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Abstract: The Penrose-Fife model for phase transitions consists 
of a system of quasi-linear parabolic PDE. After reviewing previous 
results on existence and uniqueness for the state equations an op­
timal control problem for this system is introduced. This problem 
involves local state constraints. An observation operator correspond­
ing to this optimal control problem is introduced, and its regularity 
properties are studied. Finally, these regularity properties are used 
to derive first order optimality conditions. 

1. Introduction 

In this article we consider the following initial-boundary value optimal control 
problem 

c/Jt = t::.cp- s~(cp)- ).,~) m Q, (1) 

Tt = -t::. (~)- A(cp)c/Jt + v m Q, (2) 

oT 
oQ (3) -= -(T -w) on 

on 
ocp = 0 
on 

on oQ, (4) 

cp(x,O) = c/Jo(x), T(x, 0) = To(x) in D, (5) 

where D is a domain in R3 with a smooth boundary r, Q = D x (0, t*) for some 
t * > 0, and oQ = r x (O,t*). 

These equations arise in a model for phase transitions introduced by Penrose 
and Fife (1990). The phase transitions depend only on the temperature T. cp is 
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a non-conserved order parameter which indicates the present phase at a point 
(x, t) E Q. The function s0 is a double-well potential, whose minima correspond 
to the states when there is only a single phase present . vindicates a heat source. 

The mathematical treatment of this and similar initial-boundary value prob­
lems can be found, for example, in Amann (1993), Horn, Sprekels, Zheng (1996), 
Sprekels, Zheng (1993), Colli, Sprekels (1995), Horn, Laurenc;ot, Sprekels (1996), 
Laurenc;ot (1994) and requires some additional assumptions. In this article we 
will use the same assumptions as in Horn, Sprekels, Zheng (1996), Sprekels, 
Zheng (1993). Namely, for the potential s0 we will assume that either 

• (A) s0 E C3 (R) and there exists a constant C > 0 such that sg(<P) > - C 
for all <P E R. 
or 

• (B) s0 =<fllog<fl+(1-<fl)log(1-<fl) . 
• .A( <P) = a<fl + b, for a positive constant a. To simplify notations we will, 

without loss of generality, use a = 1 and b = 0, i.e. use .A( <P) = <fl. 
We will also need the following regularity assumptions. 
(Hl) <floE H 4 (D); ~(x) = 0, Vx E f; 

:n ( -sS(<Po) + ~~ + b.<flo ) (x) = 0, Vx Er. 

(H2) ToE H 3 (D); T(x) = ~(x) + To(x) > 0, Vx Er; To(x) > 0, Vx E D. 
Finally, we introduce some Banach spaces which will be widely used throughout 
this article. 

X 1 C([O, t*]; H 4 (D)) n C 1 ([0 , t*]; H 2 (D)) n C2 ([0, t*]; L2 (D)), 

X2 C([O, t*]; H 3 (D)) n C 1 ([0, t*]; H 1 (D)) n H 4
•
2 (Q), 

V H 2 (0, t*; L2 (D)) n H 1 (0, t*; H 2 (D)), 

W H 2 (0, t*; H~(r)). 

Throughout the paper, we let 11·11 = II·IIP(n) 
In this setting, the main existence result (cf. Horn, Sprekels, Zheng, 1996; 

Sprekels, Zheng, 1993) is 

Proposition 1 Sv.ppose (Hl) and (H2) are satisfied and that (v,w) E V x W. 
Then there exists a v:nique global smooth solv.tion (<P, T) E X 1 x X 2 to the 
initial-boundary value pr·oblem (1) - (5). Furthermore, there exists a constant 
Ct• > 0 sv.ch that T( x, t) 2: Ct• for all ( x, t) E Q, and in the case (B) there exist 
constants 0 < at• < bt· < 1, such that at• :::; <P(x, t) :::; bt• for all (x, t) E Q. 

In Section 2 of this article we will state and discuss the optimal control 
problem with state constraints. In Section 3 we will investigate the related 
observation operator and prove its differentiability in the setting of Section 2. 
Finally, we will derive the necessary conditions for optimality in Section 4 of 
this paper. 



