
Control and Cybernetics

vol. 25 (1996) No. 6

Multistage control under fuzziness
using genetic algorithms

by

Janusz Kacprzyk
Systems Research Institute, Polish Academy of Sciences,

01-447 Warszawa, Newelska 6, Poland
E-mail: kacprzyk@i bspan. waw. pl

Abstract: We consider the classic Bellman and Zadeh's (1970)
multistage control problem under fuzzy constraints imposed on con
trols applied and fuzzy goals imposed on states attained. The fuzzy
decision, serving the purpose of a performance function, is the inter
section of the fuzzy constraints and goals. An optimal sequence of
controls is sought which maximizes the fuzzy decision over a fixed
and specified planning horizon. The basic cases of deterministic
and fuzzy systems under control are discussed. The use of a ge
netic algorithm is shown to be a viable alternative to the tradi
tionally employed solution techniques: Bellman and Zadeh's (1970)
dynamic programming, augmented with Kacprzyk's (1993a- c) in
terpolative reasoning, Kacprzyk's (1978a, 1979) branch-and-bound,
and Francelin and Gomide's (1992, 1993) and Francelin, Gomide and
Kacprzyk's (1995) neural-network-based approach.

Keywords: fuzzy control, multistage fuzzy control, fuzzy dy- -'
namic programming, branch-and-bound, neural network, genetic al
gorithm.

1. Introduction

In recent years we witness an unprecedented interest in fuzzy (logic) control,
which is triggered and amplified by successful applications in both specialized
areas (e.g., control of technological processes, cranes, elevators) and everyday
products (e.g., washing machines , refrigerators, cameras).

Fuzzy (logic) control was introduced by Mamdani (1974), and its essence
(even including newer approaches as, e.g., neuro-fuzzy control) may be summa
rized as follows:

• the model of the process under control is unknown or too expensive to
derive, and we "do not care" about it;

• an experienced process operator knows how to well control the process,
and this knowledge may be expresses by some linguistic IF- THEN rules,

1182 J. KACPRZYK

D.-----.
uo
_:______.,

System

u,
---=--.

System System
under control

s
under control under control

xo s x, s 2 ______.

t= 0

D
G'
t= I

D
GN-1

t=N -1

Figure 1. A general framework of the prescriptive, model-based approach to
multistage fuzzy control

• the operator is, however, not sure what his or her performance function
is, and if controls are the "best" (optimal).

Notice that this is clearly a descriptive, non-model-based approach.
The above may be viewed as contradicting the traditional control paradigm

which may be outlined as follows:
• a (fuzzy, in general) model of the system under control is known,
• an explicit performance function is known,
• best (optimal) controls are sought (by an algorithm).
Notice that this is clearly a prescriptive, model-based appmach.
Fortunately enough , such a prescriptive, model-based approach can also be

devised for fuzzy control. In fact , it is even earlier as its roots are seminal
Chang's (1969a, b) and Bellman and Zadeh's (1970) papers. For details we
refer the interested reader to Kacprzyk's (1983a, 1997) books.

Basically, the general control framework adopted in those works , and also in
this article, may be depicted as in Figure 1.

We start from an initial state at control stage (time) t = 0, x0 , apply a
control at t = 0, u0 , attain a state at time t = 1, x 1 , apply v.1 , Finally,
being at control stage t = N -1 in state XN-l we apply control v .N-l and attain
the final state x N.

The dynamics of the system under control, S, is assumed known and given by
state transitions from state Xt to Xt+l under control Ut, the consecutive controls
applied Ut arc subjected to fuzzy constraints et, and on the states attained Xt+l

fuzzy goals Gt+ 1 are imposed, t = 0, 1, . .. , N - 1.
The performance (goodness) of the control process is gauged by some (ag

gregation) measure of how well , at all the consecutive control stages, the fuzzy
constraints on controls and fuzzy goals on states are satisfied. And an optimal
sequence of controls at the consecutive control stages, v.0, . .. , u]V _ 1 , is sought
(to be determined by an algorithm).

Notice t hat in this framework we proceed in a sequential manner, at discrete

Multistage control under fuzziness using genetic algorithms 1183

control stages, and hence the problem conside'red is termed multistage fuzzy
control.

