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Abstract: In this paper we present some basic material for the
shape optimization of structures. We emphasise the so called con-
tinuous approach with few results on numerical approximation with
finite elements or boundary integrals.

1. Introduction

In this paper we present some basic material for the shape optimization of
structures. We emphasise the so called continuous approach with few results
on numerical approximation with finite elements or boundary integrals; this
approach is traditional in mathematics and theoretical mechanics, whereas in
mechanical engineering the tendency is to first approximate the behaviour of
the structure with finite elements and afterwards to tackle optimization.

The choice of one of these approaches depends on the habits of thought; in
many cases, discretisation in the first or second step yields the same results;
this has been proved when one uses conformal finite elements (Moriano, 1988,
Masmoudi, 1987). If one is interested in deriving necessary optimality conditions
and finding explicit solutions, then the continuous approach is necessary; this is
the route followed by Banichuk (1990), Prager (1972) and Rozvany (1996).

However, in connection with finite elements, the continuous approach is quite
versatile: it enables the addition of design sensitivity to a commercial finite ele-
ment code (Barros and Soares, 1987, Chenais and Knopf-Lenoir, 1988); but
it also enables the inclusion of design sensitivity in an open finite element li-
brary such as Modulef (1985) and makes good use of existing software (Mehrez,
Rousselet, Gauthier, Giuliano, 1991).

Moreover, formulae obtained with the continuous approach can be imple-
mented with boundary elements (Masmoudi, 1987, Soares and Choi, 1984).

It should also be pointed out that these techniques may be used and are
used in other fields of application; for example in acoustics (Masmoudi, 1987,
Habbal, 1996) and in fluid mechanics (Pironneau, 1984).
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Figure 1.

What, however, is shape optimization? It is an optimal design problem
where the design variable is the shape of the domain {2 occupied by the physical
system; the best shape of a fillet in a tension bar will provide a classsical engi-
neering example (Haug, Choi, Komkov, 1986): we want to find the best shape
of T'p to minimize volume with constraints on Von-Mises yield stress.

One of the first publications seems to be the one of Hadamard (1908) but the
pioneers of research oriented toward the use of computers seem to be Céa, Gioan,
Michel (1974). Since that date many papers have been devoted to this topic; for
example Chenais (1977), Murat and Simon (1976), Rousselet (1976,1977,1982),
Dems and Mréz (1984), Pironeau (1984). INRIA schools devoted to shape
optimization have been organized by Pironneau (1982) and Céa and Rousselet
(1983).

2. Optimization and continuum mechanics

As in conventional optimal design, the clue of the approach is to obtain first -
order estimates of the variation of a functional of the state of the system; but
for shape optimization one soon realizes that the set of possible domains has
no standard vector space structure, so that it seems that classical differential
calculus and calculus of variations cannot apply here.

Indeed, these techniques can be used if one realizes that for a given topology
and regularity of the boundary, it is natural to look for domains as mappings of
a given domain €2; we shall denote

wy=(@+V) Q) ={zcE | 2=X)+T(X) V XcQ}

where E is the usual Euclidean space (in one, two or three dimensions); ¥ is
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Figure 2.

an element of a vector space of functions; it will enable defition of variations of
wo = @( N); in the sequel w will be used instad of wy.

Anyone familiar with the foundations of continuum mechanics should realise
that this is what we are doing when we are using a Lagrangian representation
of the movement of a continuous medium; this is the usual representation in
solid mechanics. For the implementation of the analysis of large deformations
of solids it is usual to use an updated Lagrangian formulation: this amounts
to linearizing the behaviour of the solid around a configuration obtained with a
fraction of the load.

Here we are going to linearize around the given domain w, but we should
keep in mind that in the overall process of optimization we shall update the
domain w around which we linearize the cost functional and the constraints.

Basic tools for this linearization are well-known in continuum mechanics, but
were derived independently for shape optimization by several authors including
Dervieux-Palmerio (1975), Murat-Simon (1976), Rousselet (1976). These tools
are recalled in the next two sections.

3. Differential calculus and linearization around a given
domain

To join domain sensitivity and surface sensitivity, we recall some basic notations
of curvilinear coordinates; in fact the mapping

d : Q—w
X +— z=9(X)
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Figure 3.

defines curvilinear coordinates in w.

We assume that all the domains 2 , w are imbedded in a three-dimensional
Euclidean space; entirely similar results hold in two dimensions.