A control problem wit h state constraints for a phase-fie ld model 1139 

2. Optimal control problems with state constraints 

The state equations (1)- (2) give rise to several interesting optimal control prob­
lems . Here we want to control the state ( c/Y, T) by using the source term v in 
(2) and the boundary term win (4). Such a control problem was introduced in 
Sprekels, Zheng (1992). In the present article we want to put local constraints 
on the state as well (see Sokolowski, Sprekels, 1994, for a similar problem). 
These constraints will ensure that the solutions of the state equation cjJ and B 
stay in a desirable range. 

There are several reasons to add state constraints on the temperature. Per­
haps the most important reason is that these constraints will force t he tempera­
ture to stay in a range in which the model is a valid description of the underlying 
physical processes. State constraints on the phase have been added here for the 
sake of the completeness of the description . 

In order to formulate this problem in a precise manner we need to introduce 
some additional notation. We start by defining the cost functional 

I(cjy,T;v,w) O'l 11 - 11

2 

0'
2

11 '11

2 
__:__ t* - t* + __:__ T - T 
2 c/Y( ) cjy(' ) £2(0.) 2 £2(Q) 

t* 

+ ~3 
llvlli,2(Q) + ~4 r llw (t) 11 ~2(r) dt, .fo 

for given target functions J E xl and T E x2. Next let 

W {wEW: w(x,O)=T(x), VxEf; 

w(x, t) ~ {3, lwt(x, t)i < k, V(x, t) E 8Q}, 

(6) 

where T is the function introduced by (H2) and f3 and k are suitably chosen 
positive constants. We use this set to introduce 

K= V X w. 

T he set Uad of admissible controls is a closed, convex and bounded subset of K. 

To state the local state constraints we use the constants 0 < K 1 < K 2 and 
K 3 < K 4 to define the set of admissible states. 

Yad has a non-empty interior, since xl X Xz c (C(Q)) 2
. 

We can now state the optimal control problem under consideration. 
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Optimal Control Problem (CP) 

Minimize J( r/J, T; v, w) under the following conditions: 

1. ( r/J, T) satisfies the state equations (1 )-(2) and the initial and 
boundary conditions (3)- (5). 

2. (v, w) E Uad· 
3. (cp, T) E Yact · 

In the study of the control problem (CP) it is useful to introduce the ob­
servation operator S. To do this we define the space of observations B by 

B = (C([O, t*]; H 2 (0))) x (C([O, t*]; H 2 (0))). 

Next defin.c 

s 
s 

K-.B, 

(v,w) ,___. (<P,T), 

(8) 

(9) 
(10) 

i. c. S assigns to every pair (v,w) E K the pair (cp,T) which solves (1)- (5) 
for the given V and w. Since xl X x2 c B and by virtue of Proposition 1 this 
operator S is well defined. Using this operator one sees that the cost functional 
I(cp ,T;v,w) depends only on the controls v and w, i.e . we can rewrite it as 

J(v, w) = I(cp, T; v, w) i(,P,T)=S(v ,w) · 

In the following section we will study the properties of the operator S. In 
Section 4 these properties will be used to derive the necessary conditions of 
optimality. To do this we will use similar methods as in Casas (1993). 

Remark: Since the authors of Sprekels, Zheng (1992) did not consider 
state constraints, they could use a larger space of observations with a coarser 
topology. 

3. Differentiability of the observation operator 

This section is devoted to a closer investigation of the observation operator S. 
The proofs in this section are rather technical. However, the techniques are 
largely straightforward and many ofthe details have been omitted. 

To begin, we state that S is well-defined, and - also due to Proposition 1 -
there exist positive constants a and 1 such that 

llr/JIIx
1 
+ 11TIIx2 < a, V(v, w) E Uact, 

T(x,t):::: 1 > 0, V(x,t) E Q. 

(11) 

(12) 

Moreover, if s0 (1J) is of the form given in case (B), there exist constants 0 < 
ht• < ht• < 1 such that 

fit• ::::; cp(x, t) ::::; bt•, V(x, t) E Q. (13) 
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In order to prove differentiability of the observation operator S one has to 
first improve the stability result of Sprekels, Zheng (1992). To do this we let 
((/Ji,Ti) = S(vi,wi), i = 1,2 and (vi,wi) E U ad· We define (iJ = cP1- c/J2, 

T = T1 - T2, v = v1- v2, and w = w1 - w2. Using these notations we have the 
following result. 

