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Abstract: Positron emission tomography(PET) is a relatively 
new area of medical imaging, which has been in clinical use for about 
forty years. Due to its wide applicability in medical and psycholo­
gical diagnostic procedures, researchers are interested in obtaining 
accurate quantitative information as to the metabolic activity rate 
of various parts of the human body from PET scans. Thus, there is 
much activity in the medical and engineering research communities 
on the subject. This paper attempts to present a brief review of the 
important mathematical fundamentals of this research area. It also 
outlines recent work of the authors ·on foundational issues. Due to 
severe space limitations, we cannot include the many new methods 
which have been formulated for reconstruction of PET images. How­
ever, we have tried to include enough material to give a reasonably 
good idea of the underlying methods on which most of the recent 
innovations is based. 

Keywords: positron emission tomography, maximum likelihood, 
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1. Introduction 

Positron emission tomography (PET) is a medical imaging technique that pro­
vides a means for assessing biochemical processes in the human body. By mea­
suring the rates of quantities such as blood flow, oxygen and glucose metabolism, 
PET becomes a useful pathophysiological and diagnostic tool. It also enables 
medical researchers to expand their knowledge of brain processes like speech 
and vision. Modalities such as magnetic resonance imaging and X-ray com­
puted tomography complement PET because they provide mostly anatomical 
information. Consequently, the advantages of these modalities are being com­
bined to maximize the information available to physicians and researchers. 

Regarding pathophysiology, Ter-Pogossian, Raichle and So bel ( 1980), state 
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"The foundation for the usefulness of PET are the premises that 
any biological activity stems from, and is accompanied by, regional 
biochemical changes in the organ or structure in which the biological 
activity takes place and that pathology is reflected in the alteration 
of such normal biochemical changes." 

Some clinical applications for PET include its use in localizing tumor sites, 
measuring myocardial perfusion, studying various cancers, grading brain tu­
mars, and determining the effectiveness of radiation therapy, chemotherapy, 
and surgery. In addition to clinical applications, PET is also being used in psy­
chological studies to understand how the brain works. For example, PET scans 
are used by researchers to relate regions of the brain to various cognitive and vi­
sual skills (Barinaga, 1995, Kosslyn, 1994); and also to psychological disorders. 
The main steps in PET are: ' 

1. Labeling a selected compound with a positron-emitting radionuclide. 
2. Administering the labeled compound to the subject. 
3. Estimating the distribution of the labeled compound. 
4. Using the estimated distribution to determine parameters of physiological 

models that provide the information of interest. 
The positron-emitting radionuclides that are used most often are 11 C, 13N, 150, 
and 18F. These radionuclides are used to label compounds such as sugars, amino 
acids, and neurotransmitter receptor ligands. Because of their short half-lives, 
positron-emitting radionuclides cannot be stored and must be generated on­
site using an accelerator (e.g., cyclotron) which requires a significant amount of 
capital and technical expertise to maintain. 

After it is administered to the subject, the labeled compound is absorbed dis­
proportionately by various regions of the organ of interest. As the radionuclide 
decays, positrons are emitted in proportion to the distribution of the labeled 
compound. More positrons are emitted in regions of high absorption, and less 
positrons are emitted in regions of low absorption. For example, labeled glucose 
is used more by the regions of the brain that are most active when a certain task 
is performed. Another example is cancerous tissue's utilization of more glucose 
than healthy tissue. When a positron is emitted, it annihilates with a nearby 
electron creating two photons that fly off in nearly opposite, random directions. 

Surrounding the organ of interest is one or several rings of detectors that are 
designed such that a count is incremented whenever a pair of detectors senses 
two photons in coincidence. Two photons are said to be in coincidence whenever 
they are registered by a pair of detectors within a small time interval. A pair 
of detectors defines a volume, which is referred to as a tube. For each tube 
t, the associated count n~(t) , of number of photons detected in coincidence, 
form the data used in the reconstruction algorithms. These algorithms seek to 
estimate the unknown annihilation locations or, equivalently, the distribution 
of the labeled compound. 

In reality, positrons migrate a short distance before annihilating with an elec­
tron and photons depart at an angle less than 180°. These phenomena impose 
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a fundamental limit on the accuracy of PET. The estimates of the labeled com­
pound's distribution are also affected by errors due to attenuation (Huang, 1979, 
Meikle, Dahlbom and Cherry, 1993), accidental coincidences (Hoffman, 1981), 
scatter (Bergstrom, 1983), and detector inefficiency (Fessler, 1994) . Attenua­
tion occurs when photons are absorbed by body tissue and bone causing them 
to go undetected. The percentage of attenuated photons ranges from 20- 50% 
(Politte and Snyder, 1991). Scatter occurs when a photon's line of flight is 
altered. Accidental coincidences occur when photons arising from separate an­
nihilations are incorrectly registered as a valid coincidence. Thus accidentals 
usually result in a significant error between the number of observed and actual 
coincidences. The percentage of accidental coincidences (5 - 50 %) depends on 
the subject and the PET scanner. 

