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Abstract: Sensitivity analysis is an important phase of the so­
lution procedure in which an optimal solution of the problem has 
been already found and additional calculations are performed in or­
der to investigate how the optimal solution depends on changes in the 
problem data. The paper describes the main questions of sensitivity 
analysis which are specific for combinatorial optimization problems. 
Most of them are related to the problem of finding so called sta­
bility regions, defined as subsets of data for which some specified 
solution remains optimal. Methods, which can be used to compute 
the stability regions or its subsets, are presented in the context of 
optimality conditions on which they are based. As illustrations of 
various approaches, the sensitivity analysis results obtained for the 
problem of finding the minimum weight base of matroid, the binary 
knapsack problem and the symmetric traveling salesman problem 
are given. 

1. Main problems in sensitivity analysis 

Let S = { e1 , ... , en} be a given set and :F ~ 28 , where 28 is the set of subsets 
of S. For any e E S, c(e) ER, defines a weight of the element e. If X E :F then 

C(X) = L c(e) (1) 
eEX 

is a weight of the set X. 
The (linear) combinatorial optimization problem consists in finding a subset 

X E :F such that C(X) ::; C(Y) for any Y E :F. We will use the following 
standard notation 

(P) C(X 0
) = min C(X). 

XE:F 

1 A preliminary version of this paper wa.s presented on 9th Polish-Italian and 5th Polish­
Finnish Symposium on System Analysis and Decision Support in Economics and Technology, 
Radziejowice, Poland, Oct.25-29, 1993 
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The set X 0 is called an optimal solution of (P). Any element of :F is called 
a feasible solution of the problem (P). A large variety of discrete optimization 
problems can be formulated in the above form. 

In the sensitivity analysis for the problem (P) we assume that the vector of 
weights c = (c(e1 ), ... , c(en))T as well as the family of feasible sets can vary. 
Assume that there is a specified subset C <; Rn of possible vectors c. Similarly, 
assume that the family of feasible sets depends on a parameter v, E U, where U 
is a given set of possible parameters. We will write that :F = :F(v.). Moreover, 
there is a specified set 

p <; C X U, 

which will be called a set of possible problem data. 
Any pair p = (c, v,) E P defines an instance of the problem (P). Denote by 

D(p) the set of optimal solutions of the problem (P) with data p. 
Consider an optimal solution xo of the problem (P) obtained for the data 

Po = (co,u.o). 
The main object investigated in the sensitivity analysis is so called stability 

region of the solution X 0 defined in the following way: 

P(X 0
) ={pEP: X 0 E D(p)}. 

The set P(X 0
) describes all allowed variations of problem data for which 

the solution xo remains optimal. 
Usually, it is very difficult to describe the stability region for a given solution 

of the problem (P). Sometimes it is difficult even to determine such properties 
of P(X 0

) as connectedness or convexity. Frequently we try to describe only 
subsets of the stability region imposing various requirements that some elements 
in problem data be fixed. This is equivalent to defining in an appropriate way 
the set P of possible problem data. Such a sensitivity analysis can be more 
'tractable' from the computational point of view and still useful in practice. 
If we assume for example that U = {u0

} and P = Rn x {u.0 }, then P(X 0
) 

is a polyhedral convex cone (see e.g. Libura, 1977) which in some cases can 
be completely described. In the extreme case we can assume that only one 
coefficient in the problem data can vary, and then the sensitivity analysis consists 
in finding so called tolemnces of this coefficient, i.e., maximum changes of its 
value which do not forfeit the optimality of xo (see e.g. Libura, 1993). 

From the practical point of view the possibility of finding any subset of the 
stability region is of interest, because such a subset describes the problem data 
for which the solution considered is still valid. 

