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Abstract: The Penrose-Fife model for phase transitions consists
of a system of quasi-linear parabolic PDE. After reviewing previous
results on existence and uniqueness for the state equations an op-
timal control problem for this system is introduced. This problem
involves local state constraints. An observation operator correspond-
ing to this optimal control problem is introduced, and its regularity
properties are studied. Finally, these regularity properties are used
to derive first order optimality conditions.

1. Introduction

In this article we consider the following initial-boundary value optimal control
problem

A(¢)

¢r = D¢ — sp(¢) — 7 in @, (1)
T,= A (%) _Mgete . m @ @)
oT y ’
= == (T —w) on 0Q (3)
dp
i 0 on 0Q, (4)
é(z,0) = ¢o(z), T(z,0) = To(z) in  Q, (5)

where  is a domain in R® with a smooth boundary T', @ = € x (0,¢*) for some
t* > 0, and 0Q =T x (0,t*).

These equations arise in a model for phase transitions introduced by Penrose
and Fife (1990). The phase transitions depend only on the temperature T'. ¢ is
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a non-conserved order parameter which indicates the present phase at a point
(z,t) € Q. The function sg is a double-well potential, whose minima correspond
to the states when there is only a single phase present. v indicates a heat source.
The mathematical treatment of this and similar initial-boundary value prob-
lems can be found, for example, in Amann (1993), Horn, Sprekels, Zheng (1996),
Sprekels, Zheng (1993), Colli, Sprekels (1995), Horn, Laurengot, Sprekels (1996),
Laurencot (1994) and requires some additional assumptions. In this article we
will use the same assumptions as in Horn, Sprekels, Zheng (1996), Sprekels,
Zheng (1993). Namely, for the potential so we will assume that either
e (A) sp € C3(R) and there exists a constant C' > 0 such that sj(¢) > —C
for all ¢ € R.
or
e (B) so=¢log¢+ (1—¢)log(l—¢).
e \(¢p) = ag + b, for a positive constant a. To simplify notations we will,
without loss of generality, use a =1 and b = 0, i.e. use A\(¢) = ¢.
We will also need the following regularity assumptions.
(H1) ¢o € H*(Q); g%(m) =0,Vz eT;
2 (_sg(qso) + %8+ Ago) () =0,Va €T.
(H2) To € H3(Q);T(z) = &2 () + To(z) > 0,Vz € I'; To(z) > 0,Vz € QL.

Finally, we introduce some Banach spaces which will be widely used throughout
this article.

X1 = C([0,t] H () nC*([0,t]; H*()) n C*([0,*]; L*(2)),
X; = C([0,t; H} Q) nCY([o,t]; H(Q)) n H*(Q),
V = H?%(0,t";L%(Q)) n HY(0,t*; H*(Q)),
W = H0,t;H3(I)).
Throughout the paper, we let ||| = ||| ;2 (q)

In this setting, the main existence result (c¢f. Horn, Sprekels, Zheng, 1996;
Sprekels, Zheng, 1993) is

Proposition 1 Suppose (H1) and (H2) are satisfied and that (v,w) € VxW.
Then there exists a unique global smooth solution (¢, T) € X1 x Xo to the
initial-boundary value problem (1)-(5). Furthermore, there exists a constant
ci= > 0 such that T'(x,t) > ¢ for all (z,t) € Q, and in the case (B) there exist
constants 0 < ag < by < 1, such that ag < ¢(z,1) < byx for all (z,t) € Q.

In Section 2 of this article we will state and discuss the optimal control
problem with state constraints. In Section 3 we will investigate the related
observation operator and prove its differentiability in the setting of Section 2.
Finally, we will derive the necessary conditions for optimality in Section 4 of
this paper.
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2. Optimal control problems with state constraints

The state equations (1)—(2) give rise to several interesting optimal control prob-
lems. Here we want to control the state (¢,T) by using the source term v in
(2) and the boundary term w in (4). Such a control problem was introduced in
Sprekels, Zheng (1992). In the present article we want to put local constraints
on the state as well (see Sokolowski, Sprekels, 1994, for a similar problem).
These constraints will ensure that the solutions of the state equation ¢ and @
stay in a desirable range.

There are several reasons to add state constraints on the temperature. Per-
haps the most important reason is that these constraints will force the tempera-
ture to stay in a range in which the model is a valid description of the underlying
physical processes. State constraints on the phase have been added here for the
sake of the completeness of the description.

