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Abstract: The state equations in the shape optimization prob­
lems have in general singular solutions, and exact representation 
of changing shapes by smooth transformations is troublesome. We 
propose the combination of special approximation method and har­
monic transformation to overcome these difficulties. The example 
solved by specially developed package is presented. 

1. Introduction 

In the paper we shall consider a method of harmonic transformation applied 
to the shape optimization problems in plane elasticity, together with special 
approaches improving its implementation. We shall present also a numerical 
example ilustrating the performance of the method. 

Let us consider a plane domain Dt satisfying uniform cone condition (Chenais, 
1975), with boundary consisting of finite number of smooth arcs. Uniform cone 
condition excludes too narrow necks. We split the boundary into two parts: 
an= re u rt, where re is constant and rt may change, thus allowing for shape 
variation. We assume additionally, that all the domains Dt, as parametrized by 
t, fulfil the above stated conditions and additionally nlow c nt c nupp > where 
sub- and supersets are given. This defines the set of admissible domains IIad· 

In such a domain we define a plane elasticity problem for the state variable 
Ut representing displacement: 

where 

AT·D·AUt 

Ut 
BT · D ·Aut 

a 
axl 

0 
a 

ax2 

0 

f in nt, 
g on ri, 
h on r;, 

l ' 

(1) 

0 
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n- outer normal vector on the boundary, and D - matrix of material constants 
(Lame coefficients). We assume here, that the boundary data do not introduce 
additional singularities, i. e. the components off, g, h are in the Sobolev spaces 
Lp(Dt), w;-1/P(ri), wi- 11P(r;) respectively. The decompositions re U rt = 
ft U q in general do not coincide. 

Next we consider the domain functional 

.J(t) = / F(ut) dD, .ln, (2) 

which may represent for example a stiffness of the elastic structure or average 
stress, and formulate the optimization problem 

subject to state constraints (1). 
In connection with this there appear three questions: 

- how to represent the domain variations? 

(3) 

- what is the sensitivity of the functional (3) with respect to the domain varia-
tions? 
-how to compute the:,;e sensitivities accurately enough? 

2. Domain parametrization - harmonic transformations 

In general we can take a family of invertible, smooth mappings 

<I>o = id, 

and define Dt = <I>t(Do), where Do constitutes some given initial domain. With­
out loss. of generality we may for small t consider only mappings of the form 

<I>t(x) = x + t · w, (4) 

where w=[w1 ,w2 ] is a regular enough vector field on R 2
. This is the essence 

of the speed method, see the review in Sokolowski, Zolesio (1992). Since w is 
given globally, it may be difficult to ensure, that r c remains exactly in place 
and ft is exactly as we want it . Therefore it is advantageous to define w first 
on the boundary, and to extend it on the whole R 2 next. To this goal we have 
proposed (Zochowski, 1992) the method of harmonic transformation. 

Let d= [d1 , d2] defined on r t represents the desired movement of the bound­
ary for t : 0 -+ t 1 . Then we construct the vector field v= [v1 , v2 ] on Do as a 
solution of Laplace equations 

0 in Do, 
0 on re, 
di on ft, i = 1,2. 

(5) 
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Of course we assume continuity of boundary movement, i.e. di = 0 at 8ft. 
Due to the uniform cone condition satisfied by Slo, each component Vi may be 
now extended without loss of regularity (Chenais, 1975) on the whole R 2 . If 
we denote these extensions by wi, the global field w is thus obtained and the 
mapping ( 4) transforms the domain as desired. 

The regularity of the field v requires more detailed specification. Our as­
sumptions concerning domains admit reentrant corners. It means, that vi may 
have at a boundary vertex a singularity of the form r>--, where A = 1/2 + 8, 
8 > 0, (Grisvard, 1985). Therefore for some neighbourhood V of the given 
vertex, 

(6) 

where s = >-+2/p-E, c > 0 and w; is a Sobolev space in standard notation, 
see e.g Grisvard (1985). Since 8 > 0 depends on the measure of the reentrant 
corner, the number of corners is finite and c may be arbitrarily small, we have 
finally, after extension on the whole R 2 , 

w E [W;1 (R2
)]

2
, (7) 

where s1 = 1/2 + 2/p + 81, 81 > 0. 

3. Sensitivity computations 

The solutions of the state equations depend on Slt, i.e. Ut = u(Slt; x). In order to 
characterize this dependence, we make use of the so called material derivative, 
which is defined as 

(8) 

The above equation is understood in the sense of the Sobolev space W}-, that is 
the norm of the difference between u and the difference quotient corresponding 
to the right-hand side tends to 0 as t goes to 0. There exists also another type 
of derivative, namely shape derivative (Sokolowski, Zolesio 1992), which is less 
regular and more difficult to approximate. 

