.g. Morand, Ohayon (1992).

When the emitting sources are time-harmonic, the resulting acoustical pres-
sure is too. We assume, for simplification, that the domain occupied by the
fluid is bounded, with a sound-hard boundary. Then, if the acoustical source is
of the form

S(z,t) = S(x)cos(wt)
the pressure field, solution of the linearized Euler equation, is of the same form,
p(z,t) = p(x)cos(wt)

where x is the spatial variable, ¢ the time variable, and w the pulsation of the
source.
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The unknown of the problem is now p(z), which is the solution to the
Helmholtz equation:

QB = 0 over 082 (1)
on
where k = ¢ is the wave number, ¢ is the speed of sound inside the fluid.
Since the domain €2 is bounded, the operator —A has real, positive eigen-
values depending on . We assume that k? is not one of them, which implies
that for any source S € L?(f2), there exists one and only one solution p to the
Helmholtz equation (1), known to belong to the Sobolev space H((), see e.g.
Trudinger, Gilbarg (1977).
The above equation has an equivalent variational form:
Find p € HY(Q) such that

Vqge H'(Q), aqa(p,q) = Lalq) (2)

where

{~Ap—k2p = 5 inQ

aq(p,q) = /Q VpVadQ — K /deQ

Lald) = /Q S.qdQ

Remark 2.1 It is shown in Rousselet (1982), that the mapping Q —— Aq,
where \q is an eigenvalue of the Laplace operator, is continuous. Then, if k? is
not an eigenvalue for a given 2, it is not one for any domain sufficiently close
to 2.

The optimization process will perturbate the initial domain €0, giving a new

domain €, and we have to check, numerically at least, that k* is not an eigen-
value of V.

3. Optimal domain design

In the classical optimal control problems, the space of the control variables
is generally a Banach or a Hilbert one, which allows to define and compute
derivatives and gradients that can be used as descent directions in optimization
procedures.

The problem in our context is that sets of domains in IR? have no vector
space structure! making it impossible to define classical derivatives with respect
to the domain variable...

In order to bypass this lack of structure, we shall use a transport method,
see Simon, Murat (1976), which consists in choosing a reference fized domain 2,
regular open bounded subset in IR?, and then definc generic admissible domains
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Q) as the images of Q, by generic mappings T, elements of the Banach space
Wi (Q; R

The differentiability framework could now be set in the above Banach space,
the transport method being the tool that makes the link between the classical
derivative notion in a Banach space, and the domain derivative concept.

Remark 3.1 The reason for the choice of the space W™ instead of more
reqular spaces W™P is twofold:
e it is large enough to not smooth corners (which are often present in acous-
tics problems).
e i is restricted enough to not allow creation of cracks (loss of regularity
for the ug variable).

Remark 3.2 The transport method does notl permit topological modifications
of the domain. All the admissible domains as defined below, are topologically
similar to the reference domain. Therefore, within a coupled acoustic-structure
framework for example, it is not possible, using the transport method, to create
or remowve holes in a radiating structure.

When looking for such a modification, specific approaches must be used, see
e.g. Kohn, Allaire (1993).

3.1. The domain derivative

Let us make some notations more precise:
() is a fixed open bounded subset of IR?, with a piecewise C'* boundary,
W = wbhe(Q; R?)
U = {TeW, T is bijective, T~ € WH°(T(Q); R*)}
U is an open subset of W.
The set of domains that will be considered is:

D) = {Q = TQ) /T e}
Let now be a generic domain functional, j, such that:
j:DE) — R
Q — ()
we then associate to 7, a functional 7 defined by:
j: U — R
T — i(T) =4 )

where Q. = T()

lwheo(); R?) = {T o R2 sit. T e L=(Q), DT € L°°(f2)} where D1' is the Jaco-

bian matrix of 7.
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The functional j is now defined over an open subset of the Banach space W,
and we can define the Frechet derivative of j, in any element Ty € U.