Single photon emission computed tomography (SPECT) is a very similar 
procedure to PET. The only difference is that the decay of the particular ra­
dionuclides result in only one photon instead of two. Since the SPECT radionu­
clides can be stored, an on-site accelerator is unnecessary, thus reducing the cost 
significantly. However, the radionuclides used in PET have the advantage that 
they can be incorporated into molecules of biological interest (or their analogs) . 
In SPECT, the same circular configuration of detectors is utilized except that a 
rotating collimator is used to determine the line-of-flight for the photons . Due to 
the collimator, many fewer photons are detected in SPECT than in PET so the 
resulting images are unable to resolve fine details. Also, attenuation correction 
is more difficult inSPECT. In summ~rizing the advantage of PET over SPECT, 
Henry Wagner says that PET provides "better chemistry, better quantitation, 
and better sensitivity compared to SPECT, and correction for attenuation in 
the body is more exact" (Tilyou, 1991). Beekman (1995) contains more details 
and important advances. 

X-ray computed tomography (CT) is a much more developed and widespread 
procedure than PET. In CT, the radiation, the emitters and detectors lie on 
two parallel planes which rotate around the region of interest. The radioactive 
source is located outside the human body, and is absorbed as it travels in a 
straight line through the body, from emitter to the corresp_onding detector. To 
obtain sufficient data, these planes are rotated, and data collected at each angle 
of rotation. In CT, the line of action is completely determined by the emitter 
and the detector, unlike the random emission directions in PET. 

The various as-pects of PET generally fall in one of the following categories: 
1. Medical research 
2. Psychological research 
3. Clinical diagnosis 
4. Development of labeled compounds 
5, Development of detectors and scanners 
6. Reconstruction algorithms 
7. Accelerators design 
8. Physiological modeling 
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The resolution of open problems in PET require the expertise of chemists, engi­
neers, mathematicians, physicists , physicians, and psychologists. For additional 
information, some excellent references on PET are Brownell (1982), Reivich and 
Alavi (1995), Ter-Pogossian, Raichle and Sobel (1980). 

In this review, we focus on the mathematical models and reconstruction 
methods for reconstructing PET images. Section 2 contains a brief derivation 
of the standard Poisson model introduced by Shepp and Vardi (1982). Existing 
reconstruction algorithms are discussed in Section 3. We do not attempt to give 
algorithmic details, but rather focus on the underlying mathematical concepts. 
Section 4 contains a brief overview of new methods that we have introduced 
recently, and includes some numerical simulations to compare their performance 
with existing algorithms. 

2. Mathematical model 

In this section, we describe the probability model developed by Shepp and Vardi 
(1982), which relates t he means of the emissions to those of the detections. 

The seminal work of Shepp and Vardi (1982) obtained the now accepted 
Poisson model for the PET process. Assume that the data is error free, so 
that the observed number n~(t) of counts in tube t is the same as t he true 
number n*(t). To obtain a finite dimensional model suitable for numerical 
implementation, we consider a fine partition of the region of interest, denoted by 
D (in two or three dimensional space), into B "boxes" or pixels. The emissions 
can be thought of as the result of randomly falling snowflakes, with areas of 
high absorption, collecting proportionally more. Thus the emission process is 
realized as the outcome of a non-homogeneous, spatial Poisson point process 
with unknown intensity. This intensity is approximately constant on each of 
the B boxes, so for each b = 1, 2, ... , B, the random variable N(b) denoting the 
number of emissions in box b, is Poisson with mean >.(b), and since the boxes 
are disjoint, then the family of N(b)'s are independent. 

Further, let N;(t) denote the random variable underlying the observation 
n~(t), t = 1, 2, ... , T, where N;(t) is Poisson with mean >.~(t) = lE[N; (t)] and 
the N;(t)'s are independent. We also introduce the random variables N(tib) 
to denote the number of points that are detected in t out of all those t hat are 
emitted in b. Thus, 

B 

N;(t) = L N(tib). (1) 
b= l 

Let the probability that an emission in box b is detected in tube t be denoted 
by p(tib) . Assuming that all emissions are detected, we have that 

T 

LP(tlb) = 1, b = 1, 2, 00 0 ,B. (2) 
t = l 
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These probabilities provide the connection between the emission random vari­
ables N(1), ... , N(B), and data random variables N;(1), ... , N;(T). 

To obtain this relationship, observe that by the independence of N(tib), and 
(1), it follows that each N(tib) is Poisson and its mean >.(tib) satisfies 

B 

>-~(t) =I: >-(tib). 
b=l 

Now, observe that 

T 

N(b) = L N(t ib) 
t=l 

and the probability that N(tib) = k given that N(b) = n is given by 

P (N(tib) = kiN(b) = n) = (~) p(t ib)k(1- p(tibt-k. 

(3) 

(4) 

(5) 

Interestingly, this binomial property implies that there is some w(b) such that 

>.(tib) = w(b).A(b)p(tib). (6) 

This is a consequence of the following result which is demonstrated in Mair, 
Rao and Anderson (1995) . 