A very convenient type of such a subset is so called stability ball defined as 
a ball with a ccnter in p 0 such that its part belonging toP is fully contained in 
P(X 0

). Unfortunately, in many cases the maximum radius of this ball, called 
the stability mdiv,s of solution xo, is equal to zero. It always happens if the 
optimal solution X 0 is not unique. Various approaches have been considered in 
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this situation. One of them (see Leontev, 1979) consists in defining a stability 
region with respect to the entire set of optimal solutions. Such a region, denoted 
by Pn(p0

), is the set of such data for which no additional solution enters the 
optimal set, i.e., Pn(p0

) = {p E P : O(p) ~ O(p0
)}. The stability ball and the 

stability radius are now defined in a similar way as for the region P(X 0
). In 

this case the stability radius is always positive. 
Another approach consists in introducing so called stability index (see Libura, 

van der Poort, Sierksma, van der Veen, 1995), which is a pair composed of the 
set of elements for which weights must not change to preserve the optimality of 
X 0

, and the stability radius defined for the subset of remaining elements. 
Similar definitions can be introduced when we consider approximate solu­

tions instead of the optimal one. Then, for example, the £-stability region of 
X E :F is defined for E 2 0 as a set of problem data for which C(X) ::=; 
(1 + E)C(Y) for any Y E F. In a similar way the £-stability ball and the 
£-stability radius are introduced . 

The mentioned problems of the sensitivity analysis are closely connected 
to so called parametric analysis. The parametric problem for (P) consists in 
covering the set P of possible problem data by stability regions of solutions of 
(P). Also this problem can be in practice solved only partially for particular 
subsets of P . 

2. Sensitivity analysis and optimality conditions 

All methods used to find stability regions or their subsets can be related to op­
timality conditions on which they are based . This section presents main sources 
of optimality conditions in combinatorial optimization and presents the results 
obtained for some standard discrete optimization problems as illustrations for 
various approaches derived from different optimality conditions. ' 

An ideal situation would be if for a given problem (P) we could find for some 
index set Q a family of functions Jq : :F x C x U --> R , q E Q, such that the 
following condit ions held: 

X 0 is an optimal solution of the problem (P) with data p = (c, u) 
if and only if Jq(X 0 ,c,u) ::=; 0 for q E Q. 

If the above necessary and sufficient conditions hold, then the stability region 
is obviously defined in the following way: 

(2) 

Unfortunately, the situations in which we are able to formulate such a nec­
essary and sufficient optimality conditions are very seldom in combinatorial 
optimization. Nevertheless, we face such a situation for some important prob­
lems, and then a complete sensitivity analysis is possible. The following example 
describes such a case. (Descriptions of examples end with D.) 
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EXAMPLE 2.1 

Let M= (S,I) be a matroid on S (see e.g. Welsh, 1976). Assume that :F s;;; I 
is a family of bases of M, and c( e), e E S, denotes the weight of matroid 
element e. Then (P) becomes the well known and important problem of finding 
a minimum weight base of the matroid M. Specifying in an appropriate way 
the matroid and the weights of its elements we can obtain various combinatorial 
optimization problems (see Lawler, 1976). If for example M is so called cycle 
rnatmid of a given undirected graph G with a set of edges S, and c(e) denotes 
the length of edge e, then (P) becomes a problem of finding the minimum weight 
forest in G. 

For the problem of finding the minimum weight base of matroid we are able 
to formulate necessary and sufficient optimality conditions. These conditions 
are expressed through the family of so called fundamental ciTcv.its or the family 
of j1J.ndam.ental cv.tsets (see Libura, 1991). 

Let C( ej, xo) denote the fundamental circuit in the base xo of the matroid 
M defined by the element ej E S \ X 0 (see e.g. Welsh, 1976), and assume that 
C = R"'. Then the stability region of the minimum weight base X 0 can be 
completely described in the following way: 

0 

2.1. 'Trivial' optimality conditions 

Necessary and sufficient optimality conditions are available rather seldom in 
discrete optimization. Nevertheless, for any optimization problem we can state 
'trivial ' optimality conditions which follow immediately from the definition of 
optimal solution. Using the notation introduced in Section 1, they can be for­
mulated in the following way : 

X 0 E D(p) joT p = (c, v.) , if and only if 
X 0 E :F(v.) (3) 

C(X0
) · ::::; C(X) joT any X E :F(u). (4) 

One should not expect that the above optimality conditions can be directly 
applied to describe the stability region of xo, unless the problem (P) is very 
simple and 'highly structured'. Nevertheless, such conditions can be exploited 
in two manners : 

• they can be simplified in particular situations; 
• they can be used in some qualitative analyses. 