The domain derivative of j, in a given g € D(£2) is therefore defined as
follows:

Definition 3.1 Let be Ty € U such that To(Q2) = Q.
The functional j is said to be differentiable in o, if the mapping 7 is Frechet
differentiable in Ty. We then set:

d . d . .
mj(Qo).v = de(To).(VoTo) YV e Wh*(Qo; IR?) (4)

Remark 3.3 It can be easily shown that the domain derivative is independent
from the mapping which represents the domain €.

Remark 3.4 When a domain functional j is differentiable, its directional deriva-
tive %j(ﬂ).V as defined above corresponds to the intuitive finite difference ap-
proximation:

ij(Q)V = Iinlj<Q+tV) | (0)
dQ) '

t—0 t
From a numerical point of view, this is a simple and good tool to check the
validity of derivative values, computed using e.q. the adjoint state method.

Remark 3.5 It is proved, in Simon, Murat (1976), under some regularity as-
sumptions on the vector field V' (V of bounded second derivatives), that for any
differentiable domain functional, the derivative depends only on the trace of 'V
over the boundary.

3.2. The adjoint state method

Using the same notations as above, our optimal design framework can be stated
as follows:
e W is the Banach space of controls,
e U is an open subset of admissible controls of W,
e For any T' € U, we associate a Hilbert space V(), where Q = T'(2), and
a state equation:
Find ug € V(Q2) such that
Yo e V(Q), aqlug,v) = La(v) (5)
The solution ugq is called the direct state variable.
e aq is a continuous bilinear form over V() x V(). It is assumed sym-
metric and elliptic?

2The ellipticity condition is, in fact, sufficient but not necessary. The same results hold if
the associated linear operator defined by (Au,v) = a(u,v) is an isomorphism from V onto its
dual V'.
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Lq is a continuous linear form over V(£2)
It is demonstrated, in Rousselet (1982), that if the mappings Q —— agq
and ) —— Lq are differentiable, then the mapping Q —— wugq is also
differentiable (in the sense of definition 4).
Given an observation:

v +—  Ja(v)
we define the cost j by : j(Q) = Ja(uq)
If we assume that the mappings 2 — Jq and v — Jq(v) are contin-
uously differentiable, then, using the composition theorem, we conclude
that the cost j is differentiable with respect to the domain variable.
We then define the adjoint state variable, as the unique solution of the
adjoint state equation:
Find po € V(£2) such that

0J,
Yw e V(), aqlpa,w) = T)vg(ug).w (6)
The domain derivative of the cost 7 is then given by:
d . ~ Oag ‘ dLq d.Ja
dQJ(Q).V = ~30 (uq,pa).V + 50 (pa).V + 55(1/@).‘/
YV Ve whee(Q; IR?) (7)

From a numerical point of view, the adjoint state variable can be computed,
using e.g. the same finite element solver that computes the direct state.

The computation of the derivative of j requires, however, the implementation
of the subroutines

(9(1,9 0LQ 8.](2

V)= 5090 0

We give, hercafter, some formulas (without proof) that may be useful, at
least when implementing domain derivatives for second order elliptic problems.

3.3.

Formulas

Q c IR? is an open domain, with a piccewise C'' boundary,
7 : unitary tangent vector to the boundary 052,

frg: Q2 — R

h: 00 — IR

arc given functions,

oV = (Vi, Vo) € Wh(Q; R?),
o Vij = 5

div (V) =‘V1,1 + Vapo

e (DV);j = (Vi;) (DV)is the Jacobian matrix of V,

[DV] = (DV) + (DV)T
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Using these notations, one gets:

& (Jo 1d0) .V = [, f.div(V)dQ
2 (JoVIVgdQ).V = [V Vgdiv(V)dQ - [, < [DV]V, @®)
Vg > dQ
25 (Joq hdl) .V = [oq <7, (DV)r > hdl
Remark 3.6 Under regqularity assumptions, the two first domain integrals above

can be expressed as boundary integrals. Instead of being cost-less, this approach
leads to worsc numerical results, see Masmoudi (1987), which may cost more
expensive finite element analyses, during the optimization process.

