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Abstract: In this paper we present some basic material for the 
shape optimization of structures. We emphasise the so called con­
tinuous approach with few results on numerical approximation with 
finite elements or boundary integrals. 

1. Introduction 

In this paper we present some basic material for the shape optimization of 
structures. We emphasise the so called continuous approach with few results 
on numerical approximation with finite elements or boundary integrals; this 
approach is traditional in mathematics and theoretical mechanics, whereas in 
mechanical engineering the tendency is to first approximate the behaviour of 
the structure with finite elements and afterwards to tackle optimization. 

The choice of one of these approaches depends on the habits of thought; in 
many cases, discretisation in the first or second step yields the same results; 
this has been proved when one uses con.formal finite elements (Moriano, 1988, 
Masmoudi, 1987). If one is interested in deriving necessary optimality conditions 
and finding explicit solutions, then the continuous approach is necessary; this is 
the route followed by Banichuk (1990), Prager (1972) and Rozvany (1996). 

However, in connection with finite elements, the continuous approach is quite 
versatile: it enables the addition of design sensitivity to a commercial finite ele­
ment code (Barros and Soares, 1987, Chenais and Knopf-Lenoir, 1988); but 
it also enables the inclusion of design sensitivity in an open finite element li­
brary such as Module£ (1985) and makes good use of existing software (Mehrez, 
Rousselet, Gauthier, Giuliano, 1991). 

Moreover, formulae obtained with the continuous approach can be imple­
mented with boundary ~lements (Masmoudi, 1987, Soares and Choi, 1984). 

It should also be pointed out that these techniques may be used and are 
used in other fields of application; for example in acoustics (Masmoudi, 1987, 
Habbal, 1996) and in fluid mechanics (Pironneau, 1984). 
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Figure 1. 

What, however, is shape optimization? It is an optimal design problem 
where the design variable is the shape of the domain D occupied by the physical 
system; the best shape of a fillet in a tension bar will provide a classsical engi­
neering example (Haug, Choi, Komkov, 1986): we want to find the best shape 
of r 0 to minimize volume with constraints on Von-Mises yield stress. 

One of the first publications seems to be the one of Hadamard (1908) but the 
pioneers of research oriented toward the use of computers seem to be Cea, Gioan, 
Michel (1974). Since that date many papers have been devoted to this topic; for 
example Chenais (1977), Murat and Simon (1976), Rousselet (1976,1977,1982), 
Dems and Mr6z (1984), Pironeau (1984). INRIA schools devoted to shape 
optimization have been organized by Pironneau (1982) and Cea and Rousselet 
(1983). 

2. Optimization and continuum mechanics 

As in conventional optimal design, the clue of the approach is to obtain first -
order estimates of the variation of a functional of the state of the system; but 
for shape optimization one soon realizes that the set of possible domains has 
no standard vector space structure, so that it seems that classical differential 
calculus and calculus of variations cannot apply here. 

Indeed, these techniques can be used if one realizes that for a given topology 
and regularity of the boundary, it is natural to look for domains as mappings of 
a given domain D; we shall denote 

ww = (<I>+ ~)(D) = {x E E / x = <I>(X) +~(X) V X E D} 

where E is the usual Euclidean space (in one, two or three dimensions); 1]! is 
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Figure 2. 

an element of a vector space of functions; it will enable defition of variations of 
w0 = cl)( D); in the sequel w will be used instad of w0 . 

Anyone familiar with the foundations of continuum mechanics should realise 
that this is what we are doing when we are using a Lagrangian representation 
of the movement of a continuous medium; this is the usual representation in 
solid mechanics. For the implementation of the analysis of large deformations 
of solids it is usual to use an updated Lagrangian formulation : this amounts 
to linearizing the behaviour of the solid around a configuration obtained with a 
fraction of the load. 

Here we are going to linearize around the given domain w, but we should 
keep in mind that in the overall process of optimization we shall update the 
domain w around which we linearize the cost functional and the constraints. 

Basic tools for this linearization are well-known in continuum mechanics, but 
were derived independently for shape optimization by several authors including 
Dervieux-Palmerio (1975), Murat-Simon (1976), Rousselet (1976). These tools 
are recalled in the next two sections. 

3. Differential calculus and linearization around a given 
domain 

To join domain sensitivity and surface sensitivity, we recall some basic notations 
of curvilinear coordinates; in fact the mapping 

X f-t X = cp(X) 
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Figure 3. 

defines curvilinear coordinates in w. 