The following examples illustrate both possibilities. 



Optimality conditions and sensitivity analysis for combinatorial optimization problems 1169 

EXAMPLE 2.2 

This example shows how a subset of the stability region can be described by 
reformulating the 'trivial' optimality conditions. 

Consider the binary knapsack problem (see e.g. Garfinkel, Nemhauser, 1972) 

n 

min L eixi 
i=l 
n 

Laixi > ao 
i=l 

/ 

Xi 0 or 1, i = 1, ... , n. 

(5) 

To state (5) as the problem (P) assume that for a given S = { e1 , ... , en} and 
for X<;::; S the vector x = (x 1 , ... ,xn)T E {O,l}n is a characteristic vector of 
X, i.e., xi = 1 if and only if ei EX. Moreover, X E F if and only if aT x 2 a0 , 

where a= (a1 , ... , a,,)T E R+., a0 E R+ . Assume that C = {e0
} and let X

0 

be a characteristic vector of the optimal solution xo of the problem (5) with 
e = e0

. Then, as it was shown in Libura (1977), 

P(X 0
) {e0

} X {(ao, a1, ... , anf E R~+l : 
n 

Laixf > ao (6) 
i=l 

Lai < ao for Q E Q}, (7) 
iEQ 

where Q is a family of maximal subsets Q <;::; {1, ... , n} such that the inequality 
LiEQ ei < L~= l ei.xf holds. 

In the description of P(X 0
) the inequality (6) corresponds to the inequality 

(3), which implies the feasibility of the solution X 0
• The inequalities (7) are 

derived from the conditions (4) . 0 

EXAMPLE 2.3 

This example illustrates the possibility of simple sensitivity analysis based on a 
formula which is derived directly from the 'trivial' optimality conditions. 

Assume that P = Rn x {v.0
} and consider a Chebyshev metric in Rn. Let 

p(X 0
, p0

) denote the so called stability radius of the optimal solution X 0
, defined 

as the maximum radius of the ball with center in p 0 and entirely contained in 
the stability region. 
The 'trivial' optimality conditions lead directly to the following formula (see 
Libura, 1993): 

(8) 
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where lXI denotes cardinality of the set X and C 0 (X) is the weight of X for 
the problem data p0

• 

The formula (8) can hardly be regarded as a1.1 efficient way of calculating the 
stability radius, but it can provide a simple lower bound for this radius. 

Assume for example that we know that the problem (P) has a single optimal 
solution X 0 for the data p0

• (Observe that from (8) it follows immediately that 
if IO(p)l > 1 then p(X0 ,p0

) == 0.) Moreover, assume that all coefficients of the 
vector c0 are rational numbers, i.e., cf. = lf. /m'!., i = {1, ... , n}. Then from (8) 
it is easy to see that p(X0 ,p0

) ;::: 1/(2Mn), where M is the smallest common 
multiple of mf., i = 1, ... , n. 0 

2.2. Sufficient optimality conditions based on simple relaxations and 
restrictions of (P) 

It was mentioned above that the necessary and sufficient optimality conditions 
are very seldom available in combinatorial optimization. On the other hand, 
sometimes we are able to formulate various sufficient optimality conditions. 
These conditions play a very important role in the sensitivity analysis due to 
the fact that they allow to describe some proper subsets of the stability region. 
The most immediate sufficient optimality conditions follow directly from simple 
relaxations and restrictions of the problem (P). 
Let (P) be an original discrete optimization problem 

(P) 

