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Abstract: Structural topology optimization is addressed through 
Genetic Algorithms: a set of designs is evolved following the Dar
winian survival-of-the-fittest principle. The goal is to optimize the 
weight of the structure under displacement constraints. 

This approach demonstrates high flexibility, and breaks many 
limits of the standard optimization algorithms, in spite of the heavy 
requirements in term of computational effort: alternate optimal solu
tions to the same problem can be found; structures can be optimized 
with respect to multiple loadings; the prescribed loadings can be ap
plied on the unknown boundary of the solution, rather than on the 
fixed boundary of the design domain; different materials as well as 
different mechanical models can be used, as witnessed by the first 
results of Topological Optimum Design ever obtained in the large 
displacements model. 

But these results could not have been obtained without careful 
handling of the specific aspects of topological genetic optimization: 
First, ad hoc genetic operators (crossover, mutation) were intro
duced; second, special attention was paid to the design of the objec
tive function; the nonlinear geometrical effects of the large displace
ment model lead to non viable solutions, unless some constraints are 
imposed on the stress field. 

1. Introduction 

Since the seminal work of Holland (1975), and the comprehensive study of Gold
berg (1989), Genetic Algorithms (GAs) have gradually been recognized as pow
erful stochastic optimization algorithms. More recently, the initial framework 
of fixed length bitstrings has been widened to other search spaces, see Rad
cliffe (1991), Michalewicz (1996), Back and Schwefel (1993), Back, Schiitz and 
Khuri '(1995), emphasizing the need for problem-specific modifications of the 
basic algorithms. The field of Evolutionary Computation covers all alternate 
evolutionary algorithms, Schwefel (1981), Fogel (1995), Back (1995). 
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The main interest of stochastic algorithms in Engineering Sciences is to break 
the limits of standard deterministic methods in many optimization problems: 
when the search space involves both discrete and continuous domains (e.g. for 
the optimal design of truss structures); when the objective function or the con
straints lack regularity; or when the objective function admits a huge number 
of local optima. On the other hand , stochastic methods are computationally 
expensive: GAs for instance, are slower than classical optimization methods by 
about one or two orders of magnitude, when comparison is possible, i. e. when 
classical methods apply. 

This paper focuses on applying GAs to some well-studied problems in me
chanical engineering, namely the structural topology optimization of cantilever 
plates. Section 2 briefly introduces the mechanical problem, and surveys pre
vious works in structural topology optimization, discussing their advantages 
and limitations. Section 3 presents the broad lines of Genetic Algorithms in 
the historical bitstring perspective, for the sake of completeness. Section 4 is 
devoted to the construction of the problem-specific Genetic Algorithm. The 
chosen representation of structures is introduced. The standard genetic oper
ators are then tailored for topology optimization. Finally, the design of the 
fitness function is thoroughly discussed. Experimentations in the linear elas
ticity case are presented in Section 5 After validation results on the standard 
cantilever plate problem, this problem is modified to highlight the ability of 
the GA-based approach to handle problems having multiple optimal or quasi
optimal solutions. Multi-loading results are then presented on the problem of 
optimizing the structure of a bicycle, and finally, the problem of optimizing the 
shape of an underwater dome, involving loading on the unknown boundary of 
the structure, is addressed and solved. Section 6 presents the first results of 
nonlinear topological optimization, in the context of linear elasticity with large 
displacements. The nonlinear geometrical effects clearly show the need to take 
into account the stress field in the fitness function to obtain realistic solutions. 

The breakthrough results on Topological Optimum Design presented in this 
paper have been obtained during the first author's PhD work. Hence, the reader 
is referred to the PhD dissertation, Kane (1996), for all technical details. 

2. Mechanical background 

2.1. The problem 

The general framework of this paper is the problem of finding the optimal shape 
of a structure (i. e . a repartition of material in a given design domain) such that 
the mechanical behavior of that structure meets some requirements (e.g. a 
bound on the maximal displacement under a prescribed loading). The opti
mality criterion is here the weight of the structure, but it could involve other 
technological costs. 

Throughout this paper, except in Section 6, the mechanical model will be 
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Figure 1. The standard 2 x 1 cantilever plate. 

the standard two-dimensional plane stress linear model, and only linear elastic 
materials will be considered (Ciarlet, 1978, Jouve, 1993). The effects of gravity 
are neglected. 

One of the well-known benchmark problems of Optimum Design is that of 
the cantilever plate: a rectangular plate is fixed on the left vertical part of its 
boundary (both displacements are set to 0), and the loading is made of a single 
force applied on the middle of its right vertical boundary. Figure 1 shows the 
design domain for the 2 x 1 cantilever plate problem. 

2.2. Related works 

The main trends in structural optimization can be sketched as follows. 
The first approach is that of domain variation, see Cea (1981) (also termed 

sensitivity analysis in Structural Mechanics). It consists in successive small 
variations of an initial design domain, and is based on the computation of the 
gradient of the objective function with respect to the domain. This approach 
has two major defects: first , it requires a good initial guess, as it demonstrated 
to be unstable for large variations of the domain; second, it does not allow to 
modify the topology of the initial domain (e.g. add or remove holes). 

A more recent approach to topology design, introduced in Bendsoe and 
Kikushi (1988), is that of homogenization; it consists in dealing with a conti
nuous density of material in [0, 1]. At the end of this deterministic optimization, 
the current density is forced toward value 1 or 0, which, respectively, stands for 
material or void. However, this approach requires the design of the homogenized 
operator, as thoroughly described in Allaire and Kohn (1993), and is sofar lim
ited to the linear elasticity case. Moreover, it cannot address,loadings that apply 
on the actual boundary of the shape to be determined (e.g. uniform pressure, as 
described in section 5.4.), and hardly handles optimization for multiple loadings. 