We assume that all the domains D , w are imbedded in a three-dimensional 
Euclidean space; entirely similar results hold in two dimensions. 

o<D 
We denote by gi(x ) = ~ the local basis; generally it is not orthonormal 

uXi 
so that it is convenient to use the dual basis gi defined by gi.gj = o}; see drawing 
in two dimensions. 

o<D . 
With these notations the matrix of - 1s oX 

(I) 

Note: In the following repeated Iatin indices are summed from 1 to 3 and 
Greek indices from 1 to 2. 

f '" -- of ~<Dx( ~-) ) Let f : w ---t JR. be a scalar funtion; if we set . u . 

rule yields 

of i 
OX = f,i9 

it is usual to set 

grad f = gij f,i gj 

where 

the chain 

(2) 

(3) 

(4) 
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For future reference we recall that 

l f(x)dx = l f(<T?(X)) I D<T? I dX 

with 

I D<T? I= det(gl 92 93) = vg 

where g = det(gij) with 9ij = 9i·9J 
For a vector .field v defined in w, the chain rule also yields : 

ov i 
OX= V,i9 

where 

ov( <T?(X)) 
V.-,,- oXi 

but if we express v in the local basis 9i and wish to express 

components it is classical to introduce Christoffel symbols: 

r i i 
kj = g ·9k ,j 

ov . . 
so that -;::;- = v!J 9i ® g1 where 

ux 

i i i k 
v

1
J=v,J+rJkv 

and gi ® gJ is the linear mapping defined by 

941 

(5) 

(6) 

(7) 

(8) 

ov 
with these 

ox 

(9) 

(10) 

(11) 

The divergence operator is well-known in continuum mechanics; we recall 
here some formulae which have similar features when applied to surfaces. We 
first consider as a de.finition the following equality which should hold for any 
continuously differentiable function f with compact support in w: 

l f div v dx = - l ~~ v dx 

where component-wise: 

of . . 
-;::;-v = f i (g'v) = f iv' ux ) ' 

to obtain an expression of div v in local basis it is useful to state 

LEMMA 3.1 

(12) 
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(i) 

(ii) 

og .. 
-- = g g'J 
ogij 

or 

Proof. 
(i) 
(ii) 

Comes from gijgjk = 8f 
The proof uses (i) and some manipulations. 

PROPOSITION 3.1 Let v = vigi 
(i} The following expressions hold 

1 . . . 
divv = -(v'vg) i = v1', = g'.vi vg , 0 , 

(ii} The following identity holds 

div(.fv) = fdiv v + ~~ v 

Proof. 
(i) The first identity comes from the definition (12) and (5), (6), (7). 
(ii) Is straightforward in components. 

The formula which provides the first-order change of an integral over a do­
main w with respect to changes of its shape is well-known in continuum mechan­
ics (see for example Germain, 1979) and is now widely used in shape optimal 
design (see e.g. Cea, 1975;1986, Masmoudi, 1987). Here we try to provide a 
presentation which is introductory to the more complex case of surface varia­
tion. 
We recall from Section 2: 

Ww = (<T> + W)(D) = (Id+ w)(w) 

with w = <T>(D) and W = W o <T> and for any function f : f = f o <T> 

](X) = j(<T>(X)) (13) 

To make precise the first variation of a function fw defined on a variable 
domain ww we set the 

DEFINITION 3 .1 Let fw be a function defined on ww; this function may depend 
explicitly on the vector .field \]! and implicitly through the position of the point 
x = x + w(x) where it is evaluated; we set 

f.v(X) = fw(<T>( X ) + 1J! o <T>(X)) 
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and 

8fw(x) l
. !tw(x + tw(x))- f(x) 
lm~~----~~--~~ 

t-+0 t 
d - fJ -
d/tw o (<I>+ tw) lt=o= fJtftw(X) lt=o 
fJ fJ 
a/tw(<I>(X)) it=O + fJxftwW(x) it=O 

Remark 1. 
We note that 8 f is a function defined on w; it is linear with respect to 'ljJ ; 

if f does not depend explicitly on W, the chain rule yields 8 f = ~~ W ( x) . If 
f does not depend on x, 8f is just the directional derivative with respect toW. 
Moreover 

fJj fJj 
8fw(x) =- + -w(x) fJw fJx 

Remark 2. 
The usual rules for computing derivatives of a sum or of a product of func­

tions hold for the operator 8. 

Remark 3. 
In continuum mechanics, when a flow t f---t x(t) is defined on w, the material 

derivative of f(t , x(t)) is 

r f(t , x(t + 8t)) - f(t, x(t)) 
8i!!fo 8t 

We note that 8f is a particular case when x(t) =X +tW(X); this simple flow 
is what is needed to define the first order variation of w. Here we call material 
derivative the 8 operator. 

To compute the variation of the integrals we need the following lemma. 

LEMMA 3.2 Let g = det(%) then b.J§ = .J§divW 

Proof. We have 

fJg 
8g = --8gij 

fJgij 

as 9ii = 9i·9j we obtain 

bgij = {jji·9j + 9i·{jjj 

then using Lemma 3.1 we obtain 

8g = 2ggi."itj = 2g divW 
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Figure 4. 

PROPOSITION 3.2 

81 u dw = 115u dw + 1 u div\J! dw 

Proof. We obtain from (3.5), (3.6): 

/ 

The result then comes from the definition and Lemma 3.2. 
Example. 

vol(w) = 1 dw yields 

15vol(w) = 1 div\J! dw = r \J!.v dO' 
w law 

as could be expected; see the respective figure. 