We denote by g;(z) = (;? ;) the local basis; generally it is not orthonormal

so that it is convenient to use the dual basis g* defined by g'.g; = 5;'-; see drawing
in two dimensions.

o
With these notations the matrix of X is

(91 92 93) (1)

Note: In the following repeated latin indices are summed from 1 to & and
Greek indices from 1 to 2.

Let f : w — IR be a scalar funtion; if we set f; = % the chain
rule yields ’
af ;
— = f.g* 2
5 = 19 (2)
it is usual to set
grad f =g" f; g, (3)

where

g9 =g'.¢’ (4)
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For future reference we recall that

/w f()dz = / f(8(X)) | DB | dX (5)

with

| D@ |= det(g1 92 93) = /9 (6)

where g = det(gi;) with 9ij = Gi-9;
For a vector field v defined in w, the chain rule also yields :

Ov i

o5 = Uid (7
where

_ ov(2(X))
T, 8}

. . . . ov
but if we express v in the local basis ¢g; and wish to express —— with these

components it is classical to introduce Christoffel symbols:

T =99k, 9)
0 ; .
50 that — = vr- gi ® ¢’ where
oz 4
vl =v° ;5 + Tipo” (10)

and ¢; ® ¢7 is the linear mapping defined by
(9: ® ¢')(h) = gl (11)

The divergence operator is well-known in continuum mechanics; we recall
here some formulae which have similar features when applied to surfaces. We
first consider as a definition the following equality which should hold for any
continuously differentiable function f with compact support in w:

/ fdivvde=— | Z=vdx : (12)
w w

where component-wise:

%U = fi(g'v) = f '

to obtain an expression of div v in local basis it is useful to state

LEMMA 3.1
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. dg ”

i =gg¥

(i) By 79

(ii) X 29T, or X, = VaTy,
Proof. »
(i) Comes from gijg’* = 6F
(i) The proof uses (i) and some manipulations.

PROPOSITION 3.1 Let v =v'g;
(i) The following expressions hold

[ [ y .
dive = —(v'\/q) i = vj; = ¢". v
\/5( \/—):7« |

(it) The following identity holds

div(fv) = fdivv+ ﬁ

oz "
Proof.
(i) The first identity comes from the definition (12) and (5), (6), (7).
(ii) Is straightforward in components.

The formula which provides the first-order change of an integral over a do-
main w with respect to changes of its shape is well-known in continuum mechan-
ics (see for example Germain, 1979) and is now widely used in shape optimal
design (see e.g. Céa, 1975;1986, Masmoudi, 1987). Here we try to provide a
presentation which is introductory to the more complex case of surface varia-
tion.

We recall from Section 2:

wy = (&4 0)(Q) = (Id + ¥)(w)
with w = ®(Q) and U = ¥ o & and for any function f : f=fod
f(X) = f(@(X)) (13)

To make precise the first variation of a function fy defined on a variable
domain wy we set the

DEFINITION 3.1 Let fy be a function defined on wy; this function may depend
explicitly on the vector field U and implicitly through the position of the point
xz = x + ¥(z) where it is evaluated; we set

fo(X) = fo(®(X) + T o d(X))
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and .
Shule) = i F ) = 1)
= d U a f,
= C—i—t-ftq, o (@ + t‘IJ) |t=0: Ezft\y(X) le=0
== %ft\p(@(X)) lt=0 +%ft\p‘y($) lt=0
Remark 1.

We note that 6f is a function defined on wj it is linear with respect to 1 ;
if f does not depend explicitly on W, the chain rule yields 6f = %]i‘ll(m) i
i

f does not depend on z, ¢ f is just the directional derivative with respect to .
Moreover

Remark 2.
The usual rules for computing derivatives of a sum or of a product of func-
tions hold for the operator 6.

Remark 3.
In continuum mechanics, when a flow ¢t — z(t) is defined on w, the material
deriwative of f(t,z(t)) is '

o 10,20+ 80) — (5, 2(9)
6t—0 6t

We note that § f is a particular case when z(t) = X +t¥(X); this simple flow
is what is needed to define the first order variation of w. Here we call material
derivative the § operator.

To compute the variation of the integrals we need the following lemma.

LEMMA 3.2 Let g = det(gi;) then 6,/g = \/gdiv¥

Proof. We have

dg
69 = 563
g agzj g
as gi; = gi.g; wWe obtain
5gij = \i/i.gj .= gi.‘I/j

then using Lemma 3.1 we obtain

89 = 29¢°.V; = 2g div¥
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Figure 4.