A possible approach to overcome these difficulties of topological optimum 
design is to use stochastic optimization methods, such as SA, see Kirkpatrick, 
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Gelatt and Vecchi (1983), and GAs, see Holland (1975). Both methods have 
been successfully applied to other problems of structural optimization: in the 
framework of discrete truss structures, for cross-section sizing, Goldberg and 
Samtani (1986), Hajela (1992), Lin and Hajela (1993), Schoenauer and Wu 
(1993), among others, as well as for topological optimization, Hajela (1993), 
Grierson and Pak (1993), Wu (1996), and for the optimization of composite 
materials, Leriche and Haftka (1993). 

More recently, some problems of structural components optimization have 
been addressed by stochastic methods: Simulated Annealing is used to find 
the optimal shape of the cross-section of a beam, a simple problem on which 
interesting theoretical results are proved in Anagnostou, Ronquist and Patera 
(1992), Ghaddar, Maday and Patera (1995); and GAs are used to solve the 
cantilever problem presented in Section 2.1. in Jensen (1992), Chapman, Saitou 
and Jakiela (1994). However, the work presented in this paper goes further 
than these latter works: the geometrical constraints are weakened, increasing 
the range of possible solutions (Section 4.5.1.); the fitness function is carefully 
designed, and a fine control of the mechanical behavior of the solution is thus 
possible (Section 4.5.); last, this paper is not limited to feasibility results on 
problems that can be solved by the homogenization method, as demonstrated 
by the breakthrough results presented in Sections 5 and 6. 

3. Genetic Algorithms 

This section gives the broad lines of basic GAs; the reader is referred to Goldberg 
(1989) or Michalewicz (1996) for further details. 

3.1. Historical GAs 

Given a search space E and a fitness function F defined from E onto JR+, GAs 
evolve a set of p individuals (points of E), termed population. This evolution 
crudely mimics the Darwinian evolution: according to the Darwinian survival
of-the-fittest principle, the fittest individuals, i.e. near-optimal points of fitness 
function F will appear in population Pi for some i. 
The basic step in GAs, called generation, is the transformation used for pop
ulation Pi to give birth to population Pi+l· This transformation involves four 
steps : 

• Evaluation: the value of the fitness of all individuals on the current 
population is computed. Note that this step involves p independent com
putations that can easily be parallelized. 

• Selection builds population Pi by copying elements of Pi ; the number 
of copies of an individual increases with its fitness, the total number of 
elements in Pi being same as in Pi. 

• Crossover acts on population Pf to build population P;' . From two in
dividuals x and y in Pf, crossover builds two offsprings x' and y' with 
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probability Pc (Pc usually varies from .2 to 1.). When considering a bit
string representation (E = {0, 1}N), a crossover c can be represented as 
a bitstring itself, c = ( c1, . . . CN): 

. j { Xi if Ci = 1 
Wlt 1 X i ! = 

Yi if Ci = 0 

{ Yi if Ci = 1 
and Yi' = 'f 0 Xi 1 Ci = 

Most authors only consider one-point crossovers, corresponding to masks 
(1..10 .. 0), or two-point crossovers, corresponding to masks (1..10 .. 01..1) . 
The general case represented here is called un~form crossover, Syswerda 
(1989). 

• Mutation acts on population PJ' to build population Pi+l· Mutation 
transforms an individual x in PJ' into an offspring x' ; when considering 
a bitstring representation, a mutation can similarly be represented by a 
bitstring m = (m1, ... mN ): 

x 1 XN ----> x 1 t XNI 

. { 1 - Xi if mi = 1 
With Xi! = 'f O 

Xi 1 mi = 

The probability for mi to take value 1 is noted Pm (Pm usually varies from 
w- 2 to w-4 ). 

3.2. The representation issue 

One of the main difficulties arising when applying GAs to some optimization 
problem is the choice of the search space. Two different spaces have to be con
sidered. While the fitness function is defined on the phenotype space, genetic 
operators usually apply in the genotype space, be it the space of bitstrings, as 
described above, or any other space, as in modern Evolutionary Computation 
works. The representation of a phenotype in the genotype space involves a 
mapping (or coding) which can cause a loss of information (it is generally not 
bijective, not isometric, ... ). The choice of the genotype space is therefore re
lated to a compromise between the simplicity of the coding and the possibility 
to design useful genetic operators in the genotype space. Whereas standard 
GAs emphasize the use of fixed bitstrings as genotypes, other trends of Evo
lutionary Computation try to use the same space for both the genotypes and 
the phenotypes, the effort being then put on the design of genetic operators. A 
thorough discussion on the topic can be found in Fogel (1995). Section 4 will 
provide an instance of such a situation. 
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3.3. Pros and cons 

When considered as function optimizers (which they are not in the first place, 
DeJong, 1992), the main advantage of GAs is to be a zero-th order method: the 
only prerequisite is to be able to compute values of the objective function, and 
of possible constraints of the problem. Furthermore, no regularity is required, 
neither on the functions nor on the search space. GAs can hence be used for 
continuous parameter optimization, for totally discrete problems as well as for 
mixed integer-continuous optimization, Martin, Rivory and Schoenauer (1995), 
Back and Schiitz (1995), provided genetic operators are defined on the search 
space. However, the design of good genetic operators is still a matter of ex
perience, and a posteriori numerical experimentation remains the only possible 
validation, though some general guidelines have been stated, Radcliffe (1991). 
Section 4.4. will give examples of specific operators, justified by the performance 
of the resulting algorithm. 