Proposition 2 Ther-e exists a constant C > 0 such that 

a~~~· ( ll(iJt (t)ll~l + ll (iJ(t) ll~a + II T(t) ll ~2 + IITt(t)ln 

+ r· ( ll(iJt(t) ll~l + IITt(t)ll~l) dt+ r ·ll(iJu(t)ll 2 
dt ::; CG(v,w), (14) la la 

wher-e 
·t* 

G(v,w) = 1 (11wt(t)ll~2(r) + llvt(t)ll 2 + llv(t)ll 2
) dt 

+ llv(O)II 2 + llwll~l(a ,t • ;£2(r)) + a~~~. ll w(t)ll~!cn . (15) 

Proof: From Theorem 2.1 of Sprekels, Zheng (1992) we know that there exists 
a constant 6 > 0 such that 

a~~~~· (ll(iJt(t) ll ~l + l l (iJ(t)ll ~a + IIT(t)ll~l) 
·t* ·t* 

+.la ( ll (iJu(t) ll
2 
+ IITt(t)ln dt +.la (l l (iJt(t)ll~l + II T(t)ll~2 ) dt 

::; CG(v,w), 

where 
. ·t * 

G(v, w) = I llv(t)ll 2 
dt + llwll~l(a,t•;£2(r)J · .fa 

(16) 

(17) 

Similar to that paper T satisfies the following linear parabolic boundary value 
problem. 

Tt- t. (T() 

ar -~ -;:;- + T = wlr , 
un r 

cPl, t(fy - cP2(fyt + v, 

T(x,O) = 0, Vx E D, 

(18) 

(19) 

where ( = (T1T2)-
1

. Since Ti E X 2 we have that ( E C( [O , t*]; H 2 (D)) and 
V' (t E £ 2 ( Q). We can now differantiate (18) and (19) with respect to time to 
obtain 

Ttt - t. (TC) t 
Ttt - t. (TC) t 

8Tt + Tt l 
on r 

- - - 2 
cP1,ttcP - cP2cPtt + cPt +'Ut, 

j, 

(20) 

(21) 

(22) 
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For the initial values of Tt 

Tt(x, 0) = (~ (T() + c/J1 ,tif> + c/J2if>t) (x, 0) + v(x , 0) = v(x, 0). 

Furthermore, we observe that 
·t "" ·t* 

I ll f(t)ll 2 dt::; clG(v,w) + j llvt(t) ll 2 
dt, 

.fo o 
(23) 

by the previous results. To continue with our proof we multiply (20) by Tt and 
integrate the resulting equation over n to arrive at 

~!£ ll'ft(t)ll 2 + { VTt(t) · V (((t)T(t))t dx- {Tt(t) 
0 

(C(2T(t))t dx 
2dt ./n ./r n 

:::: 
8
; llf(t)ll

2 
+ 2~)'ft(t) ll 2 , 

after applying (23) and Young's inequality. The value of 81 will be determined 
later. Next we observe that 

l'vrt(t)V (((t)T(t))t d.T = r ((t) IVTt(t)l
2 

dx + fr(t)VTt(t)V(t(t) dx 
./n ./n ./n 

+ {(t(t)VTt(t)VT(t) dx + fr(t)VTt(t)V((t) dx 
./n ./n 

= j
0
((t) IVTt(t)l

2 
dx + h(t) + fz(t) + h(t). 

