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Abstract: The problem of optimal redesign of nonlinear elastic 
columns and frames against buckling was formulated in the paper. 
It was solved using both Pontriagin method and nonlinear program­
ming. Numerical efficiency of these methods in application to struc­
tural design is discussed. Various approaches to the solution of the 
two-point boundary value problem are demonstrated. 
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1. Introduction 

The optimization methods based on Pontriagin maximum principle have been 
intensively developed and widely implemented in practical problems of optimal 
control of processes (Bulirsch et al., 1991; Pesch, 1994). When Pontriagin prin­
ciple is used in structural optimization the role of time is played by the position 
coordinate x, and therefore applicability is limited to one-dimensional struc­
tures. However, when applied to these structures, Pontriagin method demon­
strates many advantages, namely easiness of introducing numerous local con­
straints, considering minimax problems (Szefer, 1985; Mikulski, 1995), obtaining 
bang-bang solutions (Mikulski, 1995), treating multimodal eigenvalue problems 
(Gajewski, 1985; Garstecki and Glema; 1991, Glema, 1992). In the last years re­
markable improvement of numerical methods of solution for the set of equations 
and inequalities appearing in Pontriagin method has been observed (Bulirsch et 
al. , 1991; Pesch , 1994; Stryk and Bulirsch, 1992). 
The paper discusses the advantages and disadvantages of Pontriagin method 
in comparison with Nonlinear Programming (NP) employing Finite Element 
Method (FEM). The authors' experience based on the optimal solution of sta­
bility problems of physically nonlinear structures is used. Various approaches 
to the solution of two-point and multi-point boundary value problems are dis­
cussed. 
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2. Optimal design of structural reinforcement against buck­
ling 

Consider a column or a frame structure which is to be redesigned by the addition 
of structural material in the state of initial load and distortions resulting from 
manufacturing process. Assume that the material is nonlinear elastic. The 
goal is to find the optimal distribution of the reinforcing material s(x), which 
minimizes the volume of material (1) for constrained values of critical loads per 
and per (2). We allow for bimodal buckling, denoting by ~ and ~ the values 
associated with those two modes. This problem is governed by an ordinary 
differential equation of fourth order with coefficients nonlinear in s and load 
P 0 . It can be transformed to a set of first order differential equations (3). We 
add proper boundary conditions (4) and side conditions (5). 
The optimal control problem takes the form 

F = 1x' s(x) dx----+ m}n 
XQ 

per ::::0: pO 
, , A' A ui = ij Uj, 

ui(xo) = u?, fli(xt) = uL 

Smin ~ s(x) ~ Smax 

per ::::0: pO 
v/ AV v Ui= ijUj, i,j=1, ... ,4 

ui(xo) = u?, ui(xt) = u; 

(1) 

(2) 

(3) 

(4) 

(5) 

In the case of a column, the nonzero elements of matrices are: A 12 = A32 = 
A V V V V A A 2 , V V 2 v 

A34 = A12 = A12 = A32 = A34 = 1 , A23 =per L I D(x), A23 = per L I D(x). 
Here D(x) and D(x) denote the bending stiffness coefficients, which are nonlin­
ear functions of s and load P 0 . Note that D(x) = D(x) when the two modes 
are expected to appear in one plane. The Hamilton function takes the form 

H( s, uj, uj ).i, Xi, f.i1, f.L2, u1, u2) = - Go s(x) + (6) 
A A V V A 0 

+ Ai Aij uj + .Ai Aij uj + f.i1 (Per - P ) 

+f.L2 (Per- P 0 ) + 1/1 (s - Smin)- 1/2 (s - Smax) 

The stationarity conditions of (6) with respect to the arguments of H provide 
necessary conditions for optimal solution: 

optimality condition 

state equations ,, BH A' A U· = -,- = iJ.UJ· 
t a:x, 

adjoint equations ).~ =- gJ:, = -Ai)j 
A It transversality conditions AjDUj 0 = 0 

(7) 

(8) 

(9) 

(10) 
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Since the above problem is self-adjoint, 5. and X are proportional to u and u 
with proportionality factors 6 and C, respectively. 

>-1 = - Cu4 , 
xl = - 6u4 ' 

~2 = 6u3, 
.\2 = 6u3, 

5.3 = - 6u2, 
.\3 = -6u2, 

Introducing (6) and (11) into (7) we obtain 

A 2 po abb po abb 
-Go+ Cu3 -A---+ Cu2 -u- -- = 0 

Db 2 as 3 Db 2 as 

5.4 = 6u1, 
.\4 = 6u1, (11) 

(12) 

The optimality conditions have the form of Two Point Boundary Value Problem 
(TPBVP) where we have the set of differential equations (8), (9), (12), mixed 
initial-terminal boundary conditions (4), (10) and side conditions (5),. 
In case of implementation of NP method we formulate the problem in similar 
way as (1) - (5) with the exception that the state equations (3) are usually intro­
duced in the form of higher order differential equation. In practical applications 
this equation and boundary conditions ( 4) are used in a computer program for 
structural analysis, whereas Eqs. (2), (5) play the role of constraints. 