On the other hand, it is well-known that the main drawback of GAs is their 
slowness. In particular, when both a GA and some deterministic method (e.g. 
a gradient method) can be used on the same problem, the latter is usually some 
orders of magnitude faster, Schoenauer and Wu (1993) . Parallelization certainly 
brings a partial answer to that issue. However, it only distributes, and does not 
reduce the CPU requirements needed for a successful GA-based optimization 
problem solving. 

Moreover, GAs involve numerous user-defined parameters that have to be 
tuned carefully to get the best out of the algorithm. Here again, note that 
tuning can only rely on the experience of the programmer, and on the results 
of systematic trial-and-error experiments. 

Nevertheless, these drawbacks of GAs are negligible whenever they are the 
only way to a solution of the problem at hand, handling problems beyond the 
limits of other optimization methods. The following part of the paper is devoted 
to such successful applications of GAs. 

4. Genetic optimum design 

This section will detail the implementation of GAs on the problem of Optimum 
Design presented in Section 2.1, describing all the necessary steps toward the 
successful Genetic · Optimum Design. 

4.1. Tentative fitness 

As emphasized in Section 3.3., GAs only require values of the objective function . 
Hence, the broad lines of the implementation of GAs for the problem of Opti
mum Design described in Section 2.1. can be represented as in Figure 2: The 
mechanical behavior of a structure can be numerically simulated by some Finite 
Element Method. From that simulation, and from the weight of the structure, 
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Figure 2. A tentative fitness for genetic optimum design 

a function to optimize can be designed (handling the constraints on the me
chanical behavior by using penalty functions, for instance). This function can 
be used as the fitness function of a Genetic Algorithm. 

However, the main question remains the choice of the search space: the tar
get space is that of partitions of the design domain into two subsets (material 
and void). However, this general space is far too large (for instance, for ob
vious mechanical reasons, only structures with continuous boundaries between 
material and void need to be considered). Unfortunately, there is no natural 
'representation for partition of continuous domains. 

4.2. A priori discussion for shape representations 

A theoretical framework is developed in Ghaddar, Maday and Patera (1995) 
in the same context of Structural Optimum Design, but on the problem of 
optimizing the cross-section of a beam submitted to a bending momentum. The 
search space is restricted to partitions with polygonal boundaries. Theoretical 
results of existence and uniqueness of a solution are proven, approximation 
spaces are introduced and corresponding approximation results are obtained. 
Though the objective function considered in this paper is quite different from 
the one in Ghaddar, Maday and Patera (1995), the same class of search space 
will be used here. 

However, a significant difference between the objective functions in Ghaddar , 
Maday and Patera (1995) and the one to be used here is that the topological 
Optimum Design problem requires some Finite Element Analyses (FEAs) on the 
direct problem to compute the fitness of a possible solution (i.e. a given repar-
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a - The bitarray genotype. 
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b - The phenotype, or repartition 
of void/material. 

Figure 3. Bitarray representation: GA applies on the bitarray genotype (a), 
while fitness is computed on the phenotype (b). 

tition of material in the design domain), as shown by Figure 2, and detailed in 
the forthcoming Section 4.5. It is well-known that meshing is a source of numer
ical errors, Ciarlet (1988) . Hence, when comparing two structures of different 
shapes, using a fitness function based on the outputs of two FEAs performed on 
different meshes is bound to fail, at least when the actual differences of behavior 
become smaller than the unavoidable numerical noise due to remeshing. The 
use of the same mesh for all FEAs, at least inside the same generation, is thus 
mandatory in order to obtain significant results. 

4.3. The bitarray representation 

Once the decision to use a fixed mesh has been taken, and with even very lit 
tle knowledge of GAs, the straightforward representation for a partition of the 
design domain is that of bitstrings: each element of the fixed mesh belongs to 
either one of the subsets of the partition, which can be symbolically labeled 0 
or 1. Figure 3 is an example of a "chromosome", together with the correspond
ing repartition of the material, for a regular mesh of the design domain into 
quadrangles. 

At first sight, the resulting representation can be viewed as a bitstring, 
and the Optimum Design problem seems to have been brought back into the 
historical framework of GAs, Holland (1975), Goldberg (1989), where the search 
space is the space of fixed-length bitstrings. Hence, all previous works using 
Genetic Algorithms on Optimum Design problems did use that representation, 
Jensen (1992), Chapman, Saitou and Jakiela (1994) . 

However, this simple approach is far from optimal, as will be shown in the 
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Figure 4. Examples of "Black and white" offsprings from different crossover 
operators. 

next section. 

4.4. Bitarrays are not bitstrings 

This section is devoted to the study of the crossover operators for the repre
sentation of shapes given in section 4.3. All crossover operators introduced in 
this section will be symbolically presented in Figure 4: two offsprings of a black 
parent and a grey parent are plotted. The calor of the bits of the children only 
tells which parent this bit comes from, regardless of its actual value. 

4.4.1. Geometrical bias of one-dimensional crossover operators 

In order to evaluate the bias induced by handling a bitarray as a bitstring, the 
standard (bitstring) crossover operators are first considered . 

One-point and two-points crossovers arc geometrically biased, as they can 
only exchange horizontal bands of genetic material between the parents. Figures 
4-a and 4-b symbolically witness that phenomenon. A detailed Schema analysis 
can be found in Kanc and Schoenauer (1995), Kane (1996), emphasizing this 
bias. On the opposite, the uniform crossover (random mixture of both parents' 
genetic material not presented in Figure 4) does not suffer from such a bias. 