Using standard esitmates, we can treat the terms on the right of this last in­
equality individually as follows 

lh(t) l < ~ IIVTt(t)ll
2 
+ 2~2 IIV(t(t) i l~ l (r!) ll 'f(t)ll~l(r!) , 

llz(t)l < ~ II VTt(t) ll
2 
+ 2~3 IICt(t)ll~l(r!) II T(t) 11 ~2(!!), 

lh(t)l < 
8
; II VTt(t)ll

2 
+ 2~4 IIV((t)ll~= (n) ll 'ft(t)ll

2 
· 

In each of these inequalities one can estimate the integral over t of the second 
term on the right via G(v, w). The values for 8i will be determined later. For 
the boundary term we observe that 

fer~ dx - frt (w- T) (t dx - r(TtWt d.T 
./r ./r .lr 

+ 17~ ((2 (T1 (w2- T2) + Tz(w1 - T1))) dx 

+ hTtT ((2 (T1 (wz - Tz) + Tz (w1- Tl)))t dx 

frcr~ dx + J1(t) + Jz(t) + Ja(t) + J4(t). 



A cont rol problem with state constraints for a phase-field mode l 

We can again estimate the terms individually as follows 

IJI(t)l < 
8
; ll 1\(t)ll~2(r) 

+ ;;
5 

( 11 w(t)11~4(r) + IIT(t)11 ~4(r)l(tll~4(r) , 
86 ~~ - 112 C5 _ 2 lh(t)l < 2 Tt(t) £2(r) + 

286 
llwt(t)IIP(r), 

IJ3 (t)l < c7 11 Tt(t) ll ~2(r) :::; ~ II VTt(t)ll
2 

+ c7 11Tt(t) ll
2

' 

IJ4(t)l < ~ IITt(t)11~2(rJ 

1143 

+ 2~8 ll 'f ll ~4(r) 11 ((2 (T1 (w2- T2) + T2 (wl - TI)))tll~4(r). 
From the trace theorem and the Sobolev imbedding theorem (see, for example, 
Adams (1984) for the Sobolev theorem for fractional exponents) we have the 
following continuous imbeddings 

(24) 

Using this we can bound the time integrals of the second terms on t he right by 
G(v, w). After choosing the 8i's sufficient ly small we combine all the estimates 
to get after integration over t 

The result now immediately follows from elliptic regularity estimates. • 
In order to formulate the next result we introduce the sets 

K±(v,w) = {(h , k) E V x W: :l.A > 0 3 (v ± .Ah,w ± .Ak) E U ad} , (25) 

for (V, w) E U ad. 

Proposition 3 Suppo se (Hl) and (H2) hold and (v,w) E Uad· Then the 
obser-vation opemtor-

S : K-> B, 

has a dir-ectional der-ivative ('lj;, e)= D(h ,k)S(v, w) in the dir-ection (h, k) E K + 
Fv.r-ther-mor-e, at S(v , w) = (</J, T) I this dir-ectional der-ivative ('1/;, e) E xl X x 2 is 
the v:niqv.e solution of the linear- par-abolic initial-bov:ndar-y valv.e pr-oblem 
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et- !i (;2 ) 

l}t(J- 0 
an- ' 

'1/J(O,.'r) 

- (4>'1/J)t + h, 

ae -a +e=k, onr, 
n 

e(O, x) = 0, on TI 

The same resnlt also holds for the directional derivative De -h ,- k)S( v, 711) at 
(v, 711) in direction (h, k) E K-(v, w). 

Proof: As in Sprekels, Zheng (1992) we let 

(cp\ T>..) = S(v + >.h, 711 + >.k) . 

Furthermore, we use the notation of the previous Proposition and let 

Finally, define 

p=if; - >.'1/J; q=T->.e. 

1 
(=TT>... 

It is clear that the linear parabolic system in the statement admits a unique 
solution ('1/J, e) E xl X x2. To continue, suppose that (h, k) E K +(v, w) and 
suppose that there is a>::> 0 such that (v + >.h, w + >.k) E Uad, V>. E (0 , '3::). 
We have to show 

ll(p,q)IIB = o(>.), as>-__, o+. (26) 

Using our notation p and q observe the following system of linear parabolic 
boundary value problems. 