In order to formulate this problem in a precise manner we need to introduce
some additional notation. We start by defining the cost functional

-1

2 Oy 2
@+ [ w0

2 Qs 2

oo = 5600 5 .

L2(Q)

+3

for given target functions g£ € X; and T' € X5. Next let

w = {w eW: w(z,0)=T(), VxeT;
w(z,t) > B, |wi(z,1)| <k, V(z,t)€0Q},

where T is the function introduced by (H2) and 8 and k are suitably chosen
positive constants. We use this set to introduce

K=V xW.

The set Uyq of admissible controls is a closed, convex and bounded subset of K.

To state the local state constraints we use the constants 0 < K7 < K5 and
K3 < K4 to define the set of admissible states.

Vaa={(,T)€X1 x X2 : Ky <T<KyAK3<$p< Ky, in Q}. (7)

Yaq has a non-empty interior, since X3 x Xz C (C(Q))2.
We can now state the optimal control problem under consideration.
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Optimal Control Problem (CP)
Minimize I($,T;v,w) under the following conditions:
1. (¢,T) satisfies the state equations (1)—(2) and the initial and
boundary conditions (3)—(5).
2. (V,W) € Uaq.
3. (3, T) € Vaqa.

In the study of the control problem (CP) it is useful to introduce the ob-
servation operator S. To do this we define the space of observations B by

B = (C([0,#*]; H*(2)) x (C([0,"]; H*(Q))). (8)
Next define

S : K— B, 9)

S (v,w) —(¢,T), (10)

i. ¢. S assigns to every pair (v,w) € K the pair (¢,T) which solves (1)—(5)
for the given v and w. Since X; X X9 C B and by virtue of Proposition 1 this
operator S is well defined. Using this operator one sees that the cost functional
I(¢,T;v,w) depends only on the controls v and w, i.e. we can rewrite it as

J(v,w) = 1(¢, T5v,w)| (4 1)=5(0,w) -

In the following section we will study the properties of the operator S. In
Section 4 these properties will be used to derive the necessary conditions of
optimality. To do this we will use similar methods as in Casas (1993).

Remark: Since the authors of Sprekels, Zheng (1992) did not consider
state constraints, they could use a larger space of observations with a coarser
topology.

3. Differentiability of the observation operator

This section is devoted to a closer investigation of the observation operator S.
The proofs in this section are rather technical. However, the techniques are
largely straightforward and many of the details have been omitted.

To begin, we state that S is well-defined, and — also due to Proposition 1 —
there exist positive constants « and 7 such that

lollx, +1TNx, < @ V(v,w) €U, (11)
Tt 2y » 0, Yete. (12)
Morcover, if so(¢) is of the form given in case (B), there exist constants 0 <

A < b < 1 such that '
b < d(m,1) < bpe,  V(z,t) €Q. (13)
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In order to prove differentiability of the observation operator S one has to
first improve the stability result of Sprekels, Zheng (1992). To do this we let
(d’iaTi) = S(vi,wi), i = 1,2 and (vi,wi) € Uaq. We define ¢ = ¢ — oo,

T =T, —Ts, T=v; —vy, and W = w; — wy. Using these notations we have the
following result.

Proposition 2 There exists a constant C > 0 such that

max ([80)]5n + 1130 s + [T + ITe0)])

0<t<tx

+ [ (B0l + IT01) @+ [ Bl < 0Bmm), a9

where
o0) = | (1T + 1701 + 70I7) a

. A s 2
O + @171 0,40 22ryy + 02X, T34 oy - (1)

Proof: From Theorem 2.1 of Sprekels, Zheng (1992) we know that there exists
a constant C' > 0 such that

max_ ([[8.8)5 + [0 + [T )

0<t<tr
.t* -t*
+ [ (Be]® + | T:0)|") at+ [ (1Bl + IT@) 2
JO JO
< CG(, ), (16)
where
cww = | B dt + 11131 0,002 (ry) - (17)

Similar to that paper T satisfies the following linear parabolic boundary value
problem.