Nevertheless, two specific two-dimensional operators are introduced in next 
section to address this issue. 
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Figure 5. Performances of crossover operators without mutation 

4.4.2. Specific two-dimensional crossover operators 

Diagonal crossover 
The basic idea of d iagonal crossover is to generalize the popular one-point 
crossover to the two-dimensional case. As shown on Figure 4-c, a randomly 
selected straight line separates the rectangle in two parts which are exchanged 
between both parents. 
The block crossover 
First introduced in Jensen (1992), the idea of the block crossover is to cut the 
whole two-dimensional domain by two horizontal lines and two vertical lines 
and to exchange some of the large blocks defined by these lines. The values v1 

and v2 (respectively h1 and h2 ) are chosen uniformly, and the 2 (or 3) blocks 
to be exchanged are selected randomly. Figure 4-d shows an example of 2-block 
crossover. 

4.4.3. Experimental comparison of crossover operators 

These crossover operators have been experimentally compared on the problem 
of the optimization of the cross-section of a beam, Ghaddar, Maday and Pat
era (1995), Kane and Schoenauer (1995) . Figure 5 shows the results obtained 
without any mutation, and with crossover rate of 1. 

The first conclusion that can be drawn from Figure 5 is the ineffectiveness 
of the one-dimensional crossover operators, significantly outperformed by both 
uniform and two-dimensional crossovers. 
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The second remark is that the uniform operator performs poorly in the early 
stage of the evolution , before catching up in the late generations . This fact is 
confirmed by all other experiments. This phenomenon is fairly general: in the 
beginning of the evolution, the uniform crossover equivalently disrupts emerging 
schemas, while all other crossovers (even one dimensional) preserve some large 
areas . These disruptive effects do not occur in the end of evolution, since neither 
kind of crossover does disturb regions where convergence already occurred: if 
the bits of both parents at a given position are the same, crossing over has no 
effect on those bits . In the meantime, the one-dimensional crossovers fail to 
beneficially exchange potentially good vertical parts (e.g. long vertical bars). 

In all experiments of section 5. and 6., the block-3 crossover was used (it 
demonstrated slightly better performances than diagonal, block-2 and uniform 
crossovers), see Kane (1996). 

4.4.4. Mutation operators 

The standard bit-flip mutation applies on bitarrays without inducing any geo
metric bias. Nevertheless , two other directions are explored regarding the muta
tion operator of bitarray shapes. The first one is problem-independent, and uses 
statistics on the whole population to keep some genetic diversity. The second 
mutation operator, purposely devised for the problem of shape optimization, 
favors small modifications of the boundary of the shape. 
Population-based mutation 
This mutation operator, first defined in Galloway (1991) , aims at preventing 
the premature convergence of the population. The probability of a given bit 
to be flipped is adjusted by considering all bits in the same position in the 
whole population. More precisely, the probability Pi for a given bit i of flipping 
depends on the mean value mi of this bit over the population: if this bit takes 
a uniform value (m.i = 0 or mi = 1), the probability to mutate is set to a 
high value Pmaxi on the opposite, it is set to a low value Pmin if there is about 
the same proportion of Os and 1s ( mi = 0.5). The probability of flipping a 
bit is then a parabolic function of the mean value mi between these points. 
This operator thus imposes high values of mutation rate at positions that have 
already converged. 
Boundary mutation 
The underlying idea of the boundary mutation is that, for a given topology, i.e. 
a given number of "holes" in the shape, the optimal design for that topology can 
be found by slightly moving the boundary. The boundary mutation is defined 
such that boundary bits, i.e. bits having one edge on the boundary of the 
connected component of the shape, are given higher probability (PB ,max) to be 
flipped than the other bits (PB,min)· 

The population-based mutation performed slightly better than the standard 
bit-flip mutation (though many trials did no show statistically significant differ
ences), and therefore was used in all experiments presented below. The bound-
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the solution. More details can be found in Kane and Schoenauer (1995), Kane 
(1996). 

4.5. Fitness computation 

A given individual is evaluated in a two-step process. The first step is a geomet
rical analysis of the repartition of the material in the design domain, followed by 
some Finite Element Analyses on the actual structure defined by this partition. 

4.5.1. Geometrical analysis 

Some seed material is imposed at the point(s) where dynamical loading is ap
plied. The connected component containing that seed is computed. Grid el
ements are connected if and only if they share an edge. Note that no seed 
material is prescribed on the part of the boundary where the plate is fixed, as it 
is in Chapman, Saitou and Jakiela (1994). The optimization process "chooses" 
where to hang the structure on the fixed vertical boundary. This allows for a 
greater flexibility in solving the optimization problem, as witnessed in the range 
of alternative solutions proposed for the modified cantilever plate problem (see 
Section 5.2.). On the other hand, more structures are likely to be disconnected 
from that fixed boundary, leading to a mechanically ill-posed problem: such 
structures are arbitrarily assigned zero fitness, and are therefore eliminated by 
the next Darwinian selection. 

Another difficulty arises when considering the different connected compo
nents of the structure: only material actually connected to both vertical bound
aries contributes to the mechanical behavior of the structure. The disconnected 
parts have to be removed before the the FEM is called (see the example of Fig
ure 3-b) . But there are different possible ways to handle this difficulty from a 
GA point of view: 

• T he disconnected parts can be simply removed during the computation 
of the fitness. However this introduces a fairly high level of degeneracy in 
the representation: Many genotypes correspond to the same phenotype, 
and hence have exactly the same fitness. And, as pointed out in Radclifl'e 
and Surry (1994), this is not a desirable feature, as there is no preferred 
direction for the GA to go on these large plateaus of fitness landscape. 

• T he disconnected parts can be definitely removed from both the phenotype 
and the genotype, in a Lamarckian-like way. This is amenable to the so
called repair technique used in genetic constraint handling, Michalewicz 
and Janikow (1991). But these disconnected parts are possibly a valuable 
genetic material (like the dominated part of diploid chromosomes), at 
least in the beginning of evolution: this strategy generally leads rapidly 
into some local minima. 