Theorem 1 Let X 1 , X 2 , ... , Xn be independent non-negative, integer-valued 
random variables. If there are Ai 's such that 

n 

P(Xi = ki LXj =m)= (7) >-7(A- .Ai)m-k 
j = l 

for each i and 0 :::; k :::; m, where A = l::~=l Ai, then there exists w > 0 such 
that each Xi is Poisson with mean w.A; . 

The model equation, Shepp and Vardi (1982), follows from (6), (4), (2), and 
(3). 

B 

>.~(t) = L >.(b)p(tib), t = 1, 2, ... 'T. (7) 
b= l 

3. Reconstruction algorithms 

Given the data n~ = [n~ (1) n~(2) ... n~(T)jT, reconstruction algorithms esti­
mate .X = [>.(1) >.(2) · · · .A(B)jT, where B is the number of boxes and T is 
the number of tubes. In this way, an estimate for the number of positrons 
emitted in each box is obtained. Although considerable effort has gone into 
developing reconstruction algorithms, many questions remain as to which .one 
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should be preferred. Generally, reconstruction algorithms are either based on 
Fourier or statistical methods. Fourier based algorithms are developed from a 
deterministic model, while statistically based ones rely on the Poisson model. 

Fourier based algorithms are extremely fast , but suffer from artifacts and 
perform poorly when the number of observed coincidences is low. Low count 
scenarios are common and occur when radiation doses are low and/ or scan 
times are short. Radiation doses are minimized for patient safety and scan 
times are kept short for patient comfort. Also, they do not account for the 
random nature of the PET data and fail to incorporate errors appropriately. 
In contrast, statistically based algorithms perform well in low count cases and 
have the ability to account for errors in the data. Unfortunately, they have 
the disadvantage of requiring computationally expensive iterative methods for 
estimating the emission intensities. This high computational expense is the 
main reason that statistically based methods have not yet become popular in 
"real world" PET. 

3.1. Fourier based algorithms 

By assuming that the probabilities p(tib) are independent of the emission pixel 
b, and allowing the discretizations and detector tubes to become infinitely small, 
the PET model equation (7) reduces to that of CT, expressed in terms of the 
Radon transform (Herman, 1980). So, methods of inverting the Radon trans­
form can be applied. Although the mathematical inverse of the Radon .transform 
has been obtained since 1917, it is not immediately applicable due to the lack of 
sufficient error-free data . Fourier based methods are numerical algorithms de­
veloped either from the mathematical formula for inverting the Radon transform 
or from the projection-slice theorem. The latter type, for example Wiersereau 
(1976) , are not as popular as t he former ones because they are more difficult to 
implement and the images are inferior (Lewitt, 1983) . An in-depth discussion 
of these methods can be found in Lewitt (1983) . 

The convolution backprojection (CBP) algorithm (Shepp and Logan, 1974, 
Herman, 1980, Natterer , 1986) is based on the inverse Radon transform and was 
originally developed for X-ray computed tomography. Later modified for PET, 
it is presently the dominant reconstruction algorithm because its computational 
efficiency is unmatched and it produces images of reasonable quality when the 
number of observed coincidences is sufficiently large. Data errors due to at­
tenua tion are easily accounted for in the Poisson model (see (7)), and ML-EM 
iteration (see (8)), by modifying the probabilities p(tib) to account for expe­
rimentally determined survival probabilities (Miller , Snyder and Miller, 1985). 
However, it is not clear how to account for such errors in the CBP algorithm. 
The other significant probabilist ic errors of scatter and accidental coincidences 
also present difficulties for the CBP method. We now focus on statistically 
based algorithms for t he remainder of the paper. 



Positron e mission tomography: A review 1095 

3.2. ML-EM algorithm 

To address the limitations of the CBP method, Shepp and Vardi (1982) proposed 
the Poisson model for PET (see (7)) and the use of maximum likelihood estima­
tors to determine the emission intensity vector A. The log-likelihood function 
is given by L(A) = logP[N~ = n~], where N~ = [N;(1), N;(2), . . . , N;(T) ]T. 
By using the expectation-maximization algorithm (Dempster, Laird and Rubin, 
1977), the following iterative procedure was obtained in Shepp and Vardi (1982). 

A (b) _ A (b)~ n*(t)p(tlb) 
n+l - n L_., B 

t = l I.:k=lp(tlk)An(k) 
(8) 

This algorithm is referred to as the ML-EM algorithm. In Shepp and Vardi 
(1982), Vardi, Shepp and Kaufman (1985), it was shown that this algorithm 
converges to a maximum likelihood estimator of A for any initial choice of Ao 
in which all the components are strictly positive. Furthermore, the likelihood 
increases with the iterations, and the iterations are all positive. Thus, the 
ML-EM algorithm has excellent theoretical properties, but converges slowly 
(especially at locations with zero intensity) and tends to produce images that 
are speckled. Despite the global convergence property, the limit depends on the 
initialization. Simulations indicate that a uniformly distributed initial estimate 
produces the best results. This initialization is almost universally accepted now. 
Methods to reduce speckle and improve convergence can be found in Coakley 
(1991) , Snyder and Miller (1985), Kaufman (1987), Chen, Lee and Cho (1991) . 
Other ML approaches can be found in Lange and Carson (1984), Rockmore and 
Macovski (1976). 