V 

The last equality is obtained by using the Stoke's theorem. 
We now state the variation of a derivative. 

PROPOSITION 3. 3 Let u be a function defined in Ww; we have 

15 ou = .!!__ 8 u - ou 8\J! 
OX ox OX ox 

B. ROUSSELET 
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Proof. We note that 

OUt>J! = OUt>J! (8(<P+tW))-1 

ox ax ax 

We use the definition of o 

OOUt>J! 

ox 
8 ( 8ut'l! ) ( 8<1'> ) -

1 

at ax it=o ax + 
8ut'V !!__ ( 8( <I>+ tW)) -

1 

ax lt=o at ax 
lt=O 

8 (8ut'll) (8<1'>)-1 

ax at it=o ax . 
8uo ( 8<1'> ) -

1 
8W ( a<I> ) - 1 

ax ax ax ax 

!!_Du - 8u. ()\[! 
ox ox ox 

which proves the result. 

4. Shape sensitivity for a model system 

We apply the previous results to shape sensitivity of the simplest example: a 
membrane prestressed with an inplane tension T and submitted to a normal 
density of force j; the normal deflection is the solution of: 

-T/::,u = f 
u=O 

T~~ =0 

m w } on the part 1'1 of the boundary 
8w where it is fixed. 
on "(2 where it is free 

(14) 

We denote by V the space of kinematically admissible displacements; the 
principle of virtual work states that 

1::/v E V a(u, v) = l(v) (15) 

where 

1 8u8v 
a(u,v) = w T ox ox dx and l(v) = [ fv dx (16) 

Note. The overbar denotes the vector associated to a linear form and vice 
versa: 

~~ is the gradient of v . 

The variation of the solution is itself the solution of an equation as stated 
below. 
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PROPOSITION 4.1 Let u be the solution of {15), then its first-order variation ou 
satisfies: 

1::/v E V a(ou, v) = -(oa)(u, v) + (ol)(v) (17) 

where Oa and Ol are variations of a and l for fixed U and V : 

1 ( ou o'l/; ov ) ov o'l/; ou 
( oa) ( u, V) = w T ox. ox . ox dx + ox . ox . ox dx 

1 ou ov 
+ w T ox. ox div'l/; dx (18) 

(ol)(v)= L vofdx+ Lfvdivif!dx (19) 

The proof is a direct application of Propositions 3.2 and 3.3. 

Shape sensitivity of a functional 

We consider the simplest case 

J = l a(u)dx (20) 

The proposition 3.2 yields 

8J = la' ( u )ou dx + la( u )divif! dx (21) 

As in conventional design sensitivity this expression is not explicit with re­
spect to if!: ou is defined through equation (17); but this expression may be 
transformed. 

PROPOSITION 4.2 Let L(u, v) = J(u) + a(u, v) - l(v) and set p the solution of 

1::/wE V oL(u,p) w = O 
ou 

(22) 

oJ 
or a(w , p) = - ou w then 

c5J = (c5L)(u,p) 

where the variation of L is computed at u and p fixed; or more precisely: 

c5J = L a(u)div'l/J dx + (oa)(u,p)- (ol)(p) (23) 

with oa and 81 given in the previous Proposition. 



Introduction to shap e sensitivity: . three-dimensional and surface systems 947 

········ ... \>;~. 
/s //! ········ .. 

~ 

Figure 5. 

5. Surface differential calculus 

We consider now a surface S imbedded in a three dimensional space E 3 , 

parametrized by a single-valued <I> from a reference open domain n of a two 
dimensional space E 2 . The striking difference with Section 3 is that <I> is a 
mapping from a two dimensional space to a three dimensional space. With 
simplifications all the material presented would be adequate for plane curves, 
although the use of arc length would simplify some formulae. 

To emphasize that <I> stems from a two - dimensional space, we denote by ~ 
the variable in n and Greek indices are implicitely running from 1 to 2; repeated 
indices mean summation, from 1 to 2. 

The local basis is noted 

a <I> 
aa = ae" 

it is the basis of the tangent space to S at the point m= <I>(O. 
The dual basis is defined by 

aa.af3 =bp 

(24) 

(25) 

where the dot means the usual scalar product of E 3 . So ( a 1 a 2 ) is the matrix of 

a<I> a 
a~ = aa Q9 e (26) 

where ea = ea is the standard basis of E 2 . We note that: 

(27) 
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is the matrix of II , the orthogonal projection onto the tangent· plane. 
In the sequel we note 

](0 = f(r/J(~)) , x =<I>(~) as in (13) 

Let now f : S ----. 1R be a real function defined on S. If we set 

at aj a 
- = --a am a~a 

(28) 

(29) 

it is easy to check that this linear mapping from the tangent plane to 1R is 
independent of the parametrization; we also have: 

or 

a J a<I> 
am a~ 

aj 
a~ (the chain rule) 

In the following all the notions introduced are independent of the parametriza­
tion with the exception of the ChTistoffel symbols. 