• T he fitness can be modified to slightly favor the disappearance of such 
disconnected material: the Finite Element Method is run without the dis-
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connected parts, and some penalty term is added, relative to the amount 
of disconnected material, in order to guide the algorithm toward better 
solutions. 

This latter possibility will be used throughout this paper. Next section will 
give the precise formulation of the fitness (equation 1), including the penaliza
tion term to cope with the unconnected material. 

4.5.2. The penalized fitness 

Once the component connecting the seed(s) and the fixed boundary has been 
computed (if any), one FEA is performed for each one of the considered loading 
cases (generally one, except in multi-loading problems, see Section 5.3.), using 
the same regular quadrangular mesh that supports the representation of the 
individuals. The FEM tool is detailed in Jouve (1993). Note the actual material 
boundary is used, in contrast with both Jensen (1992) and Chapman, Saitou 
and Jakiela (1994) in which the FEA was done on the whole design domain, after 
assigning a very low Young modulus to void elements. Though the results of the 
analysis do not differ significantly from one method to the other, computing the 
actual boundary allows to take into account loading applied on this boundary 
(e.g. pressure, heat exchanges) as demonstrated in Section 5 .4. 

Different criteria have been used in previous works on Optimum Design. The 
objective function for the homogenization method is based on the compliance 
of the structure, computed as the work of externallbadings, Allaire and Kohn 
(1993). The main advantage of this objective function is to be differentiable. 
However, it does not allow a precise control of the mechanical behavior of the 
solution. As GAs do not require differentiable fitness function, the compliance 
will not be considered here. It has, however, been considered in the GA frame
work in order to make more precise comparisons between the homogenization 
method and the GA-based method proposed here (Kane, Jouve and Schoenauer, 
1995; Kane, 1996). 

Yet another approach is to try to maximize the stiffness of the structure, 
Chapman, Saitou and Jakiela (1994), Chapman and Jakiela (1995). Here again 
this does not allow a fine control of the desired behavior of the solution. More
over, comparative experiments Kane (1996) demonstrate that using the stiffness 
as fitness function generally leads to heavier solutions without much improve
ment of the mechanical properties. 

Hence, the following part of the paper will address the problem described 
in Section 2.1. of the minimization of the weight of the structure subject to 
some upper limits on the maximal displacement of the structure when subject 
to prescribed loadings. 

This problem is a constrained optimization problem. Many methods have 
been designed for constrained evolutionary optimization (see Michalewicz and 
Schoenauer, 1996, for a survey of such methods). However, the standard penal
ization method remains the simplest one to use, as it only requires a modification 
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of the objective function. The drawback lies in the difficulty of adjusting the 
penalization parameters: Section 4.6. below will discuss that issue in the context 
of this paper. Whatever the choice of penalization parameter, the formulation 
for the penalized fitness is the following: 

(1) 

where 
Aeon and Adis are, respectively, the areas of the connected and disconnected 
material in the repartition (see Section 4.5.1. above); 
D Lim the imposed limit value for the displacement; 
DMax is the maximal displacement of the structure when the prescribed loading 
is applied (computed using the FEM); 
r:: and a are positive user-supplied penalty parameters (a+ denotes the positive 
part of a). 

Note that r:: is also a penalization parameter, but whose value does not 
influence much the performance of the algorithm: it was fixed to 0.1 throughout 
the experiments described in the following sections. 

4.6. Adjusting the penalization parameter 

As quoted above, using penalization method to handle constraints raises the 
difficulty of tuning the strength of that penalization, i.e. in the case of fitness 
function (1), adjusting precisely the parameter a. 

The drawbacks of a fixed value of a are well-known (see Michalewicz and 
Schoenauer, 1996, for a more thorough discussion): 

• A small value of a may result in an optimal solution that violates the 
constraints; 

• A large value of a ensures that the constraints will be strictly met, but for
bids exploration and short-cuts in infeasible regions that might be essential 
for the overall success of the algorithm, at least during the beginning of 
evolution. 

Hence a natural idea is to use for a a dynamic schedule, starting from small 
values, and thus letting the population explore even infeasible regions, and grad
ually enforcing the penalization by increasing a so that the constraints are finally 
met by the whole population. Two different solutions to achieve this goal have 
been tried on the problem of Optimum Design. 

The first methQd uses a prescribed geometrical evolution schedule for a, and 
is termed exogenozts scheme (similar dynamic penalty terms have been proposed 
in Joines and Houck, 1994). The value of a is increased by some multiplicative 
factor fJ every M generations. Hence the value of a at generation i is given by 
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Figure 6. Comparative results (averaged over 15 independent runs) of different 
schemes for the penalization parameter a. (a) The fixed scheme is outperformed 
by both dynamic schemes. (b) The adaptive scheme sometimes slightly super
sedes the exogenous geometrical scheme. 

Typical values of M and f3 are 10 and 1.001, while the initial value a 0 is com
puted from the average weights and violations of the constraints in the initial 
population. 

The second scheme is an adaptive scheme for a, that uses the information 
contained in the current population to compute further values, in the line of the 
adaptive penalties proposed in Bean and Hadj-Alouane {1992), Smith and Tate 
(1993). Some ai is computed from the actual average weights and violations in 
population i, and a is set to ai if d'i is greater than the current value of a, to 
ensure monotonicity of a. 

Comparative experiments between the fixed scheme, the exogenous geomet
rical scheme and. the adaptive scheme were performed on different instances of 
the cantilever problem. The first strong conclusion is that the fixed scheme is 
constantly outperformed by both dynamic schemes. A typical example of such 
a situation is shown on Figure 6-a. Note that the plots of both dynamic schemes 
are hardly distinguishable. But another typical result is shown on Figure 6-b, 
demonstrating a slight improvement of the adaptive scheme over the exogenous 
scheme. However, the latter was used in all experiments of the subsequent 
sections, as being much simpler to tune. 