4. The application to the Helmholtz model

Within the optimal design framework set in the previous section, we consider a
given reference domain Q, c.g. the one of Fig. 1 with a rectangular barrier I'y.
The space of controls W, the open subsct U of W and the set of admissible
domains arc the following:
o W = Whe () R?)
e U = {TeW, Tis bijective, T-1 e Wheo(T(Q); R*)}
oD(Q) {Q-T()/TEU}

4.1. The state equation

To any domain {2 € D(Q), we associate a direct state cquation:

—Apg — k*pq = Saq over Q
dfﬁ = 0 over 00 )
on

If the acoustical source Sq belongs to the space L2(£2), then the solution pg
belongs to the space H(S2), defined by:

H(Y) = {v € HY(Q) n H*(Q); % = (]}

where ' C O ¢ Q is any open regular set, sufficiently far from the boundary
of €, sce c.g. Necas (1967).
The strong linear operator A(£2) associated to the Helmholtz equation:

AQ) (HEOQ) — LX) (10)
p — AQ).p=-Ap—k®p (11)

is then an isomorphism from H(§2) onto L2(£2).
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As the mapping Q —— A(Q) is differentiable, see Simon, Murat (1976),
we conclude using the implicit function theorem, that, provided the mapping
Q0 = Sq is too, the mapping {2 = pg is differentiable from D(Q2) onto H(2),

and hence, a fortiori, from D(£2) onto the Sobolev space H'(Q). This allows us
to consider the equivalent weak form:

pg € HL(R), Vae HYQ), a(@pa,q) = L(q) (12)

where:

e a(p,q) = [oVpVadQ) —k* [ p.qdQ

o L(q) = [, 5.qd
which will be subsequently used in order to derive the adjoint state equation,
and to compute the cost gradient.

4.2. The observation

The target zone i.e. the region where we want to minimize noise, denoted 7, is
an open, regular enough, subset of the whole domain €2, which is assumed to-be
far enough from the acoustical source, and from the boundary of €.

We also make the assumption that Z is stable for any mapping 7' € U i.c.
D) = 4 = 7.

This is a natural and realistic assumption, since the target element i.e. the
geometrical piece of the domain to re-design is the barrier I'y, and not the
sensitive area Z!

Then, we consider a family of observations:

o) = ([ |p<m>1md2)# 2 <m < +oo

It is important to notice that the considered observations do not depend on Q.
Due to the Sobolev embedding theorems, the space H*(2) can be continu-
ously embedded in L™(Q) for 2 < m < +oo. Hence, the observations .J,,(p) are
well defined for any p, element of H'(2).
The cost function, given by jm(Q) = Jm(pa), is differentiable from D()
onto IR w.r.t. the domain variable 2 (in the sense of definition 4), as a compo-
sition of the differentiable mappings p —— J,(p) and 2 — pq.

4.3. The domain derivative

In order to compute the domain derivative of the cost j,,, we introduce an
adjoint state variable pf, € H'(2), which is the unique solution to the adjoint
state equation:
* 1 () * d']m .
lp € H(Q), Vg e H'(QY), a(pg.q) = — =% pa)g (13)
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where

Sstipara = ([ 1p<x>_1"LdZ>#l./Z ()" d2

The derivative of j,, () in a given Q, along some direction V€ WhHo(Q; IrR?)
is then obtained by the formula (7). Using the results of section 3.3. and the
same notations, one has:

4 :
L@V = — | Vpa.Vphdio(V)dQ +
dS2 Jayz

+ / < [DV]Vpq, Vp§ > dS2
Joyz

o4 S.pg div(V)dQ) (14)
Ja/z
Remark 4.1 Remember that the target zone must remain stable when the initial
domain §) is perturbed by a field V, giving a domain Q@ + V(Q). In order to
assure this, one can impose the condition V = 0 over the region Z.

That is the reason why the above integrals are set over /7, and not over
the whole §.