3.3. MAP m ethods 

Recognizing the drawbacks of the ML-EM algorithm, researchers began conside­
ring maximum a posteriori (MAP) methods (De Pierro, 1995, Geman and Mc­
Clure, 1985, Green, 1990, Hebert and Leahy, 1989, Levitan and Herman, 1987). 
Instead of just maximizing the log-likelihood function, MAP methods maximize 
L(A) + j(A), where j(A) is a known, a priori distribution for the emission inten­
sity vector. These methods are based on the observation that neighboring boxes 
generally have similar emission intensities. The prior is usually assumed to be a 
Gibbs distribution which requires the choice of a functional form for t he poten­
t ial, and also the explicit determination of numerical constants. One of t hese 
constants (basically a regularization parameter), has to be determined from the 
data. The methods for doing this inevitably lead to a significant computational 
burden on any numerical algorithm. As a result of the smoothing effects inher­
ent in MAP methods, they tend to obscure important boundaries. Zhou, Leahy 
and Mumcuoglu (1993) show an interesting use of magnetic resonance images 
to provide PET priors. 

.. ~ '. 



1096 J.M.M. ANDERSON, B.A. MAIR and M. RAO 

3.4. Least squares methods 

In an effort to improve the computational efficiency of statistically based re­
construction algorithms, least-squares methods were proposed. Least-squares 
methods use.the fact that n~(t) is the ML estimate of >.~(t), and minimize the 2-
norm of the difference between n~ and A~, where A~= [>.~(1) >.~(2) . . . >.~(T)jT . 
In other words, the LS method minimizes ( n~ - .A~ )T ( n~ - .A~) with respect 
to .A. This approach was suggested by Shepp and Vardi (1982) (see also Vardi, 
Shepp and Kaufman, 1985), but Daube-Witherspoon and Muehllehner (1986) 
and Kaufman (1993) actually developed reconstructions algorithms based on 
it. The image space reconstruction algorithm (ISRA) (Daube-Witherspoon and 
Muehllehner, 1986), was based in large part on heuristic arguments, but was 
shown later to converge to an LS estimate of the emission intensity (De Pierro, 
1987, Titterington, 1987). The ISRA is computationally efficient and guarantees 
nonnegative estimates; however, simulation studies indicate that it converges 
slowlier and.produces less accurate estimates than the ML-EM algorithm. Kauf­
man's methods (Kaufman, 1993) are also computationally efficient, but negative 
estimates present a problem. 

As usual, LS methods can be enhanced by introducing a weight matrix W 
to emphasize reliable data values while de-emphasizing less reliable data val­
ues. Weighted least squares (WLS) approaches have been proposed for both 
PET (Clinthorne, 1992, Fessler, 1994) and single-photon emission computed 
tomography (SPECT) (Budinger, Gullberg, 1977, Tsui, Zhao, Frey and Gull­
berg, 1991). Fessler (1994) contains aWLS approach to account for errors due 
to accidental coincidences and detector inefficiency in PET. Using a successive 
overrelaxation method (Marty, 1988) and weights obtained from the data, a re­
construction algorithm was developed that produced nonnegative estimates and 
converged. The WLS formulation in Clinthorne (1992) accounts for the effect 
of accidental coincidences, but assumes that their mean is known for each tube. 

To minimize the variance of the WLS estimator, we must have Wi.i = 
Cov(N;(i), N;(j) ) = O;,jA~ (i). Due to its dependence on the unknown param­
eters, the covariance matrix had not been explicitly used in PET. In Tsui, Zhao, 
Frey a~d Gullberg (1991), W was estimated by Diagonal(n~(1), n~(2), . .. , n~(T)). 
We will refer to this method as the data-based WLS (DWLS) method. 

Recently, two novel methods were proposed that allow the entries of W to be 
unknown and incorporate them into the estimation procedure (Anderson, Mair, 
Rao and Wu, 1995a;1995b). The first method minimizes (n~ - .A~)Tw-1 (n~ ­
.x:), while the second one minimizes this same objective function plus a penalty 
function. The penalty function is chosen such that the resulting estimate almost 
preserves the total number of coincidences (a known property of the model 
that is lost in the LS formulation). This method is referred to as the almost 
total-coincidence preserving WLS or ATP-WLS method. This is much less 
restrictive than what was considered in Fessler (1994) and Kaufman (1993). 
There, the penalties were based on a Markov random field approach (Geman 
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and McClure, 1985), which correlates the intensities of neighboring pixels. In 
simulation studies, the penalized and unpenalized algorithms converged nearly 
twice as fast and had significantly better resolution and contrast than the ML­
EM and DWLS methods. They also guarantee nonnegative estimates. 