The integral over the surface may be written with a parametrization: 

is !(m) dS = l f(<I>(~))yad~ (30) 

where 

a = det( aa(3) (31) 

with aa(3 = aa .a(3 or ya =11 aa x a(3 11 (area element). 
The differentiation of a vector .field is here more intricate; this is intuitively 

obvious with a circle: let T( B) be a unitary tangent vector field. It is clear 
that when T(B) is near T(B0 ), the first-order change is not tangent but rather 
orthogonal to the circle; thus we need to introduce the orthogonal projection II 
onto the tangent plane; recall that 

we set 

then IIaa,(3 is a tangent vector. Its decomposition in the local basis is classically 
expressed with Christoffel symbols (they do depend on the parametrization!): 

llaa,(3 = r~(3a.A 
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with r;,a = aA.aa,.B · Note that r;,a = r~a as aa,,B = a,a,a· 
OVt 

Similarly for a tangent vector field Vt = vaaa as of;,"' is not tangent, we 

consider 

OVt a ,B 
II am = Vl,aaa 0 a (32) 

with 

(33) 

II ~~ is the so called covariant derivative of v; this definition is motivated by 
the following identity: 

IIOVt a = II av 
am 1-' of;,~-' 

and this formula comes from the chain rule; here are the details: by the defini­
tion, 

(vi(, aa 0 a.B) al-L= vr:aa 

(v~ + f~l-'v,\) aa 

a +f"' ,\ v,l-'a"' ,xl-'aav 

v~aa + (IIa a,/-L ) v,x v~aa + v"' (IIa,x,/-L) 

( "')- av 
II V aa .!-' = II of;,~-' 

We turn now to the divergence of a tangent vector .field defined by an inte­
gration by parts. 

For any continuously differentiable function f which is zero near the boun­
dary of S: 

is j divvt dS = - is:~ Vt dS 

To obtain an expression in the local basis it is convenient to note: 

LEMMA 5.1 (i) ~ = aa"'.B 
Baa,a 

(ii) 
Ba ,x 

of;,"' = 2ar a,\ 
or 

Proof: It is based on (a"'.B)(a,a-y) = 8~ and 

a,x/-L,a = flaa"'l-' + r;aa-\-y 

which comes directly from the definition of Christoffel symbols. 

(34) 
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PROPOSITION 5.1 Let Vt = vcr.aex be a tangent vector field, we then have the 
following expressions of the divergence 

d . 1 ( r:: cr.) cr. ex rr OVt cr. rr OVt 
WVt = Va V av ,cr. = VIer. = a . ()~ex = a . am aa (35) 

Proof. The first equality comes from the definition and (30); then we obtain 

divv = va + va (va),a 
t ,cr. Va 

and with Lemma 5.1: 

(32) now gives 

cr. cr. rr OVt ex OVt 
VIer. = a . am aa = a .IT fj~CY. 

Becanse we are interested in variation of S , we shall have to consider vector 
.fields \!! which are transverse to S ; so now we recall how to compnte derivatives 
of transverse vector .fields. 

It is usual to introduce a unitary normal vector 

a1 x a2 
a3 = 

11 a1 x a2 11 
(36) 

a aa3 
As a3 .a3 = 1 we have a': .a3 = 0 so that am may be considered as an operator 

of the tangent plane. Its expression in the local basis is usually written: 

aa3 ex fJ 
-- = -bfJaex ® a 
am 

tl t bex - ex aa, l t b - aa, -so 1a fJ --a . am .afJ we a so se cr.fJ- -aex. am .afJ - -aex.a3,{3 

(37) 

Note that the lowering of indices is performed systematically with the metric 
tensor aafJ : 

bexf3 = a ex>, b~ 

The derivative of a tangent vector aex may be written: 

aex,{3 = r~f3a>- + bex f3a3 (38) 

Now let \!! be a transversed vector field : 

(39) 

from the previous formula we can obtain: 

(40) 



Introduction to shape sensitivity: three- dimensional and surface systems 

or 

from which we obtain 

with 

1/;~!3 = ( 1/;~ - b~?j;3) 

1/Jn/3 = ( 1/;3,/3 + b>./31/JA) 

951 

( 41) 

(42) 

An important operator for surface variation is the tangential divergence of a 
vector .field: 

We recognize that 

1/;~ = divii 1/J 

and it is usual to set 

H= -b~ (mean curvature of S), 

so that we can also write: 

div s1/J = divii 1/J + H ?j;3 

We note that divsa3 = H. 

6. Surface variations 

Now we are to provide some basic formulas for sur:face variation. 