The problem 

(R) 

min C(X). 
XEF(u) 

min C'(X) 
XEF' 

is called a r·elaxation of (P) if the following conditions are satisfied: F( u.) s;;; :F' 
and C' (X) :S: C(X) for all X E F( u.). 
The problem 

(Q) min C"(X) 
XEF" 

is called a restriction of (P) if : :F" s;;; F. ( u) and C" (X) ;::: C (X) for all X E F". 
The following sufficient optimality conditions (see e.g. Geoffrion, Nauss, 

1977) follow directly from the definitions of relaxations and restrictions. 
Sufficient optimality condition based on relaxation of (P): 

If X* is an optimal solution for- the pmblem (R) and X* E F( u.), C(X*) = 
C'(X*), then X* is also an optimal solution of the pmblem (P). 
Sufficient optimality condition based on restriction of (P): 

If X 0 E O(p) is feasible for the problem (Q) and C(X0
) = C"(X 0

), then X 0 

is an optimal solution of ( Q). 
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The crucial point in applying these optimality conditions is an appropriate 
choice of relaxations and restrictions. Namely, the data in modified problems 
(R) and (Q) must be closely connected to the data of the original problem (P). 
Usually this correspondence is quite natural, and one assumes some functional 
dependence between the data of related pairs of problems. If PR is the set of 
possible problem data of the relaxation (R) then we must be able to define a 
mapping r : PR ----> P such that the problem (R) with data q is a relaxation of 
the problem (P) with any data p E r(q) . 

A general scheme of exploiting the optimality conditions based on relaxations 
to construct a subset of the stability region P(X 0

) is the following: 

• We try to find a subset R(X 0
) ~ PR such that: (i) X 0 is optimal in (R) 

with the data belonging to R(X 0
), (ii) xo is feasible in (P) for any data 

obtained as a mapping r(R(X 0
)) and the optimal values of problems (P) 

and (R) are equal; 
• Then, from the optimality conditions based on the relaxation (R), it fol­

lows that the subset r(R(X 0
)) n P is contained in the stability region 

P(X 0
). 

Observe that such a scheme requires that we be able to perform the sensitiv­
ity analysis for the relaxation (R). The main assumption which decides about 
the efficiency of such an approach is that the relaxation can be much simpler 
than the original problem, and that the sensitivity analysis for (R) will be much 
simpler as well. 

The use of particular relaxations in sensitivity analysis will be discussed more 
deeply in Section 2.5. in the context of duality in combinatorial optimization. 

The use of restrictions in the sensitivity analysis consists in direct application 
of the optimality conditions. Now we need an appropriate mapping q: P----> PQ , 
where PQ is the set of data of the problem (Q). The general scheme is as follows: 

• We try to find a subset Q(X 0
) ~ P such that for any p E Q(X 0

) the 
following conditions hold: (i) the problem (Q) with the data q(p) is a 
restriction of (P); (ii) X 0 is a feasible solution of (Q) and the optimal 
value of (Q) is equal to the optimal value of the original problem. 

• Then from the optirnality conditions for restrictions it follows immediately 
that PQ ~ P(X 0

). 

2.3. Optimality conditions based on linear programming description 
of the problem (P) 

This section concerns a relaxation of the problem (P) connected with the linear 
programming description of (P). 

Assume that the family :F of feasible sets is fixed and all data changes concern 
the vector c of weights, i.e., P = C x { v.a}, C = R n. 

The problem (P) can be equivalently stated in the form 
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min cT~(X) (9) 

~(X) E ~(:F). 

where ~ (X) E { 0, 1} n denotes a characteristic vector of X, and ~ (:F) is the set 
of characteristic vectors of elements of the family :F. 
Consider the following relaxation of (9): 