5. Results in linear elasticity 

This section presents results obtained using the algorithm detailed in the pre
ceding section in the framework of linear elasticity. Hence, as the first results 
(Section 5.1.) deal with the standard cantilever problem, they could have been 
obtained - much more rapidly - by the homogenization method. But after 
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(a) (b) 

Figure 7. Results on the 64 x 44 mesh for the 2 x 1 cantilever plate prob
lem. (a) Solution of the GA-based method. (b) Solution of the homogenization 
method. 

these validation results, the limits of homogenization methods are broken, and 
the presented results deal with multiple quasi-optimal solutions (Section 5.2.), 
multi-loadings cases (Section 5.3.) and finally address the problem of the un
derwater dome, involving loading on the unknown boundary (Section 5.4.). 

5.1. Validation results 

Figure 7-a is a typical result of a GA run for the 2 x 1 cantilever plate, discretized 
according to a 64 x 44 regular mesh. The population size for all runs is 125, 
and the number of generations arbitrarily fixed to 2000. One run thus require 
about 150,000 FEM analyses, taking approximately 24 hours of a powerful HP 
workstation. The genetic operators are applied with the following probabilities: 
0.6 for the block crossover (see Section 4.4.2.), 0.1 for the population-based 
mutation, with Pmin and PMax set to 0.0001 to 0.01 (see Section 4.4.4.). All 
these parameters were adjusted after exhaustive tests, and details can be found 
in Kane and Schoenauer (1995), Kane (1996). 

The result of Figure 7-a is to be compared to the result of homogenization 
of Figure 7-b. Both structures look alike, they have almost the same weight and 
same maximal displacement: these results validate the GA approach. 

Moreover, the GA solution exhibits numerous small holes (of one element 
size) in the structure. This seems to indicate that the GA somehow tries to 
approach the actual optimum, which is known to lie in the homogenized space, 
Allaire and Kohn (1993): The homogenized optimal solution can be viewed as 
the limit of a structure in which infinitely many holes of infinitely small size 
are drilled. Note however that this could have been avoided by imposing some 
lower bound on the thickness and the eo-thickness of the structures, as in the 
t heoretical study developed in Ghaddar, Maday and Patera (1995). 
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Figure 8. The 1 x 4 modified cantilever plate. 
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Of course, complete validation of a stochastic method involves a check of its 
robustness with respect to the random initialization. Different runs of the same 
program with different random starting points have been performed: all lead 
to similar structures, but slight differences could be observed in their appear
ances, though their weights and maximal displacements were very close. GAs 
are known to be able to find quasi-optimal solutions on multi-modal problems, 
Goldberg and Richardson (1987), Mahfoud (1995). This latter remark suggested 
to consider a problem with known multiple solutions. 

5.2. Multiple quasi-optimal solutions 

The problem considered in this section is a modification of the standard can
tilever plate problem made to ensure the existence of multiple quasi-optimal 
solutions: the 1 x 4 cantilever plate is discretized according to a 10 x 40 mesh 
and both its left and bottom boundaries are fixed (see Figure 8-a). 

Depending on the height of the point where the loading is applied and on the 
constraint on the displacement, the same problem can have multiple solutions. 
A simple example of such situation is given in Figures 8 (b) and (c): if the 
loading is applied at height 10, and provided that the displacement constraint 
is large enough, both structures (b) and (c) are optimal solutions. 

And indeed, as no material is prescribed on the fixed boundary (see Section 
4.5.1.), the GA-based algorithm was able to find both solutions. 

Moreover, if t he height of the loading point is fixed, and the displacement 
constraint D Lirn is gradually relaxed, different quasi-optimal solutions exist for 
some ranges of DLim · The GA method was then able to find out different 
multiple solutions, as demonstrated in Figure 9. Here again only the most 
significant results are shown, for different values of DLim, while the loading is 
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Figure 9. Optimal structures for a problem with multiple solutions. :F is applied 
at height 15. The figures below the structures are respectively DLim (the limit 
on the displacement), DMax (the maximal displacement of the structure) and 
A (the area of the structure). 

applied at height 15. The GA parameters are those of Section 5.1., except for 
the population size (100) and the maximal number of generations (500). 

5.3. Multiple loadings 

All problems addressed in the preceding sections considered constraints on the 
mechanical behavior of the structure in a single case of loading. But actual 
structures in real-world problem are generally subject to different loadings, and 
hence should be optimized while taking into account more than one loading 
case. 

5.3.1. Modified fitness 

Taking into account this new situation is straightforward in the context of GA
based Optimum Design: for each structure, one Finite Element Analysis is 
performed for each of the loading cases, and the fitness function defined by 
equation (1) is modified to agglomerate the constraints corresponding to the L 
loading cases: 

(2) 

where 
Aeon, Adis and E are as in equation (1); 
DLm is the limit value for the displacement for loading case i; 
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(a) (b) (c) 

Figure 10. The three loading cases for the optimization of the structure of 
a bicycle, together with the solution of the corresponding single-loading opti
mization problem . (a) Steady ground. (b) Heavy slope (no force on the saddle). 
(c) Sitting up-hill position. 

Dkax is the maximal displacement of the structure when loading i is applied; 
ai is the penalization paramet er corresponding to t he ith constraint; all ai are 
adjusted as described in Section 4.6. 

Of course, t he computation of the fitness of a single structure requires in 
that context L FEAs, and the computational time is therefore L times larger 
than when a single loading is considered . 