(43) 

(44) 

The material derivative operator 8 is defined in the same way as for domain 
variation 

( 45) 

We should emphasize some differences: S is a surface; W is a transverse 
vector field to S; 

St'I/J = {m J V M E S m= M +t~(M)} (46) 

ft'I/J is defined on St'I/J. 
First-order variation of integrals will be obtained with the following lemma. 
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LEMMA 6.1 Let a = det( aaf3) we have 

8fa = ,;a divs'lj; 

B. ROUSSELET 

(47) 

The proof is left to the reader and its use to prove the following proposition. 

PROPOSITION 6.1 The .first order variation of an integral is: 

8is fs dS = is8f dS +is fs divs'lj; dS (48) 

Example. 

area( S) = is dS implies 

8 area(S) =is divii 'lj; dS + 1 H'lj; 3 dS 

now a Green's formula yields 

{ divii'Ij;dS = { (II'Ij;).ndO" 
ls los 

n being normal to S in the tangent plane, the interpretation is obvious for a 
circular arc. 

The second term 

means that for a given surface the first order variation is proportionnal to H; 
this is obvious for the one-dimensional example of the circle arc; with 'lj;3 = 8R; 

r 1 length 
8length = Js R 8RdS = (8R)a. = (8R)~ 

if the arc of a circle converges to a segment of same length ( R --> +oo) then 
8length goes to zero 

Now we study the variation of a derivative . This is more difficult than in 
the volumic case. We first state and "prove" a simple but wrong result . 

8 au _ a8u au II aW 
am - am - am am 

(49) 

The natural but wrong proof is as follows: 

now if <1>(0 = <l>o(~) + {J(~) 
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IT \If 

\ 
/ 

length ? 

Figure 6. 

~: = 8~o + ~~ = 8~o ( 1 + (8~o) -I ~~) 
so that expanding up to first-order 

(~:)-I = ( 8~0 ) -I _ ( 8~0 ) -I ~~ ( 8~0 ) -I 
as in the volumic case; then expanding u = u0 + 8u + .. . 

8u ( 8<I>o) -l 8u 8uo 88u 
8~ 8); = 8mo = 8mo + 8mo + . . . and 

8u (. 8<!> 0 ) -l 8~ ( 8<I>o ) -l __ .8u IT 8ijJ-~ 
8~ 8~ 8~ 8~ 8mo 8mo 

so that up to first-order 

8u 8uo 88u 8uo 8'1/J 
--- --=--+ .. --IT--+... which is equivalent to (49) 
8mo 8mo 8mo 8mo 8mo 

What is wrong? The crucial point is that 

8<I>o ( 8<I>o ) -l 
8~ 8~ 

cannot be the identity! 

8<l>o · · h . ht . ('t . . 2D 
8~ 1s not on-to so 1t cannot ave a ng mverse 1 s Image IS a tangent 

plane); it has a left inverse B =ea ®a"', the matrix of which is 

where a"' means the components of a"' 
in an orthonormal basis of E 2 . 
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Indeed, we have seen that 

is the orthogonal projection onto the tangent plane; 

that means 

o<I>o 3 3 
I E3 = a~ B + a 0 a 

Rather than modifying the previous proof, we are going to use more directly 
the basis vectors, but first of all the right proposition is as following. 

PROPOSITION 6.2 The .first order variation of a derivative is: 

8 ou = oou 
om om 

or component-wise 

>: OU _ (' - ) a - ( a 0 /, ) 1-' - C>/-' ( 3 0 /, ) 3 
U om- uU ,aa - U,a a ·'1',/-L a + U,aa a ·'!',/" a 

The proof rests on the following lemma. 

LEMMA 6.2 First order variation of basis vectors: 

(i) or 

(ii) 

(iii) 

OT oB= -B-II+B a3- a 3 aw ( 81/J) 
om om 

(overbar means transposition; see Section 4) 

Proof: We set <I> = <I>o + Ill and we have 

a <I> 
aa = o~"' 

(i) so that 

o a?[J 
aa = aa + o~"' which gives 
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(ii) We use a3.al-' = 0 so that (8a3).al-' = -a3.8al-', moreover a3.a3 

(8a3 ).a3 = 0; then as 8a3 = (8a3.al-') a~-'=- (a3.8al-') a~-' we obtain 

Then as 

a'ljJ a;j; 1-' 
-=--a 
am a~!-' 

955 

1 gives 

we have obtained the second equality; the third one comes just from the notation 
(42). 

a'ljJ of,A {3 o/,3 {3 
am = '~"11!3 a;>.® a + '~"11!3 a3 ®a 

(iii) a"'.a3 = 0 implies (8a"').a3 = -(a"'.8a3) and a"'.a>. = 8~ gives 8a"'.a>. 
a ex .8a>-, so that 

8a"' - (a ex .8a>.)a>. + (a ex .8a3)a3 

_ (aex a;j; ) a>- +a"' a~-' (a3 a;j; ) a3 
·ae · ·a~!-' 

On the other hand Bh = ea(a"'.h), so that 

8Bh eex(8a"'.h) 