Pt- lip = 

ap 
--0· an- ' 

0 

We prove (26) in several steps. 
Step 1: In Sprekels, Zheng (1992) the authors show that 

o9~~· (llp(t)ll~l + llq(t)ll 2
) 

+ .lt• (11Pt(s)ll 2 + llq(s) ll~l + llp(s)ll~>) ds < C>-4
, 

(27) 

(28) 

(29) 

(30) 

(31) 
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for a suitable constant C > 0. We continue from there by multiplyin~,. (28) by 
( ;fo) t' After integrating the resulting equation over D x [0, t] we obtain 

where f is given by 

From Proposition 1 and the earlier estimates we see t hat 

t• 

.lllf(s)ll2 
ds::; C1>-4, 

for a suitable constant C1 . Furthermore, we have 

.f.ll ~ (s)JI2 ds ::; C2>.4, 

due to earlier estimates. For the boundary term we observe 

{} ( q ) q ('W ) an T 2 = T 2 T - 1 . 

Therefore we have 

l.lt _i(;2) t !. (;2) dxdsl = 11t[(;2) t ; 2 ( 1- ~) dxdsl 

::; cl 11 Tq2 (t) 112 + c2 t /q21 ( _Tw) I dxds 
£2(r) . ./0 ./r t £2(r) 

::; c1811 \7 ( ; 2 (t) ) 11
2 

+ c3ll q(t) 11 2 + c2 1t llq(s) 11~ 4(r) 11 ( ~) J ds 

::; c18 11v (;2 (t)) 11
2 

+ c4 .A4 + c5 .lt ll q(s) l l ~l ds. 

In t he last line of this estimate we used (24). Combining these estimates, using 
Young's inequality and chosing 8 sufficiently small we obtain 

It immediately follows 

(33) 
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Step 2: In this step, we take the derivative of (27) with respect tot to get 

Ptt- 6.pt = (s~(cp)- s~(cp>..)- >.s~(cp)'lj; )t 

+ (!!_- _l_ q + tr2c- (fire) 
T T 2 T t 

F1,t + F2,t· 

We observe that 

IF1,tl I (s~(cp) - s~(cp>..) - >.s~(cp)7f; )t l 

< lcpt (s~(cp) - s~(cp>..)- s~'(cp)(fi) I+ ls~'(cp)cptPI 
+ Is~ ( cp) Pt I + I ( s~ ( cp>..) - s~ ( cp)) Cfit I · 

Using the mean-value theorem one easily sees that 

r ·IIFl,t(s)ll 2 
ds s; C5A

4
, 

.fo 

for a suitable constant c8 . Next we observe that 

F2,t = Pt _ pTt _ cpt + 2cpTt _ _j_ + cpty2r _ _j_TT r 
T T2 T2 q T3 q T2 qt T "' T2 t 2<, 

cp -- cp - 2 -- -- --
+2TTTt( +TT (t- cptT( - cpTt(- cpT(t 

Since both cpt and Tt are elements of C ( [0, t*]; H 1 (D)) we see that 

(34) 

(35) 

(36) 

for a suitable constant c9 . So if one multiplies (34) by Pt and integrates the 
result over [l X [0, t] one gets immediately 

We can now apply the standard elliptic regularity estimates to get 

max ll p(t)11~2 s; c6>.4
. o::;t::; t• 

(37) 

(38) 

Furthermore, we can multiply (34) by Ptt, integrate the result over D x [0, t] and 
use (35) and (36) again to get 

(39) 

for a suitable constant c7. 



A control problem with state constraints for a phase-field model 114 7 

Step 3: To continue we take the time derivative of (28) to obtain 

qtt- b. (;2 )t = F3,t(x,t), (40) 

where 

F3,t = ( cPtP + tPPt + tPtPt -b. (T: ()) 
t 

To simplify notations we introduce ( = ~, which has the same properties as. (. 
We observe that 

b..(r2()t = 2Tt(b..T+4(V'fV7\+4TtVTV(+2T(b..'Tt 

+4TVTtVC + 2TTtb..( + 2jVTj
2 

Ct + 2(tTb..T 
- - ' -2 ' +4TVTV(t + T b..(t. 