Te—A(TC) = ¢1,0— ¢29, +7, (18)

ol +T| =g, T(z,00=0, VzeQ, (19)
on r
where ¢ = (TyT3)™". Since T; € X3 we have that ¢ € C([0,*]; H?(Q2)) and
V¢ € L?(Q). We can now differantiate (18) and (19) with respect to time to
obtain

Tu—A(TC), = $rud— ¢obu+ o +7t, (20)
Ttt = (Tf)t = f, (21)

on F
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For the initial values of T

Tt(.’L‘,O) = (A (Tg) s ¢1,t$+ ¢2$t) (I70) +5(m70) = 5("E’O)‘

Furthermore, we observe that

*

/" IFOI2 dt < 1G@,) + / @) dt, (23)
JO 0

by the previous results. To continue with our proof we multiply (20) by T'; and
integrate the resulting equation over €2 to arrive at

_ 0 ,
2(# HT, H +/VTt V(C(t)T(t))tdm—lATt(t)—&ngﬂidm

< L IFOIP+ 55 lle I,

after applying (23) and Young s inequality. The value of §; will be determined
later. Next we observe that

/ VTt dz = / ¢@) |VTo(t)] de + /"T‘(t)vﬁ(t)vgt(t) ol
JQ
+ / GOVT (VTR da + / T VT (£)VC () da
JQ Q

:/S;C(t)]VTt( |” dz + I (t) + Lx(t) + I3(t).

Using standard esitmates, we can treat the terms on the right of this last in-
equality individually as follows

[L(t)] < _HVTt H + o5 ||VCt( ||H1(Q)HT HHl(Q)’
L) < —-HVTf W+ 55 IICf( Wi oy 1T 2y
()] < ﬂw, W+ 55 nvc< 13y [T

In each of these inequalities one can estunate the integral over ¢ of the second
term on the right via G(v,w). The values for §; will be determined later. For
the boundary term we observe that

ngfdgﬂT) dz = /ICde:r,— /Tt (@-T) Gdz — /CTﬁD‘tdm
), M JT JT
e /T? (§2 (Tl ('ll)g - TQ) +T2 (wl - Tl))) dz
B .
L /Tj (C2 (T (wy — T) + T (w1 — T))), da
4 !

= /CT? dx + J1(t) + Jo(t) + J5(t) + Ja(t).
Jr
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We can again estimate the terms individually as follows

()| < E'li(t)\\izm
+ g (IO + ITON oy ey

| J2(1)]

IN

0 1= 2 6 i
B ITON zaqey + o 1O ey

— o) __
I < er [Tel®) oy < 5 VTN + e |Tue)]*

T4 (t)

 §

08 = 2
1@ < 5 [Te®l g

2

+ LAy -

1 =2
25 HTHL‘l(I‘) H (¢ (T1 (wp = T3) + T (w1 — Tl)))t”
From the trace theorem and the Sobolev imbedding theorem (see, for example,
Adams (1984) for the Sobolev theorem for fractional exponents) we have the
following continuous imbeddings

{viv=ulp;ue H(Q)} — H () — LYT). (24)

Using this we can bound the time integrals of the second terms on the right by

G(v,w). After choosing the §;’s sufficiently small we combine all the estimates
to get after integration over ¢

1 2 . w d 2 AP | 2
T + c/o Ty ds < @)+ [T
< CyG(v,w).
The result now immediately follows from elliptic regularity estimates. |

In order to formulate the next result we introduce the sets

Kfw,w)={(h,k) €V xW:3A> 03 (vE b, w+ k) € Uaa}, (25)

for (v,w) € Uaq.

Proposition 3 Suppose (H1) and (H2) hold and (v,w) € Usa. Then the
observation operator

S: K — B,

has a directional derivative (,0) = D 1S (v, w) in the direction (h,k) € K.
Furthermore, at S(v,w) = (¢,T), this directional derivative (1,0) € X; x X3 is
the unique solution of the linear parabolic initial-boundary value problem

¢

72

-t = b (744®)+
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6
0= () = — @)+
81/) ={; %—i—()—k, on I,
on
1/}(0 z) = 60,z)=0, onQ

The same result also holds for the directional derivative D(_p _)S(v,w) at
(v,w) in direction (h,k) € K~ (v,w).

Proof: As in Sprekels, Zheng (1992) we let
(¢*,TY) = S(v + Ah,w + Ak).

Furthermore, we use the notation of the previous Proposition and let

1

o A T o, —te
$=¢*-¢ T=T -T; (=g

Finally, define
=¢—Xp; q=T— M.