(10) 
X E F 

where F ~ Rn is the convex hull of the set ~(:F). The set F is a polyhedral 
convex set, which follows from the fact that the set S is finite. If we have the 
description of F in the form of the system of linear equations or inequalities, 
then the problem (P) can be solved as a linear programming problem. This fact 
is well known in the combinatorial optimization and is used in various algorithms 
(sec e.g. Schrijver, 1986). Usually the problem of finding a linear programming 
description ofF is a very difficult task. From the point of view of the sensitivity 
analysis it would be enough to have a description ofF only iry·the neighborhood 
of the point ~(X0 ). Namely, let D(X0

) denote the smallest convex cone such 
that F ~ D(X0

) + ~(X0). Then it can be shown (see e.g. Libura, 1977) that 

(11) 

where 

(12) 

The formula (12) is a consequence of optimality conditions known from the 
theory of linear programming. Thus we have: 

xo is an optimal solution of (P) joT a given u = U
0 if and only if 

the vectoT c belongs to the polar- cone of -D(X0
) • 

Also a complete description of the cone D(X0
) is usually too difficult in 

practice. Nevertheless, it is enough to have some cone D with the property 

D(X0
) ~ D 

beeing an approximation of the cone D(X0
). - Observe that then, instead of 

the above necessary and sufficient condition, we have the following sufficient 
optimality condition: 

If c belongs to the polar- cone of - D then X 0 is optimal in the 
pmblern (P). 

As the polar cone of D is contained in the polar-' cone of D(X0
), from this 

condition we obtain the subset of the stability region P(X 0
). 

Some methods of solving the problem (P), belonging to the class of cut­
ting planes methods (see e.g. Garfinkel, Nemhauser , 1972) or branch-and-cut 
methods (see Crowder, Johnson, Padberg, 1983), can generate the cone D in a 
natural way as a 'by-product' of the solution procedure. 
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2.4. Optimality conditions based on k-th best solutions 

Consider the set of all feasible solutions of the problem (P) numbered in such a 
way, that 

(13) 

where s = IFI - 1. 
Given such a sequence we will call k-th element of sequence (13) the k-th best 
solv,tion of the problem (P). Usually we obtain only the single solution X 0

. 

But frequently the algorithm solving the problem (P) can be modified in such 
a way that it generates several consecutive elements of (13). Such a subset 
of solutions can be used in the sensitivity analysis for the solution X 0

. The 
approach is based on an idea presented in Piper, Zoltners (1976). 

Assume that we know first k elements of the sequence (13). Let K = 

{X1 , ... , xk-1 }, and 8 = C(xk- 1)- C(X0
). Moreover, let for c' E C 

z(c') = min{C'(Y): YE F, C(Y) 2 C(X0
) + 8}, (14) 

where C' (Y) is the weight of subset Y for the vector of weights c' . 
Assume that the family of feasible solutions is fixed, i.e., U = { u 0

} . Then 
we have the following sufficient optimality condition (see Libura, 1993; Piper, 
Zoltners, 1976): 

X 0 is an optimal sol1J.tion of the pmblem (P) with the vector­
of weights c' , if C'(X0

) ~ C'(Y) for- any YE K, 
and C'(X0

) ~ z for- some z ~ z(c'). 
The main problem, which must be solved if we want to use the above op­

timality conditions, consists in an appropriate choice of the threshold value z. 
The best choice, leading to the strongest optimality condition, would be ob­
tained for z = z(c') , but this is impractical, because to calculate z(c') is as 
difficult as to solve the original problem (P). On the other hand , the value z 
cannot be too small, because then the assumptions in the optimality conditions 
are not satisfied. Therefore, some tight but computationally inexpensive lower 
bound for the optimal value of the problem (14) is needed. Such bounds can be 
obtained by solving various relaxations of (14). One possible relaxation consists 
in replacing in (14) the condition Y E F by a weaker condition Y E 25 , which 
leads to the following knapsack problem 

min{C'(Y): YE 25 , C(Y) 2 C(X0
) + 8}. 