3.5. Other methods 

Algebraic reconstruction techniques (ART) (Gordon, Bender and Herman, 1970, 
Herman, 1980) are a special class of iterative procedures for solving general 
optimization problems, and so have been implemented for obtaining estimates 
of various measures of goodness of fit in PET. In Snyder, Schulz and O'Sullivan 
(1992), it is shown that the ML-EM algorithm can be derived by minimizing the 
Kullback-Leibler (K-L) distance (Csiszar and Tusnady, 1984) (for a definition, 
see (18)), from the data to the detector means. Byrne (1993) extended this 
idea by considering the cross entropy from the data means to the data, and 
also penalized versions of these measures of divergence. This framework also 
covers many of the MAP methods. One of the iterative procedures obtained in 
Byrne (1993) is shown to be identical to an ART, however in our simulations 
studies it did not perform as well as the ML-EM algorithm. In a manner similar 
to the CBP algorithm, maximum entropy (MAXENT) methods developed for 
transmission computed tomography (Gull and Newton, 1986, Minerbo, 1979) 
have also been modified for PET (see e.g. Kemp, 1980). 

4. New reconstruction methods 

This section contains an overview of recent methods for PET image reconstruc­
tion based on the Poisson model. We feel that these methods introduce new 
ideas which can serve as building blocks for future enhancements to deal with 
the important errors in the data. We first introduce a new method of correcting 
for accidental coincidences. The basic idea here is to let the data determine the 
accidentals in a natural way. Unlike previous methods, this method requires 
no significant computational effort over the basic ML-EM algorithm, and, in 
our simulations, it outperforms the existing methods. We find the LS approach 
very attractive since it has the capability of dealing with model errors. Unlike 
all previous methods, our new WLS approach does not require any data-based 
estimation of the covariance matrix. This represents a fundamental change in 
the area of WLS estimation theory, and may be applicable to other areas. Our 
algorithm is iterative, and bears a striking resemblance to the ML-EM algorithm 
(unlike the ISRA Daube-Witherspoon and Muehllehner, 1986, and the EM-LS 
obtained in Kaufman, 1993). It also ensures positivity of the estimates and is 
able to resolve small portions of the image having high intensities. 

We also include a brief discussion of a refined mathematical model for PET, 
which produces an integral equation with an unknown measure, as opposed to 
a finite linear system. Although this model is more theoretical, it provides an 
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interesting link between PET and the general theory of inverse problems. This 
was first noted in Vardi and Lee (1993), where the basic ML-EM algorithm 
was extended to the continuous case (see (17)). Although this algorithm was 
demonstrated to be effective in dealing with general inverse problems, there is 
as yet, no convergence proof. Our contribution here is to suggest a natural 
topology in which a convergence proof may be possible. 

4.1. Accidental correction via EM 

Nearly all reconstruction algorithms correct for accidental coincidences by sub­
tracting an estimate of them from the observed coincidences. The acciden­
tal coincidences are estimated either by using delayed coincidence circuitry or 
by calculating them via an estimate of single events (Hoffman, 1981). Un­
fortunately, this approach quite often results in negative counts which clearly 
indicates that the accidental coincidences cannot be estimated accurately. Al­
though it is reasonable to model the accidental coincidences as Poisson random 
variables, the corrected data are not Poisson. Consequently, ML (Lange and 
Carson, 1984, Shepp and Vardi, 1982) and MAP (Geman and McClure, 1985, 
Hebert and Leahy, 1989, Levitan and Herman, 1987, Liang and Jaszczak, 1989) 
mE;thods that are based on the Poisson model may be theoretically inappro­
priate when the data are corrected in this manner. Lange and Carson (1984) 
suggested that the accidental rates could be estimated and incorporated in the 
estimation procedure, however, no algorithm was proposed. Later, Politte and 
Snyder (1991) incorporated the accidental rates in an ML estimation procedure 
but unrealistically assumed that they were known. Leahy's algorithm (Leahy 
and Yan, 1991) estimates both the emission intensity and accidental rate for 
each tube, however it is very computationally intensive and less effective than 
the proposed method (Anderson, Mair and Rao, 1995). 

We introduce a novel approach which estimates both the emission intensity 
and the total number of accidental coincidences. Like Politte and Snyder (1991), 
we assume that the accidental coincidences n~ (t) in the tth tube is Poisson with 
mean .A~ = A / T, that is independent of the detector tubes. Then we jointly 
determine the ML estimate of the emission intensity >. and the total number A, 
of accidental coincidences. 

To develop our algorithm, it is necessary to modify the Poisson model to 
account for the effects of accidental coincidences. Let n*(t) and n~ (t) denote 
the number of true and accidental coincidences detected by the t th tube, re­
spectively. Then, the number of photons detected by the tth tube is given 
by n~(t) = n*(t) + n~(t), where the true and accidental coincidences are as­

sumed to be independent and Poisson with means .A*(t) = 2:~=1 p(tib).A(b), and 
.A~ (t) = A/ T, t = 1, 2, . .. , T, respectively. Under these assumptions, we are 
able to use the EM algorithm (Dempster, Laird and Rubin, 1977) to obtain an 
iterative algorithm, as in the ideal case in Shepp and Vardi (1982). 