It is clear that the linear parabolic system in the statement admits a unique
solution (¢,0) € X; x X3. To continue, suppose that (h,k) € K+ (v,w) and
suppose that there is a X > 0 such that (v + Ah,w + Ak) € Upg, VX € (0, ).
We have to show

I(p,@)llg =0(}), asA—0%. (26)

Using our notation p and q observe the following system of linear parabolic
boundary value problems.

—Ap = 86((75) — so(¢™) = /\53(¢)¢

¢ =2, T
_ Tt
q—A (%‘%) = —¢ip—pr— P, — A <T> ; (28)
dp @
%-—0, o +q=0; ondQ, (29)
0 = p(z,0) =q(z,0). (30)

We prove (26) in several steps.
Step 1: In Sprekels, Zheng (1992) the authors show that

max (bl + o)1)

0<t<t*

+ / () + a3 + Ip(s)l3a) ds < A, (31)
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for a suitable constant C' > 0. We continue from there by multiplying (28) by
(%) ;- After integrating the resulting equation over  x [0,#] we obtain

[ a « Sv G el - [ (), 2 @) we o

a1y " [ aqTy
— —2—="| dzds — xd.:
/ /f <T2 T3> xds 2/0 /Q 73 dzds,
where f is given by

=2
—pep— ¢pr — PPy — A <TT—C> :

From Proposition 1 and the earlier estimates we see that

¥
[ 1617 ds < €
Jo
for a suitable constant C. Furthermore, we have

[zl

(s)|| ds < CaA?,

due to earlier estimates. For the boundary term we observe

o (71) =7 (7 -1)-

Therefore we have

des

1 - —) dads

T2 t()ﬂ th

L2(1")‘ // t
< s |V (L) +eo ||q<t>||2 b / @ lzear | (7). 4

<t |V (@) +eart +es [ lao)lEn .

dxds
L2(T)

<6

Hﬁ(

In the last line of this estimate we used (24). Combining these estimates, using
Young’s inequality and chosing § sufficiently small we obtain

V() Ol + [ o< om

It immediately follows

max
0<t<t

o<t<Llt*

i E
max_[lg()]% + / el ds < Curs, (33)
JO
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Step 2: In this step, we take the derivative of (27) with respect to ¢ to get

pre—Ape = (50(4) — 55(¢”) — Asg(9)),

p@ . PR, o g
+<T 721 q-+ TC quC)t (34)
= F:4+F;.
We observe that
el = |(s0(¢) — 50(‘1’/\) o)),
< e (s0(9) — 56 (¢ m(¢)¢ )| + 150’ (#)bepl
+ |50 (9) Pr|+|( N —s6(9)é | -
Using the mean-value theorem one easily sees that
%l
[ IR )P ds < axt (35)
Jo
for a suitable constant cg. Next we observe that
pr pTy bt ¢ ¢ ¢f ¢
Py = =5~ 1+27050— 730+ TC— Tl
V2 2TT + 2T, - 3T - T - 3T

Since both ¢; and T} are elements of C([0,#*]; H'(Q)) we see that

/O 1F2,(5)]I* ds < ceX*, (36)

for a suitable constant cg. So if one multiplies (34) by p: and integrates the
result over € x [0, ] one gets immediately

S
memUW+/Hm@ﬁn%S%V- (37)
J0

o<t<t*

We can now apply the standard elliptic regularity estimates to get

max_[[p(t)]% < CoX*. (38)

0<t<t*

Furthermore, we can multiply (34) by pe, integrate the result over Q x [0, £] and
use (35) and (36) again to get

.
sl + [ Ipa(o)I? ds < 0o, (39)

for a suitable constant C.
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Step 3: To continue we take the time derivative of (28) to obtain
q
g — A (ﬁ)r = F34(z,1), (40)
where

=2
F3. = <¢tp+ o) 8 +wt - A (TTC>> '
t

To simplify notations we introduce E =] —:";-, which has the same properties as (.
We observe that

A (TQE)f — 9T,6AT + 4VTVT,; + AT, VTV + 9TCAT,
+ATVT, Ve + ITToAE + 2 |VT|* &, + 28 TAT
HATVTVE, + T AL

Using the results of Proposition 2, we can bound “T(t) by cgX for a suffi-

Ol 472
ciently large constant cg. Furthermore, we know that 7" has the same regularity

as f which enables us to bound terms of the form

ot
'/0 HTHZZ ds, and  max Tf(t)HH1

0<t<t*

by constants. Combining these properties we see that

[ 2 (@),

for a suitable constant ¢1g. It follows that

2
ds < c10\?