5.3.2. An example 

An example of such a situation is given by the structure of a bicycle: t he forces 
applied to that structure are very different depending on the position of the 
rider, which in t urn heavily depends on the slope of the road . For the sake of 
simplicity, only t he following three different cases have been considered: on flat 
landscape the greatest force is applied on the saddle , on up-hill ground the rider 
pushes hard on the pedals and pulls on the handlebars, and on steep roads he 
does not sit on the saddle any more, pushing extremely hard on the pedals. 

Figure 10 shows the result of the three single-loading optimization problems, 
while F igure 11 is the solut ion of t he three-loadings optimization problem. T he 
advantages of solving the multi-loading problem appear clearly when comparing 
these two figures, as the resulting multi-loading solut ion differs significant ly from 
any of t he three solutions of the single-loading problems. 

Another approach to the same problem could be to use the multi-objective 
optimization methods. Specific modifications of GAs were made to handle multi
criterion opt imization, taking advantage of the ability of GAs to find mut iple 
optima, Schaffer (1985) , Surry, Radcliffe and Boyd (1995). T he aim of the 
resulting algorithm is to sample t he Pareto set . To our knowledge, such approach 
was not tested yet on the mult i-loading Topological Opt imum Design problem. 
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Figure 11. The multi-loading bicycle 

5.4. Loading on the unknown boundary 

All problems addressed up to this point dealt with fixed loading, independent of 
the structure at hand: the loading(s) was (were) applied on the boundary of the 
design domain. There are situations, however, where some loading is applied on 
the actual boundary of the structure, which can be different from the boundary 
of the design domain. This is the case if some uniform pressure is applied on 
the upper boundary of a civil engineering structure, or, in a different context, 
when optimizing the shape of heaters, which implies heat transfers through the 
unknown boundary of the solution, Ghaddar, Maday and Patera (1995). 

This situation is of course intractable for the homogenization method, as the 
boundary of the target structure is not defined precisely before the projection 
step (nor sometimes is it precisely defined after that step either). From a GA 
perspective, this situation does not differ from the situation where all loadings 
are applied on the boundary of the design domain. The boundary of any struc
ture in the population is well-defined, and any loading can be applied there 
onto. Hence no modification of the algorithm is required to handle this case. 

Consider the problem of optimizing the shape of an underwater dome: a 
uniform pressure is applied on the upper boundary of all structures. Some 
material is imposed at both ends of the lower boundary of the design domain, 
as well as at some point above the middle, to ensure that a minimum height of 
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(a) (b) 

Figure 12. Results for the optimization of the underwater dome, with uniform 
pressure on the upper boundary. (a) For small pressure. (b) For large pressure . 

the structure1 . 

Figure 12 shows t he resulting structures , for both a small pressure (12-a) 
and a large pressure (12-b). The latter structure is indeed a better solution 
than what was expected (a structure looking like a reinforced 12-a structure) as 
it certainly is lighter: this only shows that the material requirements that were 
imposed here were not the right ones: some void area should have been imposed 
in the middle of the design domain. 

6. Nonlinear geometrical effects m topology optimization 

This section considers standard plane stress problems in the context of large 
displacements. The material still obeys a linear law (the extension to any other 
const itu tive law is straightforward), but the nonlinear geometric effects due to 
the large displacement hypothesis are taken into account. A thorough descrip
tion of the theoretical model together with the numerical algorithm can be found 
in Ciarlet (1978). Details on the numerical model and implementation used here 
can be found in Jouve (1993). 

The first experiments used the penalized fitness function described by equa
tion (1). The initial idea was to use different loadings F, with a fixed ratio 
F / D Lim ( D Lim is the constraint on the displacement). In the purely linear 
case, all such problems are of course equivalent. 

A typical result of the GA based optimization in the large displacement 
context is shown in Figure 13-b, together with the result on the same problem 
in the pure linear model (Figure 13-a): one does not need to be a mechanical 
expert to see that such a structure is a disaster, from a mechanical point of 

!Otherwise, the optimal solution is the flat structure along the lower boundary, which 
indeed has a small displacement. Note that, due to an error, one run was performed without 
this material requirement above the ground, and that an almost flat solution was found by 
the a lgorithm, Kane (1996) . 
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Figure 13. Optimal (disastrous) designs: Only displacement constraints were 
considered. F = 0.009 and DLim = 0.02285 . 

view. And different values ofF and DLirn did produce similar results. And a 
closer look at the maximal stress of the solutions CJ M ax confirmed the existence 
of a problem there: the value of C!!vfax in F igure 13-b arc far too high. 

First , the large displacement model can have different solutions for the same 
loading, some with higher stress than others. Second, the stress field itself, 
on a rough domain like the structures obtained for the standard cantilever 
plate problem, and with such coarse discretization, present s some singulari
t ies . 

As a matter of fact , Table 1 gives some idea of the nonlinear geometrical 
effect s in the case of two simple structures, the perfect ">" shape and the 
straight Learn ; both the displacement and the maximum stress arc given for 
varying loads. T he displacement is what was expected, but the stress does 
present weird values. Note that this phenomenon depends on the numerical 
model, Ciarlet (1978), Jouvc (1993). 