It can be seen that the above general scheme of a prescriptive approach to
multistage fuzzy control may be viewed to give rise to the following general
pmblem classes, for the following types of the termination time and system
under control:

• type of termination time:

1. fixed and specified in advance,

2. explicitly specified (as the moment of entering for the first time a
termination set of states),

3. fuzzy, and

4. infinite;

• type of system under contml:

1. deterministic,

2. stochastic, and

3. fuzzy.

For the solution of the above problem classes, a variety of techniques has
been proposed, mostly of dynamic programming and branch-and-bound type,
see Kacprzyk (1997).

In this paper we will consider the basic case of a fixed and specified termi
nation time, and the deterministic and fuzzy systems under control. We will
indicate conceptual and numerical difficulties in the use ofthe above mentioned
traditional solution techniques, and propose the use of a genetic algorithm which
is conceptually simple, and proves to be numerically efficient.

In Section 2 we will briefly present Bellman and Zadeh's (1970) general ap
proach to decision making under fuzziness which will be employed as a frame
work. In Section 3 we will outline how to use Bellman and Zadeh's (1970)
approach to formulate multistage fuzzy control problems. In Section 4 we will
first consider multistage fuzzy control with a deterministic system, and then
show how a genetic algorithm can be employed for solution. In Section 5 we.
will first consider multistage fuzzy control with a fuzzy system, and then show
how a genetic algorithm can be employed for solution. In Section 6 we provide
some concluding remarks, and then an extensive list of literature.

Our fuzzy-sets-related notation will be standard. A fuzzy set A in X = { x}
will be characterized (and practically equated with its membership function
!LA :X---> [0, 1] such that fLA(x) E [0, 1] is the grade of membership of element
.T E X in fuzzy set A. The operations on fuzzy sets will be assumed standard,
in particular the intersection of A and B in X will be defined as fL AnB (x) =

/LA(x) /\ flB(x) = min[ILA(x), /LB(x)], for each x EX. Moreover, the use of other
operations, notably t-norms, will be mentioned. Details on these and other
related aspects can be found in any book on fuzzy sets theory such as Klir and

1184 J. KACPRZYK

Yuan (1995). However, an initial chapter on fuzzy sets theory in Kacprzyk's
(1997) book may better serve this purpose as discussions are there tailored to
the specifics of multistage fuzzy control.

2. Multistage fuzzy control in Bellman and Zadeh's setting

In this section we will provide the reader with a brief introduction to Bellman
and Zadeh's (1970) general approach to decision making under fuzziness, orig
inally termed decision making in a fu,zzy environment, a simple yet extremely
powerful framework within which virtually all fuzzy models related to decision
making, optimization and (optimal) control have been dealt with. This frame
work will also be employed in our next discussions.

2.1. Decision making in a fuzzy environment in Bellman and Zadeh's
setting

In Bellman and Zadeh'::; (1970) setting the imprecision (fuzziness) of the envi
ronment within which decision making (or control) proceeds is modeled by the
so-called fuzzy environment which consists of fuzzy goals, fuzzy constraints, and
a fuzzy decision.

We start with the assumption of some set of possible (feasible, relevant, ...)•
options (alternatives, variants, choices, decisions, . ..) denoted by X= {x}.

The fv.zzy goal is now defined as a fuzzy set G in the set of options X ,
characterized by its membership function /.LG :X ----+ [0, 1] such that f.Lc(x) E
[0, 1] specifies the grade of membership of a particular option :r E X in the fuzzy
goal G.

The fuzzy constraint is similarly defined as a fuzzy set C in the set of options
X, characterized by its membership function f.LC: X----+ [0, 1] such that f.Lc(x) E
[0, 1] specifies the grade of membership of a particular option x EX in the fuzzy
constraint C .

For example, suppose that X = R, the set of real numbers. Then the fuzzy
&oal ".7: should be much larger than 5" may be represented by a fuzzy set whose
membership function, f.Lc(.'E), is shown in Figure 2. On the other hand, the
fuzzy constraint "x should be more or less 6" may be represented by a fuzzy set
whose membership function, f.Lc(x), is also shown in Figure 2.