-ea (a"'.:t) (a>-.h) +ea (a"'.a'' (a3.:t)) (a3
.h) 

Proof of the Proposition 6.2. 

au - a 
-=uaa am . 

so that 

8 au (8-) a - 8 ex -a = u exa + u a a m ' ' 

a 
we note that u is computed at a fixed point so that 8 and -a commute; secondly 

~ex 

we use (iii) of the previous Lemma: 

8 au (8-) a - ( ex a;j; ) >. - ""~-' ( 3 a;j; ) 3 am = U ,exa + U,a a . ae a + U,aa a . a~!-' a 

this is the component-wise formula of the proposition; the intrinsic formula 
stems from 

au - ex 
- = Uexa 
am ' 

and 
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n 

s 

Figure 7. 

7. Sensitivity analysis for a surface heat equation 

We still consider a simple surface system; i.e. a stationary surface heat conduc­
tion equation; we set: 

f surface density of heat source, 
g line density of heat source, 
q heat flux vector, 
u deviation of temperature from the natural state. 

We assume Fourier law for an isotropic homogeneous medium: 

Du 
q=-c-

8m 

the conservation of heat gives: divq = f . 
We assume prescribed zero deviation of the temperature on 1 1 ; u = 0; prescibed 
heat flux on 12 ; q.n = - g; note that the minus sign is a convention, q the 
pointing toward the cold subset, g is positive when heat is received and n is 
outward normal to the boundary and lies in the tangent plane to S. 

Finally we have 

{ 
div q = f in s 

u=O on /1 
q.n = - g on /2 (50) 

au 
q=-c-am 
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{ 
qfc, = f in s 

or componentwise 
UC< = Q on /I 

qC< .nC< = -g 
qC< = -cae<f3u,f3 

In a standard way we consider the variational formulation: 

'Vv E V a(u, v) = l(v) 

where 

V = {vEH 1 (S) I Vh1 =0} 

r au 8v 
a( u, V) = J s cam . am dS 

l ( v) = { j v dS + + 1 gv dO" 
ls 'Y2 
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(51) 

(52) 

(53) 

(54) 

(55) 

As in the volumic case 8u is the solution of an equation with the same bilinear 
form a. 

PROPOSITION 7 .1 Let u be the solution of {50} or {52}, then its variation 8u 
satisfies 

'Vv E V a(du, v) = -(8a)(u, v) + (8l)(v) 

where 8a and 8l are the variations of a and l .for fixed u and v : 

(8a)(u, v) _ f c ( au II a'l/J. av +!!:!_IT a'l/J. au) dS 
ls am am am am am am 

(8l)(v) { v8.fdS+ { .fvdivs'l/JdS+ j v8gdO" 
k k ~ 

+ 1 v g div-y2 1/! dO" 
'Y2 

As in the volumic case, the proof is simple if one uses the previous results: 
Propositions 6.1 and 6.2 . As a touch of "humour" we note that the "wrong" 
Proposition 6.2 would give here the same Proposition 7.1 . This is because the 
term 

( 
aw au) 

a3· am" am a3 

has a zero scalar product with :: which is a tangential vector. 
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Surface sensitivity of a functional 

The simplest case is 

J(u) =is a(u) dS 

With proposition 6.1 we obtain 

81= l a'(u)8udS+ l a(u)divs'I/JdS 

To make this expression explicit with respect to 1J! we use the same Propo­
sition 6.1 to obtain 8J = (8L)(u,p) where L = J + a(u,p) - l(p) and 8L is 
computed at fixed u and p: 

8J =is a(u) divs'I/J dS + 8a(u,p) - 8l(p) 

where 8a and 81 are given in Proposition 7.1 and pis solution of an adjoint state. 

8. Boundary expression of shape sensitivity 

We turn here to the volumic case of section 4. It is possible to obtain a different 
expression of the shape sensitivity of a functional: formula (23) may be trans­
formed to a formula which involves boundary integrals. We need some auxiliary 
lemmas. 

LEMMA 8.1 The solution u of {14) satisfies 

\:/wEw a(u, w) = l(w) + l-y, (w) (56) 

where W is the space of virtual displacements which do not necessarily 

satisfy w = 0 on 'Yl and 

1 ou 
l-y, (w) = Tw on dO' 

'YL 

The proof just uses the Stockes formula: 

1 1 ou8w 1 ou -T 6.uw dx = T 70 --;::;-dx - Tw70 dO' 
w w ux ux aw un 

ou 
which gives Lemma 8.1 as Ton = 0 on 'Yz 

LEMMA 8 .2 The following identities hold 

(i) ou o'ljJ fJp = !_ ( ou 7/J ) op _ -;Jo2 u fJp 
ox OX ax ox OX OX ox2 OX 

(57) 
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(ii) 

(iii) 

(iv) 