PROPOSITION 3.2

6/udw:/6udw+/udiv\lldw

Proof. We obtain from (3.5), (3.6):

/udw:/ﬂﬁdX
w Q

The result then comes from the definition and Lemma 3.2.
Example.

vol(w) :/dw yields

Svol(w) = / div¥ dw :/ U.v do
w w

as could be expected; see the respective figure.

The last equality is obtained by using the Stoke’s theorem.

We now state the variation of a derivative.

PROPOSITION 3.3 Let u be a function defined in wy; we have

68u_ 85 _8u8\11
oz Oz " Bz Oz
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Proof. We note that

- X

Oupy B Oty [ O(® +t\il) -
Oz 0X

‘We use the definition of §

P N g(@@wﬂ)‘l
Ox ot \ 0X jt=o0 \0X 0X |i=0 Ot 0X
[t=0
9 (0w 02\t du, (82" 8T (95!
- o (), (ox) (o) ()
0 Ou 0¥
T % s

which proves the result.

4. Shape sensitivity for a model system

We apply the previous results to shape sensitivity of the simplest example: a
membrane prestressed with an inplane tension 7' and submitted to a normal
density of force f; the normal deflection is the solution of:

—TAu=f in w
u=0 on the part 1 of the boundary
Ow where it is fixed.
T g—z =0 on 7y, where it is free

(14)

We denote by V' the space of kinematically admissible displacements; the
principle of virtual work states that

Yo eV a(u,v) =1(v) (15)
where
a(u,v) = / T%g_:: de and  I(v)= / fvdz (16)

Note. The overbar denotes the vector associated to a linear form and vice
versa:

@z’s the gradient of v .
Oz

The variation of the solution is itself the solution of an equation as stated
below.
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PROPOSITION 4.1 Let u be the solution of (15), then its first-order variation 6u
satisfies:

YveV a(bu,v) = —(6a)(u,v) + (61)(v) (17)

where da and 61 are variations of a and | for fized v and v :

(6a)(u,v) = /T (%%g_m dw) Lo B

Oz 0z Oz Ox
du v
(6l)(v):/v6fd:c+/ fodiv® da (19)
Q Q

The proof is a direct application of Propositions 3.2 and 3.3.

Shape sensitivity of a functional

We consider the simplest case

J:/wa(u)dm (20)

The proposition 3.2 yields

6J=/wa’(u)éuda:—i—/;a(u)divllldm (21)

As in conventional design sensitivity this expression is not explicit with re-
spect to ¥: §u is defined through equation (17); but this expression may be
transformed.

PROPOSITION 4.2 Let L(u,v) = J(u) + a(u,v) — l(v) and set p the solution of

OL(u, p)

Yw eV 5

w=0 (22)

J
or a(w,p) = Y then
6J = (6L)(u,p)
where the variation of L is computed at w and p fized; or more precisely:
6J = / a(u)divyp dz + (6a)(u, p) — (61)(p) (23)
Q

with da and &l given in the previous Proposition.
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Figure 5.

5. Surface differential calculus

We consider now a surface S imbedded in a three dimensional space E2,
parametrized by a single-valued ® from a reference open domain 2 of a two
dimensional space E2. The striking difference with Section 3 is that ® is a
mapping from a two dimensional space to a three dimensional space. With
simplifications all the material presented would be adequate for plane curves,
although the use of arc length would simplify some formulae.

To emphasize that ® stems from a two - dimensional space, we denote by &
the variable in Q) and Greek indices are implicitely running from 1 to 2; repeated
indices mean summation, from 1 to 2.

The local basis is noted

0P
Qo = (—9—5'; (24)
it is the basis of the tangent space to S at the point m = ®(¢&).
The dual basis is defined by
a“.ap = 63 (25)

where the dot means the usual scalar product of E®. So (ajas) is the matrix of

0P
— = v e : 26
O€ a, ®e ( )

where e® = e, is the standard basis of E? . We note that:

(o) oa) = I @
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or in tensor notations (e, ® a®).(a, ® €%) = e, ® e, but
1
(a1 a2) ( tg2 ) =a; ®a' +ay ®a® (28)

is the matrix of II , the orthogonal projection onto the tangent plane.
In the sequel we note

F€) = f(#(6)) , ==2(¢) asin (13)
Let now f:.S — IR be a real function defined on S. If we set

Of _ OF o

om 8§°‘a (29)

it is easy to check that this linear mapping from the tangent plane to IR is
independent of the parametrization; we also have:

or, _of
om ¢ 0fw
or
of 0  of :
m o 0¢ (the chain rule)

In the following all the notions introduced are independent of the parametriza-
tion with the exception of the Christoffel symbols.
The integral over the surface may be written with a parametrization:

/ f(m)dS = / F(@(&)Vade (30)
S Q
where

a = det(ang) (31)

with adap = aa.ag or \/a =|| an X ag || (area element).