An important issue is how the fuzzy goal and fuzzy constraint are to be
interpreted. On the one hand, if we suppose that f : X ----+ R is a conventional
performance (objective) function which associates with each x EX a real num
ber f(x) E R, and if we denote M = maxxEX f(.'E), assuming M :<::; oo, then
/.LG (x) can be defined as a normalized performance function f, i.e.

f.Lc(x) = f(x) = f(x) ,
M maxxEX f(x)

for each x EX (1)

Multistage control under fuzziness using genetic algorithms

J..Lc(x) J..lG (x)
1

J..lD(x)

J..lc (x)

D
············ ·································r-· -----,.

J..lG (x)

D

1 2 3 4 5 6 7 8 9 10 11 X

* X

1185

Figure 2. Fuzzy goal, fuzzy constraint, fuzzy decision, and the optimal (maxi
mizing) decision

On the other hand, a fuzzy goal may be viewed from a different perspective,
which is presumably more convenient for our discussions, in terms of satisfaction
levels. The piecewise linear membership function of G in Figure 2 should be
understood as: if the value of x attained is at least xc (equal 8), which is the
satisfaction level of ::r:, then J.Lc(x) = 1 which means that we are fully satisfied
with x. If the x attained does not exceed ::fc (= 5), which is the lowest possible
value of x, then J.Lc (x) = 0 which means that we are fully dissatisfied with such
a value of x . For the intermediate values, ::fc < x < xc , we have 0 < J.Lc(x) < 1
which means that our satisfaction as to a particular value of x is intermediate.
The meaning of C is analogous. The above interpretation provides a "common
denominator" for the fuzzy goal and fuzzy constraint which may be treated in an
analogous way which is one of merits of Bellman and Zadeh's (1970) approach.

Now the following general formulation of the decision making problem in a
fuzzy environment may be postulated:

"Attain G and satisfy C" (2)

The fuzziness of the fuzzy goal and fuzzy constraint implies the fuzziness of
the outcome (decision), which is called a fuzzy decision, and is a result of some
aggregation of the fuzzy goal and fuzzy constraint which is equivalent to the
intersection of two fuzzy sets that corresponds to the "and" connective.

Formally, if G is a fuzzy goal and C is a fuzzy constraint , both defined as
fuzzy sets in X = { x}, the fuzzy decision D is a fuzzy set defined also in X such
that

f..LD(.T) = J.Lc(x) 1\ J.Lc(x), for each x EX (3)

where "A" is the minimum operation, i.e. a 1\ b = min(a, b).

1186 J. KACPRZYK

Example 1 Suppose that G is "x should be much larger than 5", and C is "x
should be more or less 6" , as in Figure 2. The membership function of fuzzy
decision is given in bold line, and should be interpreted as follows. The set of
possible options is the interval [5, 10] because f..Ln(x) > 0, for 5 ::=; x ::=; 10. The
other options, i.e. x < 5 and x > 10 are impossible since f..Ln(.T) = 0. The value
of f..Ln(x) E [0, 1] may be meant as the degree of satisfaction from the choice of
a particular x E X, from 0 for full dissatisfaction (impossibility of x) to 1 for
full satisfaction, through all intermediate values; thus, the higher the value of
JJ.n(x), the higher the satisfaction from .T. D

Note that in Figure 2, f..Ln(.T) < 1 which means that there is no option which
fully satisfies both the fuzzy goal and fuzzy constraint. In other words, there is
a discrepancy or conflict between the goal and constraint.

The fuzzy decision provides a fuzzy solution to the decision making problem
(2). In practice, however, if we wish to implement such a solution, we need to
find a nonfuzzy solution. A straightforward choice is here the one corresponding
to the highest value of f..Ln(x).

The maximizing decision is defined as an x* E X such that

(4)

and an example may be found in Figure 2 where x* = 7.5.
The fuzzy decision (3), the so-called min- type fuzzy decison, is the most

widely used , but one can use other aggregation operators, notably t-norms;
details can be found in Kacprzyk's (1997) book. In the following we will employ
the min- typc fuzzy decision only, tacitly assuming that our discussions will be
extendable (in most cases) to other types of fuzzy decision.

The case of one fuzzy goal and fuzzy constraint is very illustrative, but in all
nontrivial practical problems we face multiple fuzzy goals and fuzzy constraints.