Observe that the optimality conditions considered give a single point ( c', v.0
) 

in the set P of admissible data. But it is known (see e.g. Libura, 1977), that 
when U = {v.a}, then the projection of the stability region P(X0

) on C = Rn 
is a polyhedral convex cone. Thus, given the set of vectors ci, i E T, for which 
the solution X 0 remains optimal in (P), we obtain a subset Pr <::;; P(X0

), such 
that 

Pr = cone(ci, i ET) x {v.a}, 
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where cone(ci, i ET)= {c ER", c = 'L.iET ).'ici, >...i 2 0 for jET} . 
Given the set JC we can also easily calculate the tolerances of weights for some 

subset of elements of S and give lower bounds for the tolerances of remaining 
elements. 

Let t+ (e) and C (e) denote respectively the upper and the lower tolerance of 
weight c(e) fore E S, i.e., t+(e) is the maximum individual increase and C(e) 
is the maximum individual decrease of the weight c(e) which do not forfeit the 
optimality of X 0

• 

Let JC+(e) ={X E JC: e EX} and JC-(e) ={X E JC: {e} n X= 0}. 
Then for e E X 0

, C(e) = oo 
and 

t+(e) = min{C(X) :X E JC+(e)}- C(X0
) if JC+(e) =f. 0 

t+ (e) 2': 8 otherwise. 
Similarly, fore E S \ xa, t+(e) = oo 
and 

r(e) = min{C(X): X E JC-(e)}- C(X0
) if JC-(e) =f. 0 

r (e) 2 8 otherwise. 
This approach was used in computational experiments for the traveling salesman 
problem in Libura, van der Poort, Sierksma, van der Veen (1995). 

2.5. Optimality conditions based on duality 

Duality plays an important role in the sensitivity analysis in such branches of 
optimization as linear, convex and geometric programming (see Fiacco, 1983; 
Gal, 1979) . Also in combinatorial optimization this role is significant, although 
the situation here is different. The main difference consists in t he fact that 
for a given combinatorial optimization problem one can formulate various dual 
problems and most of them are not 'strong' duals. This means that the optimal 
value of such a dual problem is not equal to this of the primal one. A consequence 
of this fact is that usually duality leads only to sufficient optimality conditions. 

Most of dual problems considered in the combinatorial optimization can be 
obtained using the following simple scheme described in Libura (1984): 

Assume that for a problem (P) we can define a family (Rq, q E Q) of 
relaxations , where 

The parameter q, determining a particular relaxation, plays a role of dual vari­
able . 

The dual problem based on the family (Rq, q E Q) is defined in the following 
way: 

(D) sup v(Rq) , 
qEQ 
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where v(Rq) denotes the optimal value of the problem (Rq)· 
The following examples illustrate various possibilities of choice of the families 

of relaxations and corresponding dual problems. 

EXAMPLE 2.4 

Assume that S ~V x V is the set of edges·of an undirected graph G = (V, S), 
and that the family F in the definition of problem (P) is a family of such a 
subsets X of graph edges, that the subgraph Gx = (V, X) is a Hamiltonian 
cycle in G (see e.g. Lawler, Lenstra, Rinnoy Kan, Shmoys, 1985). Taking the 
vector of weights in (P) equal to the vector of edge lengths in G we obtain the 
well known traveling salesman problem. One possible relaxation of (P) is then so 
called minimum 1-tree problem (see e.g. Lawler, Lenstra, Rinnoy Kan, Shmoys, 
1985), which is obtained when the family of feasible sets in (P) is replaced by 
the family of 1-trees (i.e., a family of such subsets of S, which form exactly one 
cycle in the graph G). A natural parametrization of such a relaxation consists 
in replacing the original length c(e) of the edge e = (i,j), i,j E V, by a new 
length 

cq(i,j) = c(i,j) + q(i) + q(j), (15) 

where q(i), q(j) are the elements of the so called penalty vector q = (q(1), ... , 
q(IVI))T, q E RIVI. Such a modification has been used in various algorithms 
for the traveling salesman problem as well as in the sensitivity analysis for this 
problem, Libura (1991). In the described case, the set Q of dual parameters 
is RIVI, and the dual problem consists in finding a penalty vector q, which 
maximizes the weight of the minimum spanning 1-tree in the graph G with 
modified weights of edges. D 