The differeritiation of a vector field is here more intricate; this is intuitively
obvious with a circle: let 7'(f) be a unitary tangent vector field. It is clear
that when T'(0) is near T'(0p), the first-order change is not tangent but rather
orthogonal to the circle; thus we need to introduce the orthogonal projection IT
onto the tangent plane; recall that

Oa,,

II=a; ®a'+a;®a’ we set aa’ﬂ:f)—fﬁ

then Ila,, g is a tangent vector. Its decomposition in the local basis is classically
expressed with Christoffel symbols (they do depend on the parametrization!):

May g = F;\wa)\
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with Fgﬁ = a’\.aa,g. Note that Fg“ﬁ = Fga as o3 = 4G .

i (O
Similarly for a tangent vector field v; = v%a, as —~ is not tangent, we

ok
consider
(91),5 & _—
H(?—m = Ujgla Q@ (32)
with
vfy = v + [0 (33)

Ha_% is the so called covariant derivative of v; this definition is motivated by
the following identity:
Ot v

Ha—n—Lau = Haé_/‘

and this formula comes from the chain rule; here are the details: by the defini-
tion,
Ha—ma# = (vlo‘ﬁ ag ® aﬁ> ay = vl";aa
= (vi+T5") aa
vzaa + F‘f\‘”aav)‘
= v950q + (ag,u) o= v,aq + 0% (Lay )
Ov
= [I—
© afp
We turn now to the divergence of a tangent vector field defined by an inte-

gration by parts.
For any continuously differentiable function f which is zero near the boun-

dary of S:

= II(v%aa),

0
/ f divvy dS = — —fvt ds (34)
S S Bm
To obtain an expression in the local basis it is convenient to note:
0
LEMMA 5.1 (i) ? = aa®®
Oanp

- da _ A 8\/5 L A
(i) Ba = 2al'y,  or e = Valyy

Proof: It is based on (a®?)(ap,) = 65 and
Ao = Thg0u + Doty

which comes directly from the definition of Christoffel symbols.
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PROPOSITION 5.1 Let v; = v®a, be a tangent vector field, we then have the
following expressions of the divergence

1
Vva
Proof. The first equality comes from the definition and (30); then we obtain

(V@)
\/E

o & @ 81% o 8vt
(\/E’U ),a = ’U|a =a Ha—gz =a H%

divv, =

Qs (35)

4 — & «
divvy = v, +v

and with Lemma 5.1:
divvy = v, + v°oT2, = Vo
(32) now gives

(9’Ut 8171;
a __ o2t — e
Vg =0 .Hamaa =a .Haga
Because we are interested in variation of S, we shall have to consider vector
fields W which are transverse to S ; so now we recall how to compute derivatives
of transverse vector fields.
It is usual to introduce a unitary normal vector

ay X ag (36)

a3 = ———————
|| a1 x az ||

8(1,3 5
As a3.a3 = 1 we have 2% g4 = 0 so that —= may be considered as an operator
o — may p

of the tangent plane. Its expression in the local basis is usually written:

da
B_n% = —b%aq ® a” (37)
so that bg‘ = —aa.%.aﬁ we also set bog = ~aa.g‘;2 g = —0q.03,3

Note that the lowering of indices is performed systematically with the metric
tensor a,g:

ba,@’ = aa)\bg

The derivative of a tangent vector a, may be written:

o, = Tapar + bapas (38)
Now let U be a transversed vector field:
P = hra® +P3az = P ax + Psas (39)
from the previous formula we can obtain:
57; A A 3
(Y15 — bag¥s) @ + (13,5 + b3iha) a (40)

o7
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or

89

@ = (¢|),\@ - 521/)3) ay) + (ws,,@ 1 b/\ﬂ’lﬁ)‘) as (41)
from which we obtain

1o}

S = o 0 0 + ¥fjpa 0 o (42)
with

Wl = (s — b3vs )

bits = (3,8 +brs9?)

An important operator for surface variation is the tangential divergence of a
vector field:

oY
; e G s B 183\ _ B
divsy = o= ap = (vl — Bv*) = vfs (43)
We recognize that
zﬁl% = divIly
and it is usual to set
He= —bg (mean curvature of .S),
so that we can also write:
divgp = divIlyp + Hip® (44)

We note that divga® = H.