To do this, we consider n~ = ( n~ ( 1), .. . , n~ (T)) as the incomplete data and 
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(n(1), ... , n(B), n~, n~(l), ... , n~(T)), where n~ is the total number of acciden­
tals, as the complete data. The unknowns that need to be estimated are given 
by(}= (.\(1), ... , .A( B), A), where A is the mean of n~. 

Now, let (}n = (.An(1), ... , .An(B), An) be the current estimate of (} and 
perform the EM algorithm. 

E - step: Use (}n and the incomplete data to estimate the missing data, by 
n(b) = lE[n(b)ln~, Bn] and n~ = IE[n~ln~, Bnl· Since L~=l n(t lb)+n~(t) = n~(t), 
and the random variables are independent and Poisson, we obtain 

L~=l p(tik).An(k) + An/T 
n~(t)An/T 

M - step: This postulates that an improved estimate (}n+l of (} is the 
. maximum likelihood estimator of (} given the above estimate of the complete 
data. Since the maximum likelihood estimator of the mean of a Poisson random 
variable is the random sample, we obtain the following iteration. 

An(b) ~ nl~t)p(tlb) , b = 1, 2, ... , B 
~ .>-;, t +AnT 

A ~ n~(t)jT 
n ~ .A;,(t) + An/T 

where .A~(t) = L~=l p(tlb).An(b). 

(9) 

(10) 

This method guarantees nonnegative estimates, and is stable with increasing 
iterations. Since it is a true EM method, convergence is guaranteed (Wu, 1983). 

To evaluate our algorithm, we simulate a PET scenario with a single ring 
consisting of 128 equally spaced detectors and a phantom of 128 x 128 pixels. The 
probabilities p(tlb)s are computed using the angle-of-view method, as described 
in Shepp and Vardi (1982). The total number of observed coincidences, n~ = 

2.2 x 106 , of which 10% are accidentals. The number of true and accidental 
coincidences, n*(t), n~(t) were obtained by generating Poisson random variables 

with means .A*(t) = L~=l p(tlb).A(b), .A~(t) = 0.1n~jT respectively, where the 
.\(b)'s are determined by the phantom. 

In the reconstructions, we assumed that the accidentals were only 5% of 
the total number of observed coincidences. We obtained the initial estimate 
for the accidentals, by generating random samples na(t), t = 1, 2, . .. , T from 
Poisson distributions, each having mean 0.05n~jT. The proposed algorithm was 

initialized with Ao = Li=l na(t) and .Ao(b) = (n~- Ao)/T. 
We compare it with the EM-ML with corrected data (conventional), and 
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Leahy and Yan's (LY) algorithm 

1 [' () n~(t)qn(t) l -2 na t + B , t = 1, 2, ... , T 
I:t=l p(tll)An(l) + qn(t) 

An(b) t B n~(t)p(tlb) , b = 1, 2, ... 'B 
t=l L:t=lp(tll)An(l) + qn(t) 

where q~(t) is an estimate of the accidental rate (i.e. A/T) for the tth tube. 

At the 200th iteration, the results for the proposed, conventional, and LY 
algorithms indicate more ringing at the "skull" boundary with the conventional 
and LY methods as compared to the proposed one. These visual differences can 
be seen from line plots which allow for a more quantitative assessment. Fig. 1 is 
a line plot of the 90th row of the reconstructed images using the proposed (solid), 
conventional (dashed), and LY (dotted) reconstruction algorithms. These line 
plots demonstrate that the proposed method is more accurate than the conven­
tional and LY methods. It is important to observe that the conventional and LY 
methods exhibit more severe overshoot at the skull boundary, as compared to 
the proposed method. This overshoot increased with the number of iterations 
in both the conventional and LY methods. 

4.2. A weighted least squares method 

Here we propose a novel weighted least-squares (WLS) method, and develop an 
iterative reconstruction algorithm based on minimizing the objective function. 
Unlike all other WLS methods, this method does not require any estimation of 
the covariance matrix from the data. The proposed method guarantees non­
negative estimates, and in simulation studies, it converged faster and had much 
better contrast and resolution than the ML-EM and DWLS algorithms. For 
this exposition, we assume that the data contains no accidentals. However, the 
proposed method is easily modified to account for such errors. More impor­
tantly, the WLS formulation takes into account errors due to modelling. Using 
the Poisson model, least-squares estimation is based on the observation that 
n*(t) is the ML estimate of >.*(t), where >.*(t) = I:~=l >.(b)p(tlb), and the >.(b)'s 

are estimated by minimizing I:'[=1(n*(t)- >.*(t))2. Alternatively, we account 
for the error in using n * ( t) instead of A* ( t) and model the observed data as ' 
n*(t) ~ >.*(t) +e*(t), t = 1, 2, ... , T, where the e* (t)'s are the model errors. Be­
cause the n*(t)'s are assumed to be independent and Poisson with mean >.*(t), 
the model errors are independent, zero-mean, and have variance >.*(t). In this 
case, the error covariance matrix is given by W = diagonal(>-*(1), ... , >.*(T)). 
It is well-known that variance of a least-square estimator is minimized when it 
is weighted by the inverse of the error covariance matrix; hence, we propose the 
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following WLS estimator: 