EXAMPLE 2.5 

Usually we are faced with a primal problem in which the family F has some 
'structure'. An important case is when this family can be defined as an inter­
section of two other families of subsets of S, i.e., 

F=QnX, 

where g, X ~ 28 , and Q is defined through a system of inequalities: 

g ={X~ S: g(x) ~ b} 

for some g : R n -+ R s, b E R s. As before, x denotes the characteristic vector 
of the set X. In practice the family X describes some 'structural ' properties 
of feasible solutions (e.g., requirements that solutions are paths, cycles, covers, 
etc.) end the family g defines additional properties (e.g., limits on the number 
of edges, etc.). 
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The primal problem is then stated as 

(P') ruin C(X) 

g(x) :::: b 

XEX. 

M. LIBUR.A 

Assume that Q = V <:;;; <I>+, where <I>+ is the set of nondecreasing functions 
r.p : R 8 --> R . Consider a family of l-relaxations (see Libura, 1984), where for 
q = r.p, r.p E <I>+, the relaxation (Rq) has the form 

min{C(X)- r.p(g(x)) + r.p(b)} . 
XEX 

The dual problem based on such a family, so called l-dv.al problem, is formulated 
in the following way: 

(Dt) sup min{C(X)- r.p(g(x)) + r.p(b)}. 
<pE V XEX 

In a similar way the s-dual pmblem: 
I 

sup min{C(X): r.p(g(x)):::: r.p(b), X EX} 
<pEV 

is defined. It corresponds to the s-rdaxation, which for r.p E <I>+ has the form: 

min{C(X) : r.p(g(x)):::: r.p(b), X EX}. 

If we take V as a set of nondecreasing affine real functions on R 8
, then we 

obtain the well known and widely used Lagrangean and surrogate relaxations 
of the problem (P') . 

An important dual problem, called f-dual problem (see e.g. T ind , Wolsey, 
1981; Libura, 1984), is obtained with the same framework when as a relaxation 
of (P') the problem 

ruin{ r.p(b) :X EX} 

is used, and the family of dual parameters Q is defined for some V <:;;; <I>+ in the 
following way: 

Q = {r.p E V: r.p(g(X)):::; C(X) for X EX}. 

The £-dual problem has the form 

sup r.p(b) 

r.p(g(x)):::; C(X) for X EX 

r.p EV. D 
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Consider a pair of the primal problem (P') and the dual problem (D), and 
corresponding optimal values v(P) and v(D). An important parameter defined 
for this pair is so called duality gap .6., where 

.6. = v(P)- v(D). 

If .6. = 0, then an optimality condition which can be formulated is, in fact, 
the same as the sufficient optimality condition for simple relaxation stated in 
Section 2.2. By solving the dual problem and obtaining q* , we determine the 
best relaxation (Rq•), which now can be used in the procedure of obtaining a 
subset of the stability region, described in Section 2.2. 

Not always zero duality gap can be achieved for a given family of relaxations. 
It can be shown that one can guarantee zero duality gap with dual pr5blems 
described in Example 2.6, if the set of dual parameters is chosen in a proper way, 
but this leads to very difficult dual problems (see Tind, Wolsey, 1981; Libura, 
1993) . 

If .6. > 0, then the situation is more complicated, because the procedure 
mentioned may not be used directly to determine a subset of the stability region 
P(X0

). In this case similar procedure gives a subset of so called €-stability region 
(~ith E = .6./(v(P)- .6.)). This term is used for a subset of data for which the 
solution xo remains E-optimal. Observe that the value of accuracy E is not 
determined a priori but after the dual problem is solved. 

The f-dual problems allow to formulate optimality conditions for the problem 
(P') which are not only sufficient but also necessary (see Tind, Wolsey, 1981; 
Wolsey, 1981). They have the following form: 

X 0 is an optimal solution of the problem (P') if and only if there 
exists a fv.nction <p0 E <P+ such that the following conditions hold: 

(i) g(x 0
) 2: b 

(ii) X 0 EX 

(iii) <p0 (g(x 0
)) ::=; C(X0

) 

(iv) C(X0
) = cp0 (b). 