6. Surface variations

Now we are to provide some basic formulas for surface variation.
The material derivative operator 6 is defined in the same way as for domain
variation

5m) = & fuyo(@ + 1) (€m0 = g Fou(E)my (45)

We should emphasize some differences: S is a surface; ¥ is a transverse
vector field to S

Sppy={m|VMeS m=M+tp(M)} (46)
fip is defined on Sy

First-order variation of integrals will be obtained with the following lemma.
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LEMMA 6.1 Let a = det(ang) we have
§v/a = \/adivsy (47)
The proof is left to the reader and its use to prove the following proposition.

PROPOSITION 6.1 The first order variation of an integral is:
5/f5dS:/5de+/fgdivswdS (48)
s s S
Example.

area(S) = / ds implies
5

§ area(S) = / divTl 9 dS + / Hy3dS
S s
now a Green’s formula yields

/Sdivn¢d5=/55(n¢).nda

n being normal to S in the tangent plane, the interpretation is obvious for a
circular arc.
The second term

/S Hy?®dS

means that for a given surface the first order variation is proportionnal to H;
this is obvious for the one-dimensional example of the circle arc; with 93 = §R;
1 length
Slength = / = §RdS = (6R)e= (6R)—2—
s R R
if the arc of a circle converges to a segment of same length ( R — +0c0) then
Slength goes to zero
Now we study the variation of a derivative. This is more difficult than in
the volumic case. We first state and “prove” a simple but wrong result.
s ou  0bu  Ou I ov
dm  Om  Om Om

The natural but wrong proof is as follows:

(49)

Ou 01 (8(1))4 now if  ®(&) = ®o(§) + (&)

om ~ ¢ \ 9
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\

Y%

length /

Figure 6.

9% _ 9% 0¥ _ 0% (, (83)6_\1/_
o~ o¢ 9 B¢ 23 23

so that expanding up to first-order

(207 - (S) - ()7 08 (200)”
a¢ ~\oe -\ e ot 85)

as in the volumic case; then expanding w = ug + du + ...

. e,
o1 (8@()) _ ou _ Oug n Obu . aridl

8_§ 8§ 87710 87710 8m0

B (0 L 0% (8y\ ' Bu _ 89

EE ( 5 ) 5 ( o = 8_mona_mo so that up to first-order
ou Oug  Odbu Oug . OY L .

e D — O + ..amoﬂamo + ... which is equivalent to (49)

What is wrong? The crucial point is that

=
86;{;0 (%) cannot be the identity!
22
9

plane); it has a left inverse B = e, ® a®, the matrix of which is

is not on-to so it cannot have a right inverse (its image is a 2D tangent

ot where a® means the components of a®
tg2 in an orthonormal basis of E2.
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Indeed, we have seen that

0P
—8£—OB is the orthogonal projection onto the tangent plane;

that means

0}
Ips :%934—0,3@(13

Rather than modifying the previous proof, we are going to use more directly
the basis vectors, but first of all the right proposition is as following.

PROPOSITION 6.2 The first order variation of a derivative is:

§Ou_ b Du OV (0w o
om  Om om om " ° \" 5m m
or component-wise
ou = .
. o w2 o " o ap 3 3
68m (60),00% — U,q (a '¢1M> al 4+ 1 a0 (a .1[),#) a

The proof rests on the following lemma.

LEMMA 6.2 First order variation of basis vectors:

o 0> 9y

B - TT:

('LZ) §a® = — <a3 8_¢> alt:_GBlQ\gz_wﬁﬂaﬁ

(i) bay

N am
i) 0= — 000\ @ 4 adan (a3, 22
(i) ba ——<a .8{:#)@ +a’a (a Ben
or 6B = —Ba—‘llH—kB a3% a®
om om

(overbar means transposition; see Section 4)

Proof: We set ® = &y + ¥ and we have

oo
o oee
(i) so that
Ao = ag + % which gives da, = 885—1/;
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(ii) We use a®.a, = 0 so that (6a®).a, = —a®.8a,, moreover a®.a® = 1 gives
(6a3).a® = 0; then as §a® = (6a3.a,) a* = — (a3.6a,,) a* we obtain
o
3 _ 3 Yv “

da° = <a .(%H) a
Then as

o M,

—_— = ——q

om Q&+

we have obtained the second equality; the third one comes just from the notation
(42).

N A B 3 B

8_’[7’7, :¢||ﬁ (1)\®a +1/)||,3 a3®a
(iii) a®.a® = 0 implies (6a®).a® = —(a®.6a®) and a“.a) = 89 gives a%.ay =
a®.6ay, so that

§a® = —(a%.bay)a* + (a*.6a>)a®

= — (ao‘.g—gj\) a* + a®.a* <a3.%> a?