Suppose that we have n > 1 fuzzy goals, G 1 , ... , Gn, and m > 1 fuzzy
constraints, C1 , ... , Cm, all defined in X.

The fuzzy decision can be defined analogously as in the case of one fuzzy
goal and one fuzzy constraint, that is

f..Ln(x) =f..Lc1 (x)/\ ... f..Lcn(x)/\

/\f..Lc1 (x) 1\ ... 1\ f..LC, (x), for each x EX

The maximizing decision x* E X is found as in (4) , i .e.

(5)

Our discussion of the Bellman and Zadeh's (1970) approach has concerned so
far the fuzzy goals and fuzzy constraints defined in the same space X. However,
for the issues considered here, and for virtually all applications in general, an
extension of the approach is needed to cover the case of fuzzy goals and fuzzy
constraints defined as fuzzy sets in different spaces.

Multistage control under fuzziness using genetic a lgorithms 1187

Suppose that the fuzzy constraint C is defined as a fuzzy set in X = { x },
and the fuzzy goal G is defined as a fuzzy set in Y = {y}. Moreover, suppose
that a function f : X ______, Y, y = f(x), is known. Typically, X and Y may be
sets of options and outcomes, causes and effects, etc.

The ind11,ced j11.zzy goal G' in X generated by the given fuzzy goal G in Y is
defined as

P.c'(x) = p.c[f(x)], for each x EX (6)

Example 2 Let X= {1, 2, 3, 4}, Y = {2, 3, ... , 10}, and y = 2x + 1. If now

G = 0.1/2 + 0.2/3 + 0.4/4 + 0.5/5 + 0.6/6 + 0.7/7 + 0.8/8 + 1/9 + 1/10

then

G' = p.c(3)/1 + p.c(5)/2 + p.c(7)/7 = 0.2/1 + 0.5/2 + 0.7/3 + 1/4

D

The fnzzy decision is now defined analogously, i.e. as

p,D(x) = fJ.G'(x) 1\ p.c(x), for each x EX (7)

Finally, for n > 1 fuzzy goals G1 , ... , Gn defined in Y, m > 1 fuzzy con
straints C1 , ... , Cm defined in X, and a function f : X ______, Y, y = f(x), we
have

/£-v (X) = !J,G~ (X) 1\ 00

' 1\ fJ,G;, (X)

1\ fJ.C 1 (x) 1\ 00 ·I\ P.c"(x), for each x EX (8)

In all the types of fuzzy decision, an optimal decision is assumed, analogously
as in the case of one fuzzy goal and one fuzzy constraint , to be the max·imizing
decision defined as (4), i.e. JJ.D(x*) = maxxEX JJ.D(x).

We are now in a position to proceed to the formulation of multistage fuzzy
control problems in Bellman and Zadeh's (1970) setting presented in this section.

3. Multistage fuzzy control in Bellman and Zadeh's set-
ting

Now, we will apply the general Bellman and Zadeh's (1970) approach presented
in Section 2 to formulate multistage fuzzy control problems. Decisions will be
referred to as contTOls, the discrete time moments at which decisions are to be
made - as control stages, and the input- output (or cause- effect) relationship
as a system nnder· contr-ol.

We will start with the basic, simpler case of a deterministic system under
control, and then proceed to the case of a fuzzy system.

1188 J. KACPRZYK

Suppose that the control space is U = { v.} = { c1 , .. . , cm} and the state
space is X = { x} = { s1 , .. . , sn}, and both are assumed finite. For simplicity,
the control is equated with the input, and the state with the output.

The contr-ol pmcess proceeds basically as it has already been depicted in
Figure 1. In the beginning we are in an initial state x0 E X . We apply a
control v.0 E U which is subjected to a fuzzy constraint flea (u0). We attain
a state x1 E X via a known input- output (cause- effect) relationship, i.e. a
state transition equation of the system under control S; a fuzzy goal flGl (x1)

is imposed on x1 . Next, we apply a control u1 which is subjected to a fuzzy
constraint fle1(u1), and attain a fuzzy state Xz on which a fuzzy goal flG2(x 2)

is imposed, etc.
The states and state transition equations (i .e. the system under control)

can be deterministic, stochastic and fuzzy. In this paper we assume the basic
cases of a deterministic and fuzzy systems under control. The formulation and
analysis of the control process for each of them is different , and will now be
consecutively discussed.