T his suggests to incorporate a constraint on the maximal stress in the fitness 
function. Of course, some nice structures might be missed, like the perfect ">" 
shape for F = 0 · 10- 3 . But, hopefully, another structure very similar to it can 
arise, with the same mechanical properties , and with the FElVI model giving 
a reasonable solution among the possible solutions . Following these ideas, the 
fit ness becomes 

1 
F = ----------------------~--~--------~ 

Aeon+ EActis + a(D Max- DLim.)+ + {3(C!Max- C!£im.)+ 
(3) 

with the notations of equation (1), CJ Lim being the constraint on the stress, 
CJ!vfax the maximum of the stress on the structure, and {3 some positive penalty 
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">" shape straight beam 
Load DMax (JMax DMax (JMax 

9. 10 - ti 0.0002360 0.0005968 0.04161 0.03035 
9. 10-5 0.00235 0.0059 0.34499 0.28344 
9. 10- 4 0.02286 0.05312 0.80763 1.272 
9. 10-3 1.06731 10.99 1.08208 1.11683 
9. 10-2 1.249 2.0763 1.6871 4.3787 
9. 10-1 2.9574 break 3.177 break 

Table 1. Nonlinear effects on two reference shapes. DMax and aMax are respec
tively the maximum displacement and the maximum stress. 

parameter which has to be adjusted. Figure 14 shows the optimal designs ob
tained with that modified fitness: reasonable solutions arc found, as long as the 
stress is subject to a strong constraint (computed from a purely linear numerical 
simulation). 

7. Discussion and perspectives 

Breakthrough results have been presented in this paper for simple problems of 
topological optimum design. They demonstrate the potentialities of the GA
based topological optimization. However, the computational cost remains the 
main limitation of the proposed method: using a middle-range HP workstation 
(HP-7G5), between 6 hours, for the simplest problem with a 10 x 20 mesh, 
and 30-40 hours, for the three-loading 44 x 64 bicycle, were necessary for a 
single successful run. Of course, the parallclization of the fitness computations 
is straightforward, and would result in a linear speed-up without modification 
of the underlying algorithm. The overall computational requirements remain, 
however, very heavy. 

Moreover, the accuracy of all results presented above derives from that of 
the Finite Element Analyses performed during the computations of the fitnesses. 
And that accuracy is dictated by the size of the underlying mesh. All the results 
presented in this paper were obtained on rather coarse meshes (from 10 x 20 to 
44 x 64) whereas real-world problems and accurate analyses of the mechanical 
bchavior of the shapes require much finer meshes. 

Increasing the size of the mesh would not only increase the cost of the fitness 
computation, but also the size of the chromosomes . And increasing the size of 
the individuals would in turn require to increase both the size of the population 
and the number of generations to reach the same level of convergence (Cerf, 
1994;1996, proved, in the bitstring case, the existence of a critical population 
size to ensure convergence in finite time; and this critical size increases linearly 
with the length of the bitstring). Hence, the bit-array representation poorly 
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:F 0.009 0.018 0.09 
DLim 0.22856 0.457 2.2856 
(JLim 0.53 1.0622 5.3 

DMax 0.2143 0.4504 1.687 
(JMax 0.550 0.9835 4.379 
Area 0.21 0.47 0.1 

Figure 14. Optimal designs for nonlinear elasticity with displacement and stress 
constraints. 

scales up when refining the mesh - not to speak of handling 3-D shapes. 
Therefore other representations have to be used in order to overcome this 

limitation, and dissociate the complexity of the representation and the accuracy 
of the evaluation: first results, Schoenauer (1995;1996), seem to confirm the 
interest of this direction of research. 

8. Conclusion 

The feasibility of GA-based optimal design had already been witnessed by 
Jensen (1992) and Chapman, Saitou and Jakiela (1994) . T his paper intends 
to emphasize its flexibility, and to demonstrate its potentialities to break some 
limits of up-to-date deterministic methods. 

Multiple quasi-optimal solutions can be found, a llowing to take into account 
some other criteria that could not be incorporated in some objective function 
(e.g. technological or esthetic criteria). Actually, the results in Section 5.2. 
were obtained by successive runs of the GA starting from different random 
populations, thanks to the stochastic nature of the algorithm. How~ver, it is 
possible by using some niching techniques (e.g. the sharing scheme of/ Goldberg 
and Richardson, 1987), to locate in a single run more than one near-optimal 
solutions. 

Results regarding the multi-loading optimization (Section 5.3.) were the first 
of their kind at the time they were obtained. Moreover, they required very 
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modifications of the method handling a single loading. Since then, the homoge
nization method has been modified, Allaire and Jouve (1996), and is now able to 
optimize structures for multiple loadings. However, a deep modification of the 
numerical procedure was necessary: the modified homogenization algorithm re
lies on some local optimization performed in every element of the mesh, which 
was solved analytically in the single loading case, and which is now handled 
numerically, thereby dramatically increasing the computational cost - though 
it remains faster than the GA-based algorithm. A fair comparison between 
stochastic and deterministic approaches should consider the development cost 
(e.g. the time necessary to work out the adjoint problem in inverse problem 
solving) together with the computational cost . 

F inally, even in the linear framework, stochastic optimization is the only 
method able to handle topological optimum design with loading on the unknown 
boundary of the target structure, as demonstrated in Section 5.4. Moreover, from 
the GA point of view, it is a strict application of the original method - the only 
modification took place during the computation of the fitness, as the external 
loading had to be computed for each structure. 

Last but not least , in the context of large displacements, the experiments 
presented in Section 6 acknowledge for the usual statement "the extension to 
other mechanical models is straightforward". Note, however that the fitness 
function had to be adjusted in order to take into account the maximal sti·ess of 
the structure: there is no free lunch for nonlinearity. 

However, these good results must not hide the main drawback of the method, 
namely its computational cost , which makes it highly unlikely to be applicable 
to real-world optimization problems. Nevertheless, and this is confirmed by 
preliminary results of on-going work, we are convinced that a change of repre
sentation can remedy that weakness, allowing to treat difficult problems of real 
size. And the flexibility of the method will then prove essential for some other 
yet unsolved problems of Topological Optimum Design. 
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