(v) 

op o'l/J ou = _!}_ ( op 7/J) au _ ~o2p ou 
ox OX ox ox ox OX ox2 ox 

ou o'l/J op op o'l/J au 
---+---= ox ox ox ox ox ox 

_!}_ ( ou 7/J) op + _!}_ ( op 7/J) au _ _!}_ ( ou &p) 7/J 
OX ox ox ox ox ox ox ox OX 

ou op div'l/J = div ((ou op) 7/J) _ _!}_ (ou &p) 7/J 
ox ox ox OX ox OX ox 

ou o'l/J op 
ox ox ox 

_ _!}_ ( ou 7/J) op _ _!}_ ( op 7/J) au + div ( ( ou op) 7/J) 
ox ox ox ox ox ox ox ox 

and if f does not depend explicitly on w: 

p8f+pfdiviJ! = div(pf7/J)- ~~~7/J 

The proof uses the definitions and is left to the reader. 
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PROPOSITION 8.1 Let u be the solution of the model system (14) and Jw(u) be 
the .functional (20), then its variation given by (23) may be also expressed as 

8J = 1 ouop 
-T --(7/J.n) dCJ 

1'1 on on (58) 

+ 1 a(u)(?jJ .n) dCJ + 1 (r~u i- pf) (7/J.n) dCJ 
n n CJ CJ 

Proof. Lemma 8.2 (v) enables us to derive from (18): . 

Next we use Lemma 8.2 (vi) with (19) and assume for simplicity that f does 
not depend explicitly on w: 

8f = ~~ .7/J 
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(ol)(f) = 1 div(pf?j;) dx - 1 f~~ ?/; dx 

Then we note that Lemma 8.1 for the adjoint state (22) gives 

'Vw E W fJJ 1 fJp a(p,w) =- < fJw'w > + 
11 

Tw on da 

so that: 

-TJ ~ (au ?/;) ap-
w OX ox ox-

< fJJ fJuw > -1 T (fJu ?/J ) fJp da 
fJu ) OX /1 OX on 

Similarly as the state u of the system satisfies: 

'Vw E W a(u,w) = 1 fw dx + 1 Tw~u da 
w /1 n 

we have 

- T 1 ~ ( fJp 1/J) au -
w OX ox OX-

-1 f op ?/; dx - 1 T ( 8p ?/;) 8u da 
w 8x . 11 8x 8n 

Finally we recall from Proposition 4.3 that if 

1w(1t) = 1 a(u) dx 

81 = 1 a(u) div(?j; ) dx + oa(u,p) - ol(p) 

so that (59) , (60), (61), (62) provide 

1 fJJ 8u 
8J = a(u) div(?f;) dx+ < -8 , -8 .w > 

w U X 

-1 T ( 8u ?/;) fJp da - 1 T ( 8p ?/;) 8u da 
11 8x 8n 11 8x 8n 

+ T 1 div ( ( ~~ ~~) ?/;) dx - 1 div(pf?f;) dx 

Then we note that for our functional (63) 

fJJ 8u 1 ' fJu < - , - ?/; >= a (u)-.?f; dx 
8u 8x w 8x 

B. ROUSSELET 

(60) 

(61) 

(62) 

(63) 

(64) 
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so that the first two terms of (64) provide: 

1 a(u) div('lj;) dx + 1 a'(u) ou .'lj; dx 
w w ox 

1 div(a(u)'lj;) dx = 1 a(u)'lj;.n du 
w "12 

(65) 

Using Green's formula in (64) we obtain: 

[;J = 1 a(u)'lj; .n du -1 T (ou 'lj;) op du 
"12 'Yl ox on 

1 ( op ) ou r ( ou &p) 
'Yl T ox 'lj; on du +law T ox ox ('lj;.n) du 

r (pf'lj; .n) du 
law 

(66) 

Then we note that on ry1 u = 0 and p = 0 so that ~~ = g~ n and ~~ = ~n and 
on rv where au = 0 we have au = ..!b!:....aa so that ,2 an ax acr e. 

R emark. When one uses finite elements to solve (14), it has been observed 
that the boundary expression (58) is not very accurate; theoretical support of 
this fact will be given in Section 9. 

9 . Use of finite elements and b oundary integrals 

'vVe consider the model system of section 4 and to make things simpler we assume 
u = 0 is the only boundary condition. We shall give error estimates of {JJ when 
we replace u and p by finite elements approximations; many results of this type 
may be found in l\!Iasmoudi (1987). 

First we consider the boundary expression (58) which in the case of u = 0 
on ow is 

B 1 ou op [JJ = -T --('lj;.n) du 
aw on on 

(67) 

We denote uh and Ph finite elements approximations of u and p; h denotes 
the mesh size. We set 

(68) 
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For simplification we assume that.. there is no error in the approximation of 
the geometry; we need an error estimate of the normal dePivative of u and p on 
aw; an accurate estimation may be based on Rannacher and Scott (1982): 

11 U- Uh lh,oo;f! :s; chk 11 U llk+l,oo;f! (69) 

where 

l=k llazull 11 u lik ,oo;n=l~u IIL=(n) + L axz 
1=0 £""(\!) 

and k is the degree of polynomials used in the finite element approximation. We 
note that fork = 1, the second derivatives of the solution u should be essentially 
bounded 

this is an assumption which, for example, excludes reintrant corners in an 
(Grisvard, 1985). 