3.1. The case of a deterministic system under control
.,

Suppose that the system under control is deterministic and its temporal evolu
tion is governed by a state tr-ansition eqv.ation

t = 0, 1,' .. (9)

where Xt, Xt+l E X = { s 1 , . .. , Sn} are the states at control stages t and t + 1,
respectively, and Ut E U = { c1 , ... , cm} is the control at control stage t .

At each control stage t, t = 0, 1, ... , the control applied Ut E U is subjected
to a fv.zzy constmint fle'(v.t), and on the state attained Xt+l EX a fv.zzy goal
is imposed .

The initial state is x0 E X and is assumed to be known, and given in advance.
The t'ermination time (planning, or control, horizon), i.e . the maximum number
of control stages, is denoted by NE {1, 2, .. . }, and is assumed to be fixed and
specified in advance throughout this paper.

The perfonnance (goodness) of the multistage fuzzy control process is eval
uated by the fuzzy decision

flD(ua, ... ,v.N-ll xo) =

flea (V.o) /\ flGl (xi) /\ · · · (\ JLeN -1 ('IJ,N-1) (\ flGN (.'EN) (10)

In most cases, however, a slightly simplified form of the fuzzy decision is
used by assuming that all the subsequent fuzzy controls, uo , u1, .. . , V·N-l, are
subjected to the fuzzy constraints, flea(v.o),flel(v.l), . .. ,fleN-l(v.N-l), while
the fuzzy goal is just imposed on the final state XN, flGN(xN)· In such a case
the fuzzy decision becomes

Multistage control under fuzziness using genetic algorithms 1189

We will basically assume such a simplified form of the fuzzy decision in the
following, but this will not limit the generality of discussion.

The multistage control problem in a fuzzy environment is now formulated as
to find an optimal sequence of controls v0, .. . , v.jy _1 , u; E U, t = 0, 1, ... , N -1,
such that .

J-lD(v.0, ... ,vjy_1 fxo)= max J-lD(ua, ... ,vN-1Ixo)
UQ, ... ,'UN-lEU

(12)

This problem can be solved using the following two basic traditional tech
niques:

• dynamic prog.ramming, and
• branch-and-bound,

and also using the following two new ones:
• a neural network, and
• a genetic algorithm.
In this section we will outline the use of the three first techniques, and it

will be obvious that they suffer from numerical problems (the infamous curse of
dimensionality) caused by a combinatorial character of the problem considered.

In Section 4 we will present the solution by using a genetic algorithm.

' 3.1.1. Solution by dynamic programming

The application of .dynamic programming for the solution of problem (12) was
proposed in the seminal paper of Bellman and Zadeh (1970).

First, let us slightly rewrite (12) as to find u0, ... , vjy _1 such that

J-lD(v.0, ... , v,N - 1 I .To) = max [J-lco (vo) 1\ ...
ua, ... ,uN-1

(13)

Clearly, its structure makes the application of dynamic programming possi
ble. Namely, the last two right-hand-side terms, i.e.

depend only on control VN-1 and not on any previous controls, and hence the
maximization over u 0 , ... , v,N_ 1 in (13) can be divided into:

• maximization over v.0 , ... , VN-2, and
• maximization over VN-1,

that is

J-lD(v.0, .. ·, v'N-1 I xo) =

max {J-lco(vo) 1\ ... I\ J-lcN-2(VN-2) 1\
uo, .. . ,uN-2

(14)

1190 J . KACPRZYK

And further, continuing the same line of reasoning, for uN_2, v,N_3, etc. we
arrive at the following set of dynamic programming recurrence equations:

{
flcN ~i (x!::_i) = maxu.N_JflcN-i(~-i) A flcN-i+ l (XN-i+l)] (15)
XN-1.+1- f(xN_,, v,N_,), ~- 0, 1, ... , N

where flcN -i(XN-i)· may be regarded as a fuzzy goal at control stage t = N - i
induced by the fuzzy goal at t = N- i + 1, i = 0, 1, . .. , N.