, T (n*(t)- .\*(t))2 
.X = ar g m in L -'-------'--'---....,.-,:-'-....:....:..._ 

.X2o t=l .\*(t) 

Exploiting the convexity of the above WLS objective function, we obtain that 
.X is a minimizer if and only if the following Kuhn-Tucker conditions (Zangwill, 
1969), are satisfied. 

T n*(t)2 
"' p(tib) 1 if 5.(b) i= 0 
~ o::::~= 1 p(tlk)5.(k)) 2 

t B n*(t)2 , p(tib) < 1 if 5.(b) = 0 
t=l (L:k=lp(tik).\(k)) 2 

The first condition suggests the following fixed point iteration: 

.\ (b)= A (b)~ (n*(t)) 2p(tib) 
n+l n L.._,; .\* (t)) 2 

t=l n 

(11) 

where .\~ (t) = :E~=l p( tib ).An(b). 
Simulations suggest that the algorithm is globally convergent, though an an­

alytical proof has not yet been found. Nevertheless, we have proven analytically 
that the WLS objective function decreases monotonically with increasing iter­
ations. Our simulation results indicate that the proposed algorithm converges 
nearly twice as fast as the ML-EM algorithm. Since the algorithm is very similar 
(differs only by the square of a factor) to the ML-EM iteration, the convergence 
acceleration techniques in Chen, Lee and Cho (1991) and Kaufman (1987) can 
also be implemented here. On the other hand, this algorithm yields reconstruc­
tions which are vastly improved over the ML-EM and the DWLS method. 

For our simulation, we use the same basic set-up as in the previous section, 
except for the following. There were no accidentals, and the total number of 
coincidences was set at 107 . The phantom and the reconstructed images after 
forty iterations using the DWLS, ML-EM and proposed WLS algorithms, are 
shown in Fig. 2. From the figures, it can be seen that the proposed method is 
sharper, has greater contrast and does a better job at picking up the details. 
For example, the thin rectangle on the lower left region of the phantom is much 
more visible using the WLS algorithm. 

Our new WLS method can be further improved by adding various penalty 
terms. For example, as mentioned above, the iteration does not preserve to­
tal counts, so that we could add a penalty term of the form a(:E~=l .\(b) -
:E'{'=1 n*(t)). In our simulations (Anderson, Mair, Rao and Wu, 1995a), we 
found that this penalized method produces images with less bias and more ac­
curate estimates of the emission intensities than the proposed WLS method. 
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4.3. A refined mathematical model 

Despite the reported speckling and numerical divergence of the ML-EM algo­
rithm, with a uniformly distributed initialization, we are able to obtain excellent 
PET image reconstructions, wit h no speckling, and exhibiting fast, complete 
convergence of the algorithm if we generate the detector counts as a random 
sample drawn from a Poisson distribution with mean A* determined exactly by 
A* (t) = 'L~=l p(t jb)A(b) . However, the reconstructed PET images exhibit diver­
gence with severe speckling if the data is simulated according to the following 
more realistic method. T his consists of generating a Poisson point process on 
0 with intensity A and then determining the lines of flight from each of these 
points according to a uniform random distribution. Recall that the derivation 
of the Shepp- Vardi model was based on the latter principle. We are therefore 
led to the conclusion that the operator mapping the emission intensity A to 
the detector means A* may not be appropriately represented by the matrix of 
probabilities. This discrepancy may be due to the binning of the probability 
distribution, and the intensities into finitely many pixels. This is consistent 
with the fact that, for ill- posed problems, small perturbations in the opera­
tor, especially when going from infinite to finite-dimensional representations , 
dramatically affect attempts to invert the operator. We therefore propose a 
semi-infinite model, which incorporates the following four essential properties 
of the PET process. 

• There are only a finite number of detectors. 
• T he annihilation of the electrons by the positrons occur at sufficiently 

microscopic levels to be j ustifiably represented by points. 
• The probabilities governing the emission-detection process are not neces­

sarily constant on "boxes". 
• The emission intensity is not necessarily representable by a function (it 

may be a measure). 
The first t hree of t hese properties were incorporated in the following first 

kind Fredholm integra l equation model, which was proposed (but not analyzed) 
in 1982 by Shepp and Vardi (1982): 

A*(t) = l p(tix)A(x )dx (12) 

where p(tjx) is now the probability that an emission at point X in 0 is detected 
in the tth detector tube, and A is the assumed intensity density of the Poisson 
point process governing the emissions. 