Our main goal consists in the following: given the vector field w in definition 
( 4) of <I>t find J, 

. d 
J = d/(Slt)lt=O· (9) 

Before presenting sensitivity results let us observe that our set of admissible 
domains admit reentrant corners which may coincide with points, where the type 
of boundary conditions changes. Therefore the solutions of elasticity system (1) 
may have singularities similarly as v, also of the type r>--, where A = 1/2 + 8 
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in points having the same types of conditions on both sides, and .A= 1/4 + 8, 
if the type changes (Vasilopoulos, 1988, Zochowski, 1992). Therefore 

(10) 

where s2 = 1/4 + 2/p + 82, 82 > 0. 
If we take the vector field w regular enough (e.g. C2 ), then it turns out 

(Sokolowski, Zolesio 1992, Zochowski, 1992), that the material derivative u has 
the same regularity as u. 

In order to write down the final formulae, additional notation must be in­
troduced. Let 
Dxf - Jacobian matrix of the vector function, 
Vf = diag{Vh, Vh}, 
and 

Q = X 
· [ -D wT 

0 
0 \1000] 

-D wT ] , N = l 0 0 0 1 , 
X 0 1 1 0 

D(w) = (V· w)NT DN + CF NT DN + NT DNQ, 

S(w) = V·w- n·Dxw·n. 

Let now u0 correspond to Do and q 0 be the corresponding adjoint function 
satisfying the system of equations 

AT· D · Aq0 

qo 
BT ·D ·Aq0 

DuF(uo) in Do, 
0 on r6, 
0 on r§, 

(11) 

Then, exploiting the regularity of u in the intermediate steps, we may eliminate 
it from the final formulae and obtain the following theorem, Zochowski (1992): 

THEOREM 1 Given d defined on the variable part of the boundary, the deTivative 
J may be computed as 

J fno [F(uo) ·(V· v) +(V· q0)T · D(v) · Vuo] dD + 
+ fno [(f · qo)(V · v) + (Dxf) · q 0 ] dD+ 

fro [(Dxh · v) · q 0 + S(v)(h · q 0 )] dS+ 
. f 2 )T T + Jro (Dxg · v · B · D · Aq0 dS 

1 

(12) 

wheTe the field v is the solution of (5). The admissible types of functions F 
correspond to fv.nctionals 
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D 

Here lid denotes a given function , lid E [W;2 (R2)F, and CJd = [CJr1 ,CJ~2 ,CJr2 JT E 

[W;2 -
1 (R2)j3, see (10). 

Let us observe, that the smooth field w has been replaced in (12) by v. It is 
a consequence of the fact , that smooth functions are dense in w;1 (Dt) . We may 
therefore take the sequence Wn converging to v and take the limit in formula 
(12). However, it is to be noticed (Zochowski, 1992) , that the convergence in 
w;'-norm is very nearly the weakest possible for the Theorem 1 to hold. If 
the reent rant corners are nearly cracks, there is very little surplus of regularity. 
This indicates, that the expression for j is sensitive to the convergence rate of 
the approximation used in numerical computations. 

4. Approximation of singular problems 

For finding the field v and functions li, q (state variable, adjoint state) we shall 
use finite element method. It is well known (Grisvard, 1985), that in standard 
case one may expect, due to t he limited regularity of the above mentioned 
functions, the convergence rate in L2 (Do): 
- h1/ 2+ for derivatives of v, 
- h114+ for derivatives of li, q. 
This contrasts with full h1 rate in Wi - regular case. Moreover, the convergence 
is spoilt not only in the neighbourhood of singular point, but in the whole 
domain. Since this convergence is quite weak, it is neccessary to improve it in 
order to apply formula (12) with confidence. 

T he standard way of dealing with such problems is to refine locally the 
discretization at t he cost of increasing dimensionality (Grisvard, 1985). For 
changing shapes this has many drawbacks . In Zochowski (1996a) we have pro­
posed another approach. Note similar results derived slightly differently in Ying 
(1995). 

Let us create the star shaped domain encompassing all the triangles having 
the point of singularity as vertex, Fig.l. Next we decompose this domainS into 
similar rings, R0 , R1 , . . . having at Xs the similarity centre. They are related by 
the ratio 0 < r < 1, so that R;+l = r · R; and S = U; R;. 