3. Numerical aspects 

3.1. Pontriagin method 

For the solution of the TPBVP the shooting method is widely used. In this 
method vacant initial conditions are pzeassumed, the differential equations are 
solved as a Cauchy problem and the e~ror in terminal conditions, expressed in 
form of a norm, is minimized by iterative correction of initial conditions. Note 
that the mapping of initial conditions on terminal ones ('ut, At) = B( u 0 , A 0 ) is 
a nonlinear and irregular function (Figs. 1a,b,2) (Glema, 1992), because the 
state equations (8), optimality condition (12) and side inequalities (5) are in­
corporated in it. Therefore the iteration of boundary conditions requires careful 
numerical treatment. In the above iteration the derivatives of B with respect 
to u0 , A 0 are used. These sensitivity matrices can be computed either by finite 
difference method (the secant matrix) or by variational method proposed by 
Armand (1973) (the tangent matrix). In the latter case the round off errors are 
smaller because small quantities of the same magnitude appear. 

The authors studied numerical efficiency of both methods, combined with 
Runge-Kutty integration of fourth order with adaptive step, and fol).nd that they 
involve equal computational effort per one iteration. The number of iteration 
steps depended on the choice of relaxation factor in variational method and on 
size of steps in both methods. A little more robust appeared the method em­
ploying the secant matrix . Substitution of boundary displacements by propor­
tionality constants C (Figs. 1b,2) also can lead to better convergence. Crucial 
was the choice of starting point. For a bad starting point both methods were 
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Figure 1. Iteration of boundary condition for a column (Glema, 1992): a) using 
displacement u0 , b) using proportionality constant C . 
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Figure 2. Iteration of boundary condition for bimodal buckling of a column 
(Glema, 1992) 
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Figure 3. Minimum of Hamiltonian in optimization of load and cross-section 
for three-span beam (Mikulski, 1995) 
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Figure 4. Optimality conditions and Hamiltonian for specified cross-section 
(Glema, 1992) 
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Figure 5. Optimal reinforcement a) constant solution, b) continuous solution by 
Pontriagin method, c) stepwise solution by NP method (Garstecki and Glema, 
1991) 

not convergent. To find the proper starting point usually the trial and error 
method is sufficiently useful. 

Until quite lately the above described method was not applicable to Multi­
point Boundary Value Problems (MBVP), when additional interior constraints 
on state variable u were imposed. In structural optimization this problem ap­
peared, for example, in case of continuous beam. Lately, the multiple shooting 
method was developed and efficiently applied to complex practical control prob­
lems (Bulirsch et al., (1991; Pesch, 1994). Mikulski (1995) demonstrated that 
this method can be effectively used in minimax problems of optimal design of . 
continuous beams with unspecified support positions and load distribution. It 
consists in independent application of shooting method to intervals of x tak­
ing into account continuity conditions. Combination of multiple shooting with 
direct collocation is also used (Stryk and Bulirsch, 1992). 

Note that the Hamiltonian function (6) is not convex in control variable 
s, Fig. 4 (Glema, 1992), Fig. 3 (Mikulski, 1995), therefore the computation of 
optimal s cannot be limited to stationarity condition of H expressed in form (7) 
or (12), but it must be checked whether it is the maximum of H . 

3.2. Nonlinear programming method 

For comparison, the above formulated problems of optimal redesign were also 
solved by nonlinear programming (NP) employing FEM. Constants within ele­
ments was assumed. The feasible direction method for constrained optimization 
was used (Vanderplaats, 1985), where the sensitivity derivatives with respect to 
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s were computed analytically by employing the adjoint variable method (Cohen 
et al., 1990; Glema 1992) . Obviously the numerical efficiency and robustness 
of NP method depends strongly on the implemented algorithm for optimization 
(Schittkowski et al., 1994). 

Optimal reinforcement of the clamped-clamped column, obtained indepen­
dently by the Pontriagin and NP methods, is presented in Fig. 5. 

4. Concluding remarks 

The problems of optimal redesign of nonlinear elastic structures against buckling 
were solved using both Pontriagin and NP methods. The Hamiltonian and the 
mapping of initial conditions onto terminal conditions appeared highly nonlinear 
and nonconvex. This has not been reported in the literature and has required 
careful numerical treatment. In this respect the NP method was more robust . 

Despite the above described difficulties there are many advantages of Pon­
triagin method. The optimal control function s can be obtained in continuous 
form with desired accuracy. In natural way the bimodal solutions can be found. 
The bang-bang solutions can be computed, too. The mini-max problems can 
be relatively easily solved. 
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