The optimal sequence of control sought, u0, ... , ujV_ 1, is given by the succes
sive maximizing values of v.N-i, i = 1, ... , N in (15). Each such a maximizing
value, v.jV_i is obviously obtained as a function of XN-i, i.e. a policy.

Example 3 Suppose that X= {81,82,83}, U = {c1, c2 }, N = 2, and fuzzy
constraints and fuzzy goal are

C0 = 0. 7 I Cl + 1 I C2

C 1 = 11c1 + 0.8lc2
C2 = o.31 81 + 1182 + o.s183

and the state transition equation (9) is given as

Xt+ l = (16)

First, using (15) fori= 1, we obtain C 1 = 0.6181 +0.8182 +0.6183, and the
corresponding optimal control policy

ai(sl) = c2 ai(82) = c1 ai(83) = c2

Next, (15), fori= 2, yields G0 = 0.8181 + 0.6ls2 + 0.6183 and the corre
sponding optimal control policy

Therefore, for instance, if we start at t = 0 from .To = 81, then v.0 =
a0(sl) = c2 and we obtain x1 = 82. Next, at t = 1, ui = ai(82) = c1 and
fLD(u0,v.i I si)= fi.D(c2,c1 I 81) = 0.8. D

3.1.2. Solution by branch-and-bound

As an alternative to dynamic programming for solving problem (12), a branch
and-bound approach was proposed by Kacprzyk (1978a).

The branch-and-bound procedure starts from the initial state x 0 . We apply
control u 0 and proceed to state x1. Next, we apply u1 and proceed to x2, etc.
Finally, being in XN-l, we apply V·N-l and attain XN.

This may be represented as a decison tree whose nodes are associated with
the particular states obtained, and whose edges represent the controls applied.

Multistage control under fuzziness using genetic algorithms 1191

To each path there corresponds some value of the fuzzy decision (11) [or (10)],
and the problem is to find the one with the highest value.

The branch-and-bound procedure is basically an implicit enumeration scheme
(equivalent to the traversing of a possibly small number of paths in the decison
tree) the very essence of which boils down to the answering of the following
question:

If we currently (at the current control stage) arrive at some node
(state) , then to which node (out of those traversed so far) should we
most rationally (to proceed further along the currently most promis
ing path) add next edges (controls)?

To present the idea of Kacprzyk's (1978a) approach, let us first denote

VN _ 1 = J.Lco (Uo) 1\ .. . 1\ J.lCN-1 (UN-1) = VN-2 1\ f.LCN-1 (UN-1)
VN = J.Lco(uo) 1\ . .. 1\ J.lCN - 1 (UN -1) 1\ j.LQN (XN) =

= vN_ 1 1\ J.LaN(xN) = J.LD(u0, ... ,v·N- 1 I xo)

(17)

The use of "/\" (minimum) implies that if we consider some sequence of
controls u 0 , ... , v.k, 0 < k < N- 1, then, for each k < w ::; N- 1:

(18)

because, due to "/\", by "adding" to vk any further terms we cannot increase
the value of Vw.

In particular, there also holds

(19)

Now, if we are at the k-th control stage, and have traversed so far some
nodes and edges (from xo to Xk), the most promising current choice is to choose
the most promising node, i.e. the one which corresponds to the greatest value of
vi attained so far, i- 1, . .. , k. The other nodes cannot lead (at that particular
moment!) to any optimal solution since they cannot obviously yield any higher
value of vi if we add next edges.

The above property of the min-type fuzzy decision makes it possible to devise
a branch-and-bound algorithm in which the branching is through the controls
applied at the consecutive control stages, and the bounding is via the values of
the particular vk 's, k = 0, ... , N. For details, we refer the interested reader to
Kacprzyk's (1983a, 1997) books.

Evidently, by solving Example 3 we obtain the same results as for dynamic
programming.

1192 J. KACPRZYK

3.1.3. Solution by an artificial neural network

This nonconventional solution techniques for solving problem (12) was proposed
by Francelin and Gomide (1992, 1993), and Francelin, Gomide and Kacprzyk
(1995).

Basically, we start with the dynamic programming formulation for solving
problem (12) presented in Section 3.1.1.