Let us now assume for simplicity, that each ring has been triangulated and 
linear finite elements on triangles used. Denote the nodal values of li on the 
on ter boundary of R; by li;. Then the elastic energy of the ring may be expressed 
in t he discrete form as 
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s 

Figure 1. Ring- like discretization around singularity 

where the symmetric, semipositive matrix M has the block form 

M_ [ Md1 - MJ'. 
and does not depend on i. In the subsequent derivations we assume homoge­
neous and/ or traction- free conditions on outer parts of the boundary around x 8 

and homogeneous equations, but the method may be generalized on any type 
of discretization, boundary conditions or constant differential operator. 

Now the energy of the whole domainS may be expressed as 

00 

E = L E(ui, ui+l), 
i=O 

what leads, if we take u 0 as given , to the infinite system of equations, written 
in the block form: 

Md M n lll -MT n 
MT n Md Mn ll2 0 

Moo·Uoo = 
MT n Md Mn u3 0 

·Uo,(13) 
M T n 

where Md = Md1 + Md2· 
Infinite systems of linear equations have in general whole family of solu­

tions, but imposing the condition of boundedness on u 00 makes it in our case 
unique. Using the formal series approach (Zochowski, 1996a) one may derive 
t he following procedure. We consider the eigenvalue problem 
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which has 2n roots, where n =dim ui. However, they appear in pairs (Ai, 1/ Ai), 
so we always may take half of them satisfying condition A ::::; 1. Eigenvalues 
equal to 1 must be considered separately: 
- A = 1, with multiplicity 2, and only one eigenvector e 1 = [1, Of, 
-A= 1, with multiplicity 2, and only one eigenvector e2 = [0, 1f, 
see more detailed discussion in Zochowski ( 1996b). For our purpose we shall 
state only that we take two of them with eigenvectors e 1 , e 2 . 

Next we create the matrices 

RA= [rA 1 , ... ,rA,], 

where rA is a right eigenvector corresponding to A: 

· ( MnA 2 + MdA +M:: ) · rA = 0, 

an'd finally the matrix 

Q = RA ·A· R).. 1
. 

The following theorem may be proved, Zochowski (1996a,1996b): 

THEOREM 2 The total elastic energy of the discretized displacement .field over 
the domain S may be expressed as 

1 T 
E = 2 · u 0 · K · u 0 , 

wheTe K = Mdl + Mn · Q. 
0 

(14) 

This theorem allows us to compute the stiffness matrix of the superelement sur­
rounding the singularity, which takes into account the infinite local refinement, 
but does not increase the dimensionality. One may say, that it contains already 
the discrete singular solution. 

As it has been shown in Zochowski (1996a), Ying (1995), such treatment 
of singularities does indeed raise the L 2 convergence rate to h2 , as in case of 
regular problems. 

5 . Implementation 

The methods described above have been implemented as a package in the MAT­
LAB environment. Since Theorem 1 gives a procedure for computing sensitiv­
ities of any integral functionals, they may appear not only as goals, but con­
straints as well. A third functional has been added 

.lv(t) = / dD, 
./ o, 
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Figure 2. Initial shape of the optimized domain. 

and a vector created 

J(t) = [Jv(t), .fu(t), .fo-(t)]. 

Hence the goal functional could be expressed as 

G(t) = eT· J(t), (15) 

and global constraints as (A - 3x3 matrix): 

A· J(t) ::; b. (16) 

The local geometrical constraints have been imposed in the following way: at 
each movable node of the discretized boundary the direction of movement (given 
by a line) has been defined, and on it two limiting points given. Finally, some 
simplification have been made. It was assumed, that g = 0, f = 0 (only bound­
ary load) and the variable part of boundary is unloaded. This reduces the 
formula (12) to 

j = { [F(uo) ·(V· v) +(V· q 0f · D(v) · Vuo] dO. 
.!no 

(17) 

For solving the discrete optimization problems a variant of Pschenichny lin­
earization method has been used. As an ilustration we show here the optimiza­
tion resi1lts for the domain with the initial shape given in Fig.2. The upper edge 
is uniformly loaded by vertical downward force, both left and right edges a re 
clamped. The lower edge and the hole boundary is traction free and simultanou­
osly serve as design parameters, i. e. they are allowed to vary. The geometrical 
constraints are not shown, but they simply allow back and forth movement of 
the boundary points by a common for all points distance in the direction per­
pendicular to the initial edge. We wanted to obtain the most "stiff" structure 
of the given weight, what corresponds to the problem: 

min In(t), (p = 5) 
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subject to 

Figure 3. Optimal, i.e. most . rigid shape. 

< Vo, 
< -Vo, 
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and state equation constraints. After 5- 6 iterations of the optimization process 
we have obtained convergence and 15% improvement in the goal function for the 
shape shown in Fig.3. Experience with many other examples, goal functionals 
and constraints show that the methods work very reliably. 
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