The solution of f-dual problem is usually not unique and there are many 
functions satisfying the above conditions for a particular solution X 0

. Given any 
such function from (i) -(iv) we have a description of subset of the stability region 
P(X0

). The main disadvantage of this approach is that the f-dual problem is 
usually very difficult to solve. A possibility of overcoming this problem was 
presented in Wolsey (1981), where it was observed that various algorithms for 
solving the problem (P') can be appropriately modified to produce not only the 
solution of the primal problem but also some solution of the f-dual problem. 

In some cases the dual problem with nonzero duality gap can be also success­
fully used to perform some limited sensitivity analysis for the original problem. 
The approach is similar as in the case .6. = 0 and consists in transferring the 
results of the sensitivity analysis obtained for 'the best' relaxation (Rq•) to the 
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original problem. The following example (see Libura, 1991;1993) illustrates such 
a possibility. 

EXAMPLE 2.6 

Consider again the symmetric traveling salesman problem in G = (V, S) and 
its dual problem based on a 1-tree relaxation (see Example 4) . Let q* be the 
optimal solution of the dual problem and T be the minimum spanning 1-tree 
in the graph modified according to (15) with q = q*. Denote by Cq• (X0

) the 
length of the optimal Hamiltonian tour in a modified graph. Similarly, Cq• (T) 
is the value of the minimum 1-tree in this graph, and D..= Cq• (X0

)- Cq• (T). 
Let t+ (e) and r (e) denote the tolerances of the length of edge e E S with re­

spect the optimal Hamiltonian tour xo. Denote by t+ ( e, q*, T) and r ( e, q*, T) 
similarly defined tolerances of length of edge e with respect to the optimal1-tree 
T in the graph modified with the penalty vector q*. Then (see Libura, 1991) 
for e E xo n T we have 

t+(e) 2 t+(e,q* ,T)- D.. 

and fore E (S \ X 0
) n (S \ T 0

) we have 

C(e) 2 C(e ,q*,T)- D... 

Observe that t+(e) = oo fore E S \ X 0
, and r(e) = oo fore E X 0

. For 
remaining tolerances we have only obvious nonnegativity conditions. 

The problem of calculating tolerances t+ ( e, q*, T) and r ( e, q*, T) is rela­
tively easy in comparison with calculating the tolerances t+ (e), t- (e), so in this 
case the sensitivity analysis for relaxation provides a computationally inexpen­
sive lower bounds for tolerances of the original problem. The role of the dual 
problem here is that it leads to the smallest value of D.. and in a consequence, 
the best quality of these bounds. 

The tolerances of edges describe only the maximum individual changes of 
edge lengths. But in the case of the minimum 1-tree problem (and more general­
ly, in the case of the problem of finding the minimum weight base of matroid) 
it can be proved (see Libura, 1993) that the lengths of all edges belonging 
to T can be simultaneously increased within their upper tolerances without 
forfeiting the optimality ofT. Alternatively, the lengths of all edges in S \ T can 
be simultaneously decreased within their lower tolerances. This property can be 
transferred to some extent to the primal problem and as it was shown in Libura 
(1993), the tolerances t+(e, q*, T), r (e, q*, T) can be used to describe partially 
simultaneous changes of lengths in the original traveling salesman problem. D 

3. Final remarks 

This paper describes general sources of optimality conditions in discrete opti­
mization in the context of sensitivity analysis. It seems rather unlikely to expect 
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a significant progress in developing general methods yielding to these conditions. 
On the other hand, it seems reasonable to investigate optimality conditions for 
particular problems and exploit their structure. Another promising area of in­
vestigations is connected to the question as to what kind of optimality conditions 
are generated in the process of solving the problem with a particular algorithm. 
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