Using the results of Proposition 2, we can bound Jj'f(t)jjH2 by Cg A for a suffi­

ciently large constant c9 . Furthermore, we know that T has the same regularity 
as ( which enables us to bound terms of the form 

·t* 

.fo ll'f ll ~2 ds, and o~~.ll'ft(t)jj Hl 
by constants. Combining these properties we see that 

.{.llb.. (r2()t (s)ll2 ds ~ clO .A2 

for a suitable constant c10 . It follows that 
·t* 

111F3,t(s)il2 
ds ~ cn.A

2
. ( 41) 

We multiply ( 40) by qt and integrate the result over Q x [0, t] to get 
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One sees that the mixed terms on the right can be treated via Young's inequality, 
and that we can use the fact that 

.{.llqll~ z ds :S c14A\ 

and the other earlier estimates on q. F inally we observe 

r· {qt_!!_ (~) &cds = r· {qt (~ tJqt - 2 q~ oT) dxds 
.fo ./r . on T · t .fo Jr . T on T on 

i·t·~r· ( qTt oT Tt oq q oTt) +2 qt 3-- - - · -- --- dxds 
. o . r T4 on T3 on T3 on 

r· {q2 
( 1 oT) {t• {qq ( oT ToT) 

=- .fo .fr,j2 1 + 2T on dxds + 2 .fo .frT; Tt + on~ - 3T~ on dxds . 

In the first term we observe that 

1 oT 
1 + 2T on E V)Q(8Q). 

In the second term one has 

1 ( oTt Tt 8T) 2 • oo T Tt- on +3T2 on EL (O,t ;L (r)). 

Using this we get 

Observe that 

ll q(t)lliz<n :S C10-\
4

. 

This implies that we are left to t reat estimate of the form 

~\ 

We do this by using 

·t* ·t* ·t* 

I llg(s)ll~2(r) ds::; oj IIVg(s) ll 2 
ds + 6 I llg(s)ll2 

ds, 
.fo o .fo 

for a suitable constant C. We can now combine all these estimates and use the 
properties ofT to conclude 

·t* 

o~Pt~~.llqt(t)l l +.la IIVqtll2 
ds :S Cn>-

3
, (42) 
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for a suitable constant C9 . From elliptic regularity estimates it follows, that the 
same estimate holds for 

max JJq(t)11~ 2 · os;t=s;t• 

This finishes the proof of the proposition . • 
4. Optimality conditions 

We return to the optimal control problem (CP) of Section 2. We introduced 
the non-linear observation operator S (9)- (10). We can write S in components 
(S1, Sz) as follows . 

( 
S1(v,w) ) ( 4; ) 

S(v, w) = Sz(v, w) = T · ( 43) 

Proposit ion 3 states that this operator is Gateaux differentiable with Gateaux 
derivative 

Ds( )(h k) = ( DS1 (v, .w)(h, k) ) = ( 'I(; ) 
v, w ., ' DS2 (v, w)(h, k) e ' 

given by the following system of linearized equations 

Bt - ~ (;2 ) 

fJ'l(; - 0 
an- ' 
7f(0, .T) 

1f ( ~ - s~ ( 4;)) - :2 e, 

(4;1f)t+h, 

f)(} 
- + (} = k, on r, an 
B(O, x) = 0, on TI. 

(44) 

( 45) 

(46) 

(47) 

(48) 

We can apply the Lagrange multiplier rule (see, for exa~ Thm. 5.2 of 
Casas, 1993, for a proof) to conclude that there exist >.. ~ 0 and ~orel measures 
fJ.l , JLz , JLs, 11·4, with the properties: 

!J·i( {(x,t) E QJT(x,t) f. Ki}) = 0, i = 1,2, 

JLi({(x,t) E QJcj;(x,t) f. Ki}) = 0, i = 3,4, 

such that 

where ll•i I, i = 1, ... , 4, denotes the norm of the measure /Li. 

( 49) 

(50) 

The constants Ki are the same as in the state constraints (7). To continue, 
we denote 11· = 11·1 - JLz, v = P.s - JL4. 
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The optimality system given in the abstract case in Casas (1993), formulae 
(5.1)-(5.3) at page 1001 , can be specified for the control problem under consid­
eration in the form of two inequalities marked below by ( *) and ( **). The first 
condition takes the form 

V((, TJ) E Yad : ./ ( TJ - T)dp, + ./ ( ( - cp )dv :::; 0, 

where ( cp, T) = S( v, w) is a solution to the state equations for optimal controls 
(v, w) E Uad· 

For the second condition, we need to introduce some notation. We denote by 
I(cp,T;v,w) the cost functional i.e. J(v ,w) = I(S1(v ,w),S2(v,w);v,w), then 
the gradient of the cost functional , with respect to the controls takes the form 

(DJ(v, w), (h, k)) = (D1I(cp, T; v,w),D1S(cp, T)(h, k)) 
+(D2I(cp, T; v, w), D2S(cp, T)(h, k)) + (D3 I(cp, T ; v, w), h)+ (D4 I(cp, T; v, w), k). 