To account for the fourth property, we assume that emissions occur according 
to a Poisson point process on 0 with intensity .A, where A is a finite Borel measure 
on 0. Then, for each Borel subset E of 0, the number of emissions in E is a 
Poisson random variable with mean .A(E). As usual, we assume that p(ti x ) is 
continuous in x for each t and that all emissions are detected . 
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Fix a detector tube t, and consider the function p( tl·) as a limit of finite sums 
of step functions determined by a finite partition B 1 , B 2 , ... , Ern of D. Then, 
for each such approximation, the finite-dimensional model (see (7)) holds, and 
by taking the limiting case as these partitions become finer, we obtain the semi­
infinite model 

.A*(t) = l p(tlx)d>.(x), t = 1, 2, .. . , T. (13) 

By the usual arguments, the maximum- likelihood method of estimat ing ).. 
reduces to the problem of maximizing 

T 

L(>.) =->.(D)+ L n*(t) log l p(tlx)d>.(x ) 
t=l n 

(14) 

over the set C of finite, Borel measures on D. Since we have only a finite number 
of detectors, this is equivalent to minimizing the Kullback- Leibler divergence of 
the data n* from..\* (Byrne, 1993, Multhei and Schorr, 1989, Vardi, Shepp and 
Kaufman, 1985). Clearly, the objective function Lis concave and the constraint 
set C is a convex cone in the infinite-dimensional Banach space consisting of the 
signed Bore! measures on D with the total variation norm (Deuschel and Strook, 
1989). 

From the Kuhn- Tucker first order optimality conditions we obtain that ,\ 
is a maximum- likelihood estimator of the true intensity >., if and only if the 
following two conditions are satisfied. 

T *(t) L !;.-p(tlx) 
t= l )..* (t) 

1 for 5- almost every x E D 

T *(t) L !;.-p(tlx) < 1 for all x E D 
t=l )..* (t) 

(15) 

(16) 

From (15), a maximum-likelihood estimator 5- satisfies 5-(D) = I:;{'=l n*(t) , 
hence, from (15), 5- is a fixed point of the inap >. ~--+ 2:}=1 ~:fgp(tl·)>. on the 

convex cone C0 = {>. E C: >.(D) = 2:;{=1 n*(t)}. Hence, it is natural to compute 
,\ by the fixed point iteration 

T n*(t) 
An+l(x) = An(x) 8 >.;,(t)p(tlx) 

where >.~(t) = j~p(tlx)>.n(x)dx. 

(17) 

A non-probabilistic heuristic argument was used by Kondor (1983) to obtain 
a similar iteration for solving a general class of first kind integral equations. T he 
same algorithm was rediscovered by Vardi and Lee (1993) by a probabilistic 
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argument and demonstrated to be very effective in dealing with a wide range of 
inverse problems. However, the analysis of this method so far has not yielded a 
general proof of convergence for the iterates in (17) (Kondor, 1983, Multhei and 
Schorr, 1989, Vardi and Lee, 1993). If the integral equation (13) has a solution 
which is a finite sum of characteristic functions, then Vardi and Lee (1993) prove 
that the iteration in (17) converges to a solution of (13). Without this finiteness 
assumption, Multhei and Schorr prove that, if the iteration converges in mean 
(i.e. in the L 1 topology) to a continuous function, then the limit function is 
a maximizer of L. These results were attempting to obtain convergence of the 
iterates in (17) to a function. Examples in Mair, Rao and Anderson (1995) 
show that such a result cannot be obtained in general, so that the convergence 
behavior depends on the properties of the kernel p(tlx). 

In these examples, {An} converges in the weak topology (Deuschel and 
Strook, 1989) to the point mass 5., as opposed to convergence in the first or 
second mean to a function. Thus, we consider the (usually continuous) func­
tions {An} as measures (absolutely continuous to Lebesgue measure) on n, and 
convergence in the weak topology. 

First, for any two measures .A, v E Co, define the K-L distance from .A to v 
by 

J d.A 
p(.A, v) = h(x) log h(x)dv(x) , where h = dv (18) 

As before (Multhei and Schorr, 1989, Vardi, Shepp and Kaufman, 1985, 
Snyder, Schulz and O'Sullivan, 1992), the concavity of the logarithm function 
and Jensen's inequality can be used to obtain 

(19) 

Thus, L increases along the sequence of iterates, and hence { L(.An)} converges 
since it is bounded. The basic problem that prevents the finite-dimensional 
proof from being extended to the infinite-dimensional case is the fact that the 
K-L distance from a probability measure p, to another one, v, is only finite 
when p, is absolutely continuous with respect to v (Deuschel and Strook, 1989). 
However, we conjecture that the following general convergence result holds. 

Theorem 2 The sequence {An} defined by (17) converges in the weak topol­
ogy to a Borel measure 5. which is a maximum-likelihood est·imator of the true 
intensity .A. 

Reconstruction algorithms using wavelet bases are presently being developed. 
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(a) Phantom (b) OWLS 

(c) EM-ML (d) WLS 

Figure 2. 40th iteration, N* = 107 
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