t*
/0 [1Fs(s)]) ds < e A2 (41)

We Inultiply (40) by ¢ and integrate the result over 2 x [0,#] to get

R
(L) drds— [ B e .
Z ||qf( / /qu 2 dmda ./0 than (T2)t dzds

1

</ 15, (s)II” db) <'/(;‘||(Jt(5)”2 d-‘") < e,

for a suitable constant cij3. We next observe that

¥ p

| ©) dads - @ T
/0 '/qufv <T2 dxds = / /vqfv < 2 T3 > dxds
_ /t* Vg

Jo

—(s)H d,.s—2/ /Vqt< VT+£V(]> dxds
T Jo Ja ;

N T
+2 / / Va, <3QVT— 3\71}) dwds.
JO JQ
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One sees that the mixed terms on the right can be treated via Young’s inequality,
and that we can use the fact that

1

/ lall%z ds < ciaX?,
Jo

and the other earlier estimates on ¢. Finally we observe

] a q “r (10q _qoT
o (), dods = ——2 9t dzd
/ /qtaw T2 - / /qt<T2 B 2T® fm) B

(]Tf arT Ty aq q 8Tt
+2/ / ( Tion Toon Toon) ©%

10T qQq: Ty 0T
/ / (1+2 )d')}d —|—2/ / ( t n—dea—) dxds.

In the first term we observe that

19T
14275 - € L*(0Q).

In the second term one has

1 o . T BT e . i
T(T, — 3T26>€L(0,t,L ).

Using this we get

e (7, O 100
/ / <Tf 5T2 o dxds

Observe that

2
lla(t) ||L2(p) < Cot.

This implies that we are left to treat estimate of the form

=

2

<o ([

2 2
L2(D) “(J“L2(r) ds

\

/-T.*‘ 2 2 dg \
Jo WTllL2@y

We do this by using

/ () ey ds < 6 / V@I ds + G/ o)l ds,

for a suitable constant C. We can now combine all these estimates and use the
properties of T to conclude

X
max ol + [ IVal? ds < Cu, (42)
JO

o<t<t*
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for a suitable constant Cy. From elliptic regularity estimates it follows, that the
same estimate holds for

2
o22x [la®)z

This finishes the proof of the proposition. El

4. Optimality conditions

We return to the optimal control problem (CP) of Section 2. We introduced
the non-linear observation operator S (9)—(10). We can write S in components
(S1,52) as follows.

s - (52)-(£)

Proposition 3 states that this operator is Gateaux differentiable with Gateaux
derivative

psiemin )= (5) “

given by the following system of linearized equations

DS(v,w)(h, k) = (

b=t = ¥ (7-5%®) - 20 (45)
0 .

op 00 o .
a3 =0 o t0=Fk onT, (47)
¥(0,2) = 6(0,z)=0, on . (48)

We can apply the Lagrange multiplier rule (see, for example, Thm. 5.2 of
Casas, 1993, for a proof) to conclude that there exist A > 0 and Borel measures
141, Jh2, [i3, fla, With the properties:

pi({(z,t) € QIT(z,t) # K;}) =0, i =1,2, (49)
pi({(z,t) € Qlg(x,1) # Ki}) =0, i =3,4, (50)

such that
A+ |l 4 |pz] + [ps| + [pal > 0,

where |pi],% = 1, ...,4, denotes the norm of the measure ;.
The constants K; are the same as in the state constraints (7). To continue,
we denote ft = ji1 — o, V = i3 — [i4.
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The optimality system given in the abstract case in Casas (1993), formulac
(5.1)-(5.3) at page 1001, can be specified for the control problem under consid-
eration in the form of two inequalities marked below by (x) and (#x). The first
condition takes the form

(+) V(C,1) € Vaa - /(n—T)d/Hr /(c _ $)dv <0,

where (¢,7) = S(v,w) is a solution to the state equations for optimal controls
(v, w) € Uaq.

For the second condition, we need to introduce some notation. We denote by
I(¢, T;v,w) the cost functional i.e. J(v,w) = I(S1(v,w),S2(v,w);v,w), then
the gradient of the cost functional, with respect to the controls takes the form

<DJ(U) 'U)), (ha k)) = <D1I(¢a T7 v, ’UJ), DIS(¢7 T)(h, k)>
H{(DoI(¢, T;v,w), D3S(¢, T)(h, k)) + (DsI(¢p, T;v,w), h) + (DsI($, T;v,w), k).