First, we rewrite the dynamic programming recurrence equations (15) as

JlcN-i (XN-i) =

= max [JlcN - i (UN-i) 1\ JlGN-i (XN-i) 1\ Jl(JN-i+l (XN-i+l)l
UN-i~------------------~-------------------'

minimization at t = N - i (20)

maximization at t = N - i
XN-i+l = j(XN-i, UN- i); i = 0, 1, ... 'N

So, proceeding backwards from the final (t = N) to the initial (t = 0) control
stage, at each particular control stage we perform two phases:

• minimization, and
• maximization

as schematically shown in (20).
Such a flow of computation "minimization at t = N- 1, maximization at

t = N - 1, minimization at t = N - 2, maximization at t = N - 2, ... ,
minimization at t = 0, maximization at t = 0" may be modeled by a special
neural network.

First, note that it cannot be a traditional neural network since we have here
some "non-traditional" operations: the minimum "/\" and the maximization.
We need some special types of neurons which may implement these two opera
tions. Luckily enough, such neurons may be obtained as special cases of some
generalized recurrent neurons proposed by Rocha (1993).

Francelin and Gomide's (1992, 1993) neural network for solving fuzzy dy
namic programming problems is composed of alternate layers of min-type and
max-type neurons [corresponding to the minimization and maximization phases
indicated in (20)] of the type defined above.

The network's weights are not derived by training in usual manner, i.e. by
feeding the network with examples, but are somehow designed, or even predeter
mined by the description of the problem (state transitions, fuzzy constraints and
goals, etc.). So, from some points of view it may regarded as not a "real" neural
network. However, on the other hand, it has a clear neural network topology,
and - what is crucial for our purposes - it exhibits an inherent parallelism in
its operation.

It is proved (Francelin and Gomide, 1992, 1993; Francelin, Gomide and
Kacprzyk, 1995) that the above method yields the same results as dynamic
programming presented in Section 3.l.i.

Multistage control under fuzziness using genetic algor ithms 1193

A detailed description of this approach is beyond the scope of our discussion,
and the interested reader is referred to the source work of Francelin and Gomide
(1992, 1993), or - even better - to Kacprzyk's (1997) book.

3.2. The case of a fuzzy system under control

In this section we will consider the case of a fuzzy system under control whose
dynamics is given as a state transition equation

t = 0, 1, ... (21)

where Xt, Xt+1 E X are fuzzy states at control stage t and t + 1, respectively,
and Ut E U is a fuzzy control at control stage t, t = 0, 1, ... ; U = { C1 , ... , C1}

is the set of fuzzy controls, and X = { S1, ... , Sq} is the set of fuzzy states.
The state transition equation (21) may be equated with a conditioned fuzzy

set whose membership function is fJ.x,+ 1 (xt+l I Xt, Ut), and then the state tran
sitions are governed by (Kacprzyk, 1997):

fl.x,+1 (xt+l) =

for each Xt+l E X (22)

Notice also the the above general form of a state transition relation can be
represented in various forms exemplified by a state transition equation itself,
IF- THEN rules, a neural network, etc. This wiH not be considered here and
we will refer the interested reader to Kacprzyk (1997). Moreover, we will not
discuss the relevant problem of identification of fuzzy systems under control
see, Cao and Rees (1992), Czogala and Pedrycz (1981, 1984), Kacprzyk (1997),
Pedrycz (1993, 1996), Sugeno and Yasukawa (1993), etc.].

First, it should be noted that in case of the deterministic system under
control, the consecutive controls , applied, v.0 , ... ,v.N-l E U, and the states
attained, x 1 , ... , XN E X, were nonfuzzy, hence we could directly determine
their grade of membership in the fuzzy constraints, fJ.co (no), ... , fJ.cN-1 (v,N_I),
and in the fuzzy goals, fl.Gl (x1), ... , fl.GN (xN), respectively (see Section 2).

In the case of a fuzzy system the control applied and states attained are fuzzy,
and their grade of membership in the fuzzy constraints and in the fuzzy goal
cannot be directly determined, and some manipulation ("trickery") is needed
which will be employed below.