5. Numerical implementation

There are mainly three kinds of approximation that intervene in shape optimal
design:

e The domain approzimalion, which consists in discretizing the infinite di-
mensional space of controls, using geometrical approximation tools, e.g.
cubic splines, to approximate the boundary of the domain.

e The direct and adjoint state approximation

e The gradient approrimation.

In the following, we give more details about each of the above approximations.

5.1. The domain approximation

In a first step, we choose to approximate the general shape of the target element
by cubic splines, as shown Fig.2, using a finite number IV of interpolation nodes,
which arc called master nodes. The optimization variables become now the
master nodes coordinates.

In order to get a finite dimensional space Wy, which approximates the space
Wi IRQ), necessary for the gradient approximation, we first compute the
N basic elements V;, 7= 1,..., N such that:

~AV; = 0 over Q/Z
Vi = 0 overTqU0Z (15)
Vi = s; overI'q
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+  Fixed edge

Master
node

e

Fixed Thickness

Figure 2. Approximation of the target element

where the functions s; are the N basic cubic S-splines® depending on the N
master nodes.

The discrete space Wiy is then the one spanned by the V;’s, i.e. the successive
domains will be of the form:

=N
O = 0F 4+ Y e i(QF)
i=1

5.2. The state variables approximation

The method used to compute approximations of the (V;) defined above, of the
acoustical pressure and of the adjoint state variable is the Finite Element Method
(FEM).

In the present paper, we used piccewise linear triangular finite element ap-
proximation, which is of first order precision. The choice of this low order
method is guided by the fact that the optimization process needs many IFE
computations; and one has to make a compromise between cheap computations
and precise results. The method used turned out to be optimal from this point
of view.

5.3. The gradient approximation

The exact derivative of j,, w.r.t. the domain variable is given by the formula
(14). This derivative is called a continuous derivative, in the sensc that it is
directly derived from the continuous model. We define the discretized continuous

S-spline basis is not B-s bline one. In particular, one has s;(x
I I ) 7
master node

= &;; where z; is the jth
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init

A\

FINITE
ELEMENT
-<—| SOLVER

simulator

e

POST-PROCESS l

\ optimizer

Figure 3. The general software structure

gradient DCG as a numecrical approximation to the quantity:

As the domain € is triangulated, and approximate numerical values of the
Vi, pa and pg arce provided by the FE solver, it is possible to compute a
numerical approximation to the G;’s, by means of any quadrature formula that
approximates accurately volume or surface integrals.

Remark 5.1 It is shown, in Masmoudi (1987), that the order of precision of
the approximate value of G; is the same as that of the finite element method
used to compute the direct and adjoint states.

5.4. The software design

The structure of the implemented software is the one recommended by the
MODULOPT project of INRIA, France, as shown in Fig. 3. The keywords arc
simulator and optimizer.

e init : rcad initial data; select master nodes; compute the V;; ...cte
e simulator :
s k
— given a new geometry of the target element I‘g ), update the mesh,
and save the new domain Q)

— test the mesh quality : re-mesh and go to init step if necessary,
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— compute the direct state approximation p(¥),

— evaluate the cost j,(vf ),

— update the second member of the adjoint state equation, and compute

the adjoint state approximation p**),

— given Q®) | the Vy’s, p®) and p**),| compute the DCG®) components,
— output ng)’ jﬁ,’f') and DCG®) to the optimizer
optimizer : It is the actual controller of the whole optimization process.

It runs the optimization algorithm, asks the simulator to output jyf ) and

DCG®) for an input I‘gk), and then, performs a new improved geometry

I‘ng), which is a new input to the simulator...ctc.

The process stops when one of the following tests is true:
— maximum of simulation/optimization iterations reached,
— HI‘gk-H) — ng)H < some tolerance parameter,
— || 58 < some tolerance parameter,

— |pCG*+) — DCG®)|| < some tolerance parameter

Numerical optimization results

The optimization model

e The domain €2 is the square unit, with hard-sound boundaries.
e The acoustical source is a Dirac point-wise distribution, with origin located

at (0.9,0.2) and magnitude 1.

e The sensitive area Z is a rectangular zone, as represented in Fig. 4.
e The target clement, i.e. the design variable, is the left side of the square,

approximated by cubic splines. The master nodes are allowed to move
horizontally, with a box constraint i.c. all the abscissae z; of the nodes
fulfill the condition —0.05 < x; < 0.05.