The second optimality condition is of the form 

(**) >..(DJ(v , w), (h- v , k-w))+ ([DS2(v, w)]*(h- v, k-w)], p,) 

+([DS1(v,w)]*(h-v,k-w)],v) ~ 0, 

for all (h , k) E Uad, where [DSi(v, w)]* denotes the adjoint to [DSi(v , w)], i = 

1, 2. 
Assuming that the Slater condition is satisfied, we can take .>.. = 1 (see, e.g. 

Casas, 1993). In the present case the Slater condition (S) means that there 
exists an optimal control (h0 , k0 ) E Uad such that for all (x , t) E Q 

K 1 < T(x, t) + [DS2(v, w)(ho- v, ko- w)](.-r, t) < K2 

K 3 < cp(.T, t) + [DS1 ( v, w)(ho - v, ko - w)](x, t) < K 4 

Furthermore, an adjoint state is introduced in order to simplify the latter opti­
mality condition. To this end, we rewrite the linearized equations in the form 

.Cu('1f;) + £12(8) = 0, 

£21 ('1/;) + £22(8) = h, 

with boundary conditions on r 

where 

.c3('1f;, e)= £32(8) = k, 

£4('1/;,8) = L4I('1f;) = 0, 

.Cu ('If;) = '1/Jt - fj.'!f; - 'lj; ( ~ - s~ ( cp)) , 

cp 
£12(8) = T 2 e, 

(51) 

(52) 

(53) 

(54) 

(55) 

(56) 
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We denote by 

W=W1 x w2, 

v = v1 x v2 x v3 x v4 , 
£ :WI---;>V, 

£[(7/;, B)]= (£1(7/;, B),/.:_2(7/;, B),£3(7/J, B),£4(7/;, B)) , 

£i(7j;, B) E Vi, i = 1, ... ,4, 
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(57) 

(58) 

(59) 

(60) 

and we assume that the operator £ is an isomorphism. The space V2 can be 
selected as the space V defined in section 1. We assume that wl X w2 c [C( Q)]2 

with continuous embedding. The linearized equation takes the form 

Find (7j;,B) E wl X w2 such that £[(7/;, B)] = (O,h,k,O) in V, 

where hE V2 , k E V3 arc given elements. 
For any continuous linear form w[(-, ·)] on W there exists a unique element 

v in V such that 

(£[((,TJ)],v)v = w[((,TJ)] \1((,77) E W, 

since for an element ((,7]) E W we have ((,77) = .c-1 [(p,q,r,s)] for the unique 
element (p, q, r, 8) E V. 

We select the following linear form on W 

w[((, 77)] = (D1J( cp, T; v, w), () + ./ (dv + (D2J( cp, T; v, w ), 77) + ./ 7]dJ.I, 

which is continuous under our assumptions. 
Then there cxixts the unique adjoint state v = (q,p, r , s) E V such that the 

following adjoint state equation is satisfied 

(£[((,7J)J,v)v = w[((,TJ)] V((,TJ) E w. 
For any solution ( 7/J, B) of the linearized equation we have 

w[(7j;,B)J = (D 1I(cp,T;v,w),7j;) + (D2I(cp,T;v,w),B) 

+ jedj.I + j~;dv 
(£[( 7,1;, B)], v)v 

(h,p)v2 + (k,r)v3 • 
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Usin£ the above construction, it follows that for .A = 1 the necessary opti­
mality conditions can be rewritten in the following form. 