On the other hand Bh = e, (a®.h), so that
6Bh = ey(6a™.h)

a7 -
= —eq (a“.%) (a®.h) + eq (ao‘.a” (a?%)) (a3.h)

Proof of the Proposition 6.2.

ou o
T = Lat
so that
6@ = (61) oa® + 10 00"
om o i

. 0
we note that @ is computed at a fixed point so that § and 55—; commute; secondly

we use (iii) of the previous Lemma:

ou ~ o ~ o Q:l;_ A 5~ Qp 3 8_1/; 3
oy (61) o0 + 1o <a '8§’\> a* + U q0 a Ben a

this is the component-wise formula of the proposition; the intrinsic formula
stems from
oy -

g—:i = ol and e w,AaA.

T
|
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Figure 7.

7. Sensitivity analysis for a surface heat equation

We still consider a simple surface system; i.e. a stationary surface heat conduc-
tion equation; we set:

f surface density of heat source,

g line density of heat source,

q heat flux vector, ¢

u deviation of temperature from the natural state.

We assume Fourier law for an isotropic homogeneous medium:

ou
= —C——
g om
the conservation of heat gives: divg = f .
We assume prescribed zero deviation of the temperature on vy; w = 0; prescibed
heat flux on 75; ¢.n = —g; note that the minus sign is a convention, ¢ the

pointing toward the cold subset, g is positive when heat is received and n is
outward normal to the boundary and lies in the tangent plane to S.

Finally we have

divg=f in S
=10 on i
gn=-—g on 7 (50)
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qlcg‘ =f in §
F =10 on v
4% na = —g
s —cao‘ﬁu,g

or componentwise

q
In a standard way we consider the variational formulation:
YveV a(u,v) = Il(v)
where
V={veHY(S) | v, =0}
ou Ov

CL(’IL,’U) = Sca—m.a—m ds

l(v):/sfvdS'—FJr/ gudo
72

(53)

(54)

(55)

As in the volumic case du is the solution of an equation with the same bilinear

form a.

PROPOSITION 7.1 Let u be the solution of (50) or (52), then its variation du

satisfies
YveV a(du,v) = —(6a)(u,v) + (61)(v)

where a and 61 are the variations of a and l for fived w and v :

_ oY ov oY Ou
Ballwy) = _/ <8mH8m om £ amHam 8m) as
du v
a—u 8—dws¢ ds

D)) = /stéde—l—/LS‘fvdivgwdS%—/ vég do
2

+/ v g divy, ) do
Y2

As in the volumic case, the proof is simple if one uses the previous results:
Propositions 6.1 and 6.2 . As a touch of “humour” we note that the “wrong”
Proposition 6.2 would give here the same Proposition 7.1 . This is because the

term
ov Ou
B om om ) ©

dv . .
has a zero scalar product with g which is a tangential vector.
m
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Surface sensitivity of a functional

The simplest case is

Hluj= /S o(u) dS

With proposition 6.1 we obtain
6J = / o (u) bu dS —I—/ a(u) divey dS
8 s

To make this expression explicit with respect to ¥ we use the same Propo-
sition 6.1 to obtain 6J = (6L)(u,p) where L = J + a(u,p) — [(p) and 6L is
computed at fixed w and p:

6J:/a(u) divgy dS + ba(u,p) — 6l(p)
S

where §a and §1 are given in Proposition 7.1 and p is solution of an adjoint state.

8. Boundary expression of shape sensitivity

We turn here to the volumic case of section 4. It is possible to obtain a different
expression of the shape sensitivity of a functional: formula (23) may be trans-
formed to a formula which involves boundary integrals. We need some auxiliary
lemmas.

LEMMA 8.1 The solution u of (14) satisfies
Vwew  a(uw) = l(w) + L, () (56)

where W is the space of wvirtual displacements which do not necessarily
satisfyw = 0 on vy and

ou
Iy, (w) :/ Tw— do (57)
! 71 on

The proof just uses the Stockes formula:

()'U, (9/11) ()Zl,
2 - ke (SR = do

0
which gives Lemma 8.1 as 7%~ 0 on Y2

on
LEMMA 8.2 The following identities hold

g ouovip 6 fou, o _ -0°u0p
() 32355z Bz \Gz") Bz B5b Bz
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) DOIT_ 0 (o Nou  —otpom
8z 8z Oz Oz \ Oz ' ) Oz 0z2 Oz