PROPOSITION 9.1 If data are smooth enough such that ( 69) holds then 

I 8JB - 81{! I :s; chk 11 u llk+l,oo;f! 11 P llk+l,oo ;nii'I/J.n llo,oo;r 
Proof. 

< T r I au - auh 11 ap 111/J.n I dO' law an an an 

+ T r I au - auh 11 ap - aph 111/J.n I dO' law an an an an 

+ T r I au 11 ap - aph 11 1/J.n I dO' law an an an 
from which we obtain: 

I b]B - bJ{! I < T (I I~~- ~:'llo,ooJ I~~ IIO,oo;7 

+ 11 au auh 11 11 ap aph 11 an an O, oo;7 an an O,oo;7 

+ ~~~~~~ . ~~~~- ~:11 . ) II'I/J.n llo,oo;7 
O,oo,')' O,oo,')' 

We note that (69) implies: 

ll au - OUhll < chk 11 u llk+l,oo;w 
an an O,oo;l -
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hole 

0) 

Figure 8. 

outside 
'Yo 

and equivalently for p from which we obtain the proposition. 
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Second we consider the domain expression. We only state the result; we set 
8JD the expression given by (23); 81{; means that u and p are replaced by a 
finite element approximation uh and Ph; k stands for the degree of polynomial 
approximation and k' the order of derivatives of 'ljJ which are essentially bounded. 

PROPOSITION 9.2 If the data are smooth enough then 

I8JD - 81{; I:::; c(u) hk+k' (IIPIIk+l;O + 1) ll'l/JIIk'+l,oo;n 

The proof is technical but the result may be understood directly. It means 
that if the vector field 'ljJ has essentially bounded second derivatives, the error 
estimate is in hk+l and, moreover, if the second derivatives are small, it will be 
multiplied by a small constant; this error estimate is to be compared with hk 
of Proposition 9.1 ; numerical evidence of this result may be found in Rochette 
(1990). 

Third, we consider the use of bozmdary integrals to solve the state equation. 
For simplicity, we consider a membrane with no density of force and prescribed 
constant displacement on two pieces of the boundary. 

-Tb..u =O 
U=b 
u=O 

in w } 
on /'1 
on ')'o 

(70) 

The transformation of this boundary value problem into a boundary integral 
equation is performed by introducing the classical elementary solution of the 
Laplacian b..: 

1 
E(x, z) =--log lx- zl 

27T 
(in two dimensions); 

classically b..zE(x, y) = 8(x- z) holds; and if we consider 

v(x) =!, E(x, y)q(y) duy 

(71) 

(72) 
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where 1 is the boundary of n, this function satisfies 

6.v = 0 outside 1 
v is continuous in 

ovi ove 
- --=q on 1 on on 

where vi = Vlw ve = VR2-w 
So, the solution of (70) is given by 

1::/x E w u(x) = T !, E(x, y)q(y) d(Jy 

where q is solution of 

T !, E(x, y)q(y) d(Jy = b(x) 

T !, E(x, y)q(y) My= 0 

1::/x E 11 } 

1::/x E lo 

B. ROUSSELET 

(73) 

(74) 

(75) 

Now, we note u = 0 outside of 10 and u = b in the hole surrounded by 1 1 

are the solution of (70) with the right boundary conditions, so that using (73) 
we obtain 

ou 
- =q on on 1 

If we consider now the simple functional 

we note that 

oJ.w = 1ouow dx 
ou w ox ox 

so that the adjoint state is p = -u and 

(76) 

Moreover, it is easy to obtain with Green's formula the following expression of 
Jw: we note that the expressions of Jw and oJB may be easily computed with 
the solution of (75). Remark that in this case we do not need to use (74). 

Jw = J Tbq d(J 
/I. 

The case of an equation with a non zero right-hand side may also be com­
puted with integral equations but we need to use the second Green's formula; 
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we skip the details and refer to Masmoudi (1987). Before stating the error es­
timate of 8J, we should recall that many error estimates for the solution of 
boundary integral equations have been obtained by Nedelec (1976,1977); of the 
next proposition the proof is still in Masmoudi (1987). 

PROPOSITION 9.3 For smooth enough data 

where: 
• l means the degree of polynomials used to approximate the boundary; 
• k the degree of finite elements approximation; 
• q is the solution of an equation of the type of (75) set on "(; 
• II is the solution of a similar equation for the adjoint state. 

Remark. We note that for k = 2 we should use l = 4 so that the error 
estimate is in h5 ; finally we should note that with a smooth approximation of 
the boundary the error estimate of 8J is quite good; this is in contrast with 
what we obtained with finite elements. 
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