The second optimality condition is of the form

() MDJ(v,w), (h — v,k —w)) + ([DS2(v,w)]*(h — v,k —w)], pu)
+H([DS1 (v, w)]* (h — v,k —w)],v) >0,
for all (h,k) € Uag, where [DS;(v, w)]* denotes the adjoint to [DS;(v,w)],i =
1,2.
Assuming that the Slater condition is satisfied, we can take A = 1 (see, c.g.

Casas, 1993). In the present case the Slater condition (S) means that therc
exists an optimal control (hg, ko) € Uaq such that for all (z,t) € @

Ky < T(z,t) + [DS2(v,w)(ho — v, ko — w)](z,1) < K>
K; < ¢(z,t) + [DS1(v,w)(ho — v, ko — w)|(z, 1) < K4

Furthermore, an adjoint state is introduced in order to simplify the latter opti-
mality condition. To this end, we rewrite the linearized equations in the form

L11(¢) + L12(0) = 0, (51)

Lo1 (1) + L22(0) = h, - (52)
with boundary conditions on I'

Ls(1,0) = L32(0) = k, (53)

L4(h,0) = Lar() =0, (54)
where

£a) = - 26— (- 5)) (59)

L12(6) = 50, (56)

T
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Lo1(¥) = — (<I51/))t, (57)
0

Loa(0) =6; — A <ﬁ> 3 (58)
00

[,32(0) = _d? + 0, (59)
o

La(P) = I (60)

We denote by

W = Wl X W2 )

V=V xVox Vs xVy,

LWV,

E[(¢7 0)] = (£1 ('l/)v 9)) ['2(7/), 9)7 LS(’M)) 9)’54(1/}7 9)) s
Li(y,0) eV, i=1,..,4,
and we assume that the operator £ is an isomorphism. The space Vs can be

selected as the space V defined in section 1. We assume that Wi x Ws C [C(Q))?
with continuous embedding. The linearized equation takes the form

Find (¢,0) € Wy x Wy such that L[(+,0)] = (0,h,k,0) inV,

where h € Vs, k € V3 are given elements.
For any continuous linear form ¥[(+,-)] on W there exists a unique element
7 in V such that

(LI¢,m, D)y =P[(¢,m)] Y(Cn) €W,

since for an element (¢,n) € W we have ((,7) = L7[(p, ¢, 7, s)] for the unique
element (p,q,7,5) € V.
We select the following linear form on W

W[(¢,m)] = (DrI(, T;0,w),¢) + / Cdv + (DaI (6, T50,w),m) + / ndg,

which is continuous under our assumptions.
Then there exixts the unique adjoint state 7 = (g, P, 7,3) € V such that the
following adjoint state equation is satisfied

For any solution (1), 0) of the linearized equation we have

U[(%,0)] = (Dil($,T;v,w), )+ (D21(, T;v,w),0)

+ /()d/l,—i— /’l/)dl/

(L[(4,0)),0)v
(hvf_))VZ + (k’F)Vs'

I
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Using the above construction, it follows that for A = 1 the necessary opti-
mality conditions can be rewritten in the following form.

Theorem 1 Assume that condition (S) is satisfied. Then there exist pu,v and
the adjoint state (p,q,7,5) € V such that the optimality system for the control
problem includes the state equation, the adjoint state equation, and the condition
(%), as well as the following condition

<D3I(¢)T;U7w)7h' - 'U) & (h - UJ_))Vz
H(DyI(¢,T;v,w), k —w) + (k—w,F)y, >0
for all (h,k) € Uaa.

5. Concluding remarks

In this paper first order optimality conditions were derived for a control problem
for a system described by quasi-linear parabolic equations. These results for a
control problem with state constraints seem to be new.

In particular our analysis shows that the mapping “control — state” is
Gateaux differentiable. Further analysis of the obtained optimality system could
eventually provide additional regularity results for optimal solutions of the state
cquations. These results would be useful for the stability analysis of optimal
controls. A next step would be the derivation of second order optimality condi-
tions for our problem.

The control problem is well-posed provided the controls are sufficiently reg-
ular. This is a very restrictive requirement in applications which usually use
controls which are square integrable functions. However, such regularity as-
sumptions seem to be unavoidable in systems governed by non-linear PDE’s.
Finally, the analysis of numerical methods for our problem would be of big
interest.
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