Oudypop Opdydu
() oz 0x 0z ' Ox Ox O

a9 (ou op 0 [0Op ou 0 [0udp
L3222 25D)

Oor Oz \ Oz T or T
) au@ o o @@ 0 (0udp
iy Oox 8xdw¢ = ((am 8x> dj) oz <_w%> v

OuOYap  OpOwom  Oudp,
(v) 555095 5050z  dmaz Y=

0 [(Ou \ Op 0 (dp \ o0u , Ou Op
e (5‘“’) 3z B <3_¢> B T <(£a_> ¢)
)
() pof+pfdint =dinlpfe) — fEv+p (6 - gLv)
x Oz
and if f does not depend explicitly on w:
P +pf div¥ = div(pfy) — ford

The proof uses the definitions and is left to the reader.

PROPOSITION 8.1 Let u be the solution of the model system (14) and J,(u) be
the functional (20), then its variation given by (23) may be also expressed as

[ e
6] = -T /W et do (58)

b [12 a(u)(y.n) do + /72 (T—g—zg—f —Pf)(?ﬁ"n) do

Proof. Lemma 8.2 (v) enables us to derive from (18):
. 0 (9u\B, 0 (000w
(itspy = _T/w (& (aﬂ’) 9z | Ba <3x¢) 5’$> d

rr [an((22)) & -

Next we use Lemma 8.2 (vi) with (19) and assume for simplicity that f does
not depend explicitly on w:
of
Oz

6f =z
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. 0
607 = [ dintorv) do — [ 1524 o
Then we note that Lemma 8.1 for the adjoint state (22) gives
oJ op
% w =—< — -
w € a(p,w) <aw,w>+/%Tw8n do

so that:

d [0Ou op
e /w 2 <%¢> »_
aJ Ou ou ap
<%,5;’w>—[“T<b;’l/})and
Similarly as the state u of the system satisfies:

Yw e W a(u /fwdr-lr/ng—ud(f
g n

we have

0 (0p ou
-7 / ox ( w) or
op op ou
- [ - [ 7(5) i
Finally we recall from Proposition 4.3 that if

Lw=ﬂmmm

§J = / a(u) div(y) de + da(u,p) — 6l(p)

so that (59), (60), (61), (62) provide

/w a(u) div(v) de+ < ZJ g_u

dp dp
[r(Ge) e - [7(5) s
+T/wdiv<<%—g—i-> ) /wdw (pf) dx

Then we note that for our functional (63)

aJ ou ,, ou
8_u’3_x¢ >—/woz(u)ax.wda:

(60)

(62)

(63)

(64)
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so that the first two terms of (64) provide:

/wa(u) div(y)) d:c-l—/ a’(u)g—zﬂﬁ g =

/wdiv(a(u)'tﬁ) dex = Xm a(w)p.n do (65)

Using Green’s formula in (64) we obtain:

5] = /a(u)¢.nda - / T(Z—Zd}) gZd
V2

Op ou ou Op
- [ G m e L (e o o

- [ orvm) do (66)
Then we note that onyy u= 0 and p = 0 so that 2 = ann and 37’ = gﬁn and
on 7y where 2 G =0 we have 2% Se = 6(?:& @ so that
Ou 0
5] = — / T (8:;(9})) (p.n) da+/%oz(u)¢.nda

ou Op
+ /g@ (T%(‘?—U —pf> (¥.n) do

Remark. When one uses finite elements to solve (14), it has been observed
that the boundary expression (58) is not very accurate; theoretical support of
this fact will be given in Section 9.

9. Use of finite elements and boundary integrals

We consider the model system of section 4 and to make things simpler we assume
u = 0 is the only boundary condition. We shall give error estimates of §J when
we replace u and p by finite elements approximations; many results of this type
may be found in Masmoudi (1987).

First we consider the boundary expression (58) which in the case of u = 0
on Jw is

Ou Op

B

=-T | —=(.n)d 67

o /Bw BT O (67)

We denote uj, and py, finite elements approximations of v and p; h denotes
the mesh size. We set

Oun Ipn

B—__
5Jh_ Tawan on

(.n) do (68)
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For simplification we assume that there is no error in the approximation of
the geometry; we need an error estimate of the normal derivative of v and p on
Ow; an accurate estimation may be based on Rannacher and Scott (1982):

| u—un 1,000 < ch® || 2 |let1,000 (69)
where
1=k
O
|| u ||k,oo;Q:|I\'Uf ||L°°(Q) +Z i
1=0 Oz Lo ()

and & is the degree of polynomials used in the finite element approximation. We
note that for £ = 1, the second derivatives of the solution u should be essentially
bounded

0%u
— € L)) ;
(5 < @) :
this is an assumption which, for example, excludes reintrant corners in 92
(Grisvard, 1985).