This model configuration may c.g. correspond to the situation where a
machine user is in front of a central processor unit box, which is made of sound-
hard material (seck of comfort for the user). The ventilator fixed at the back
side, generates harmonic acoustical waves that may deteriorate the computer
performances. We then seek for the front side the geometries that minimize the
effects of the ventilator on the electronic chips (this is a simplified approach;
in fact, a pertinent model must take into account at least the coupled vibro-

acoustic behavior.)
The optimization computations are done for:
e different wave numbers : ky = 1, ko =4, k3 = 10
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y sensitive area  (processor unit)
1
0.8 |
acoustical source
(ventilator)
S —
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X
0.1 0.4 09 !
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(front side)

Figure 4. Description of the model configuration.

e different cost functions :

200) = [zlpa(@)?dZ
710(9) = (J7Ipa(@)°dz)"*
]oo(Q) = maxm€7|pg(m)|

6.2. Optimization results

The MODULEF finite clement library from INRIA was used in order to compute
the direct acoustical pressure and its adjoint.

The optimization algorithms used arc a Quasi-Newton program from MO-
DULOPT project (INRIA, France) for the minimization of the differentiable
costs jo and j10, and the bundle algorithm M2FC1 (from MODULOPT) for the
minimization of the nonsmooth cost jeo.

We present some results in Figs. 5-9, obtained for different wave numbers:
k=1, k=4 and k = 10. The figures show the optimal geometry and pressurc
distribution, starting from the above initial configuration.
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DEEST=mTy
MODULEF habbal

31/10/95
cll.mail
cll.coor
cll.bpad

441 POINTS
441 NOEUDS
800 ELEMENTS
800 TRIANGLES

INCONNUE : 1 MNEMO
. 1.198

— 6.3630E-02
3.9090E-03

Figure 5. Optimal geometry and pressure distribution for the cost jo. k=1

MODULEF habbal

31/10/95

c2.mail.2
c2.coor.2
c2.bpad.2

441 POINTS
441  NOEUDS
800 ELEMENTS
800 TRIANGLES

INCONNUE : 1 MNEMO
m 3 0.5994

Figure 6. Optimal geometry and pressure distribution for the cost js. k=
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31/10/95

1681
1681
3200
3200

MODULEF habbal

j2-opt.mail
j2-opt.coor
j2-opt.bpad

POINTS
NOEUDS
ELEMENTS
TRIANGLES

INCONNUE : 1 MNEMO

.7004
.7004
.5641
.4960
.4278
.3597
.2915
.2234
.1553
.7110E-02
-8966E-02
.9178E-02
L1173
.1855
.2536
.3218
.3899
.4580
.5262
.5943
L6625

Figure 7. Optimal geometry and pressure distribution for the cost jo. k

31/10/95

j10-opt.c:

MODULEF habbal

j10-opt.mail

oor

310-opt .bpad

3721
3721
7200
7200

INCONNUE

POINTS
NOEUDS
ELEMENTS
TRIANGLES

10

Figure 8. Optimal geometry and pressure distribution for the cost J10. k=10
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MODULEF habbal

31/10/95

jmax-opt.mail
jmax-opt .coor
jmax-opt.bpad

1681 POINTS
1681 NOEUDS
3200 ELEMENTS
3200 TRIANGLES

INCONNUE : 1 MNEMO
.4502
.4502
.3577
.3114
.2652
.2189
21727
-1264
.0142E-02
.3885E-02
.2372E-02
.8629E-02
.1049
.1511
.1974
.2437
.2899
.3362
.3824
.4287
4749

Figure 9. Optimal geometry and pressure distribution for the cost jo. k= 10
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