Theorem 1 Assume that condition (S) is satisfied. Then theTe exist J.L, v and 
the ad,joint state (p, 7j, r, s) E V such that the optimality system for the contTol 
pr-oblem inclv.des the state equation, the ad.foint state eqv.ation, and the condition 
( *), as well as the following condition 

(D3I(cf;,T;v,w),h- v) + (h- v,p)v2 

+(D4 I(cj;, T; v, w), k-w)+ (k-w, r)v, ;::: 0 

for all (h, k) E Uad· 

5. Concluding remarks 

In this paper first order optimality conditions were derived for a control problem 
for a system described by quasi-linear parabolic equations. These results for a 
control problem with state constraints seem to be new. 

In particular our analysis shows that the mapping "control f---7 state" is 
Gateaux differentiable. Further analysis of the obtained optimality system could 
eventually provide additional regularity results for optimal solutions of the state 
equations. These results would be useful for the stability analysis of optimal 
controls. A next step would be the derivation of second order optimality concli­
tions for our problem. 

The control problem is well-posed provided the controls are sufficiently reg­
ular. This is a very restrictive requirement in applications which usually use 
controls which are square integrable functions. However, such regularity as­
sumptions seem to be unavoidable in systems governed by non-linear PDE's. 
Finally, the analysis of numerical methods for our problem would be of big 
interest. 

References 

ADAMS, R.A . (1984) Sobolev Spaces. Academic Press, New York. 
AMANN, H. (1993) Nonhomogeneous linear and quasilinear elliptic and para-

bolic boundary value problems. Preprint. ( 
CASAS, E. (1993) Boundary control ofsemilinear elliptic equations with point­

wise state constraints. SIAM J. Contml Optim., 31, 993- 1006. 
COLLI, P ., SPREKELS, J. ( 1995) On a Penrosc-Fife model with zero interfacial 

energy leading to a phase-field system of relaxed Stefan type. Ann. Math. 
Pure Appl., 4, to appear. 

HORN, W. (1994) Mathematical aspects of the Penrosc-Fife phase-field model. 
ContTol and Cybernetics, 23, 4, 677- 690. 

HORN, W., LAURENQOT, PH., SPREKELS, J. (1996) Global solutions to a Pen­
mse-Fife phase-field model undeT fiv.x boundaTy conditions joT the inveTse 
tempemtur-e. (Submitted). 



A control problem w ith state constraints for a phase-fie ld model 1153 

HORN, W. SPREKELS , J. ZHENG , S. (1996) Global smooth solutions to the 
Penrose-Fife model for ising ferromagnets. Adv. Math. Sci. Appl. , to 
appear. 

KENMOCHI, N., NIEZGClDKA, M. (1993) Systems of nonlinear parabolic equa­
tions for phase change problems. Adv. Math. Sci. Appl. , 3 , 89- 117. 

LAURENQOT, PH. (1994) Solutions to a Penrose-Fife model of phase-field type . 
.1. Math. Anal. Appl., 185, 262- 274. 

MAZUMDAR, T. (1994) Generalized projection theorem and weak noncoercive 
evolution problems in Hilbert spaces. J. Math. Anal. Appl., 46, 143- 168. 

PENROSE, 0., FIFE, P.C. (1990) Thermodynamically consistent models of 
phase-field type for the kinetics of phase transitions. Physica, D 43, 
44- 62. 

SOKOLOWSKI , J. , SPREKELS , J . (1994) Control problems for shape memory 
alloys with constraints on the shear strain. LectuTe Notes in Pv:re and 
Applied Mathematics , 165 , Mar·cel Dekker , G. Da Prato, L. Tubaro, cds., 
189- 196. 

SOKOLOWSKI , J., ZOLESIO , J. - P. (1992) Intmdv.ction to Shape Optimization. 
Springer- Verlag, Heidelberg. 

SPREKELS , J. , ZHENG, S. (1992) Optimal Control problems for a thermody­
namically consistent model of phase-field type for phase transitions. Adv. 
in Math. Sci. and Appl., 1, 1, 113- 125. 

SPREKELS , J., ZHENG, S. (1993) Global smooth solutions to a thennodyna­
rnically consistent model of phase-field type in higher space dimensions . 
.1. Math. Anal. Appl., 176, 200- 223. 




	Bez nazwy