PRrOPOSITION 9.1 If data are smooth enough such that (69) holds then

|67 = 6J7 | < ch* || u|lkt1,00@ 1| P lks1,000ll .7 [l0,00m

Proof.
Oou  Oup||0p
B _ s7B| < ou  Oup||0p
| 6J 8J; | < T/aw " o é)nlw.n|da
Oou  Oup||dp Opn
+T/aw8_nﬁ8—n 'a—n—%|’l/)nld(f
ou||dp  Opp
from which we obtain:
1678 —6JB| < T ’a—“—% op
on  0n |l iy 1107 |0,001y
4 ‘ Ou  Oup dp  Opn
on  On ||y 1100 On ||y o0y
ou dp  Opp
+ |5 ol Il %7 {]o,00;
’ N ||p.eopy 11O O O,OOZ’Y> *

We note that (69) implies:
ou  Oup

an an < ch” I % ||k+1,00

0,005y
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outside
YO

Figure 8.

and equivalently for p from which we obtain the proposition.

Second we consider the domain expression. We only state the result; we set
§JP the expression given by (23); 6J means that u and p are replaced by a
finite element approximation up and pp; k stands for the degree of polynomial
approximation and &’ the order of derivatives of ¢y which are essentially bounded.

PROPOSITION 9.2 If the data are smooth enough then
1677 = 672 | < e(w) K™ (IIpllsran + 1) [[9llet1,000

The proof is technical but the result may be understood directly. It means
that if the vector field 1 has essentially bounded second derivatives, the error
estimate is in A**! and, moreover, if the second derivatives are small, it will be
multiplied by a small constant; this error estimate is to be compared with h*
of Proposition 9.1 ; numerical evidence of this result may be found in Rochette
(1990).

Third, we consider the use of boundary integrals to solve the state equation.
For simplicity, we consider a membrane with no density of force and prescribed
constant displacement on two pieces of the boundary.

~-TAu=0 in w
u==: on v (70)
o == on 7o

The transformation of this boundary value problem into a boundary integral
equation is performed by introducing the classical elementary solution of the
Laplacian A:

1
E(z,2)= % log |z — 2| (in two dimensions); (71)

classically A,F(z,y) = 6(xz — z) holds; and if we consider

v(z) = /E(w, y)a(y) doy | (72)
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where 7 is the boundary of €2, this function satisfies

Av=0 outside -y
v is continuous in IR?
avi 31}6 (73)
on  on =9 on7

where v = V) V® = VR2_,
So, the solution of (70) is given by

Ve € w u(z) =T /E(m,y)q(y) do, (74)
¥
where ¢ is solution of
T [ Ewua) doy =b(o) Vo€
K (75)
T /E y)doy =0 V€
5

Now, we note u = 0 outside of vp and u = b in the hole surrounded by ~;
are the solution of (70) with the right boundary conditions, so that using (73)
we obtain

ou
7, =9 o7 (76)
If we consider now the simple functional
oul?
Joy = —| d
/w oz v

we note that
/ ou 8w
.5 0% am

so that the adjoint state is p = —u and

[l

Moreover, it is easy to obtain with Green’s formula the following expression of
J,: we note that the expressions of J,, and §J7 may be easily computed with
the solution of (75). Remark that in this case we do not need to use (74).

1/1 n) do = / @ (p.n) do

i :/ Tbqdo
7

The case of an equation with a non zero right-hand side may also be com-
puted with integral equations but we need to use the second Green’s formula;
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we skip the details and refer to Masmoudi (1987). Before stating the error es-
timate of 6J, we should recall that many error estimates for the solution of
boundary integral equations have been obtained by Nedelec (1976,1977); of the
next proposition the proof is still in Masmoudi (1987).

PROPOSITION 9.3 For smooth enough data
607 — SIL] < c(u) AL gl 1T g |1 en]

where:
e [ means the degree of polynomials used to approximate the boundary;
k the degree of finite elements approximation;
q s the solution of an equation of the type of (75) set on ~y;
I1 is the solution of a similar equation for the adjoint state.

Remark. We note that for £ = 2 we should use [ = 4 so that the error
estimate is in h%; finally we should note that with a smooth approximation of
the boundary the error estimate of 6J is quite good; this is in contrast with
what we obtained with finite elements.
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