Suppose that at each t, Ut E U is subjected to a fuzzy constraint fi.C' (ut), and
on the resulting Xt+l E X a fuzzy goal fJ.c<+l (xt+l) is imposed, t = 0, 1, ... , N-
1. To account for the fuzziness ~f the controls and states, some redefinitiob of
the fuzzy constraints and fuzzy goals is needed, for instance as follows:

t = 0, 1, . . . , N- 1 (23)

and

t = 0, 1, . . . , N- 1 (24)

1194 J. KACPRZYK

where diss: [0, 1] x [0, 1] _____.. [0, 1] is some measure of dissemblance.
Traditionally, this measure is assumed to be a normalized distance between

fuzzy sets, d : X x X _____.. [0, 1], so that (23) becomes

t = 0, 1, ... , N- 1 (25)

which will obviously serve the purpose of measuring the closeness (similarity)
of Ut's and et's, and may be used instead of J.Lce(v.t)'s in the control problem
formulation.

And similarly for the fuzzy goals: employing the same line of reasoning, we
obtain

t = 0, 1, ... , N- 1

For the normalized distances, we usually employ:
• the normalized linear (Hamming) distance

1 N

dl(XN, GN) = N L I J.LxN(si)- J.LcN(si) I
i=1

• the normalized quadratic (Euclidean) distance

(26)

(27)

1 N
dq(XN, eN)= N L[J.LxN(si)- J.Lc N(si)]2 (28)

i=1

As to other choices, a degree of equality of two fuzzy sets proposed by
Kacprzyk and Staniewski (1982) is also a plausible choice.

We may also use other indices or measures of (dis)similiarity, and one of
them - Kaufmann and Gupta's (1985) dissimilarity index - will be discussed in
Section 5.

Then, generally, the fuzzy decision is

f..LD(Uo , .. . , UN-1 I Xo) =
= f..L(f (Uo) 1\ f..Lc? (X1) 1\ ... 1\ J.L0 N- t (U N-1) 1\ f..LcN (XN) (29)

and we seek an optimal sequence of fuzzy controls U0, ... , UJv_ 1 such that

f..LD(U0, ... , UJv_ 1 I Xo) = max f..LD(Uo , .. . , UN-1 I Xo)
Uo, ... ,UN-1

(30)

One can clearly readily obtain a simpler formulation with fuzzy constraints
on all intermediate stages and a fuzzy goals at the end.

Its is easy to see that problem (30) is more complicated than problem (12)
for the deterministic system under control. We will outline the application of
more traditional dynamic programming and branch-and-bound approaches to
solve the resulting control problems, and then a newer one based on interpola
tive reasoning. All' will suffer from conceptual and/or numerical difficulties.
In Section 5 we will propose a genetic algorithm and show its simplicity and
efficiency.

Multistage control under fuzziness using genetic algorithms 1195

3.2.1. Solution by dynamic programming

The application of dynamic programming to solving the problem of multistage
fuzzy control of a fuzzy system under control was proposed by Baldwin and
Pilsworth (1982).

The fuzzy system under control is assumed, as previously mentioned, to be
described by a fuzzy state transition equation (21). At each t, Ut is subjected to
f..J,ct(ut), and on the resulting xt+1, f..tat+1(Xt+1) is imposed, t = 0, 1, ... 'N -1.

Both the control at stage t, Ut, and the state at t+1, Xt+1, are now fuzzy, and
hence their grades of membership in the fuzzy constraints et and Gt+1 cannot
be directly determined as the values of f..tct (Ut) and f..tat+1 (xt+1), respectively.
For each t, we construct a fuzzy relation R defined in U x X such that

f..tRt ('u,t, Xt) =

f..tct(v.t) A f..tat+1(Xt+1), for each Ut E U, Xt+1 EX (31)

which represents the degree of how well (to which degree, between 0 and 1) et
and ct+1 are satisfied.

The degree to which a particular Ut and. Xt+1 satisfy et and ct+1, respec
tively, is defined as

T(Ut, Rt, Xt+l) = max [max(p,ut(v.t) A f..tRt(V.t, Xt)) A f..txt+ 1 (xt+1)] =
Xt+1EX 'U.tEU

max [max(Jtut(ut) A f.J.ct(v.t) A f..tat+1(Xt+1) A f..txt+ 1 (xt+I))] =
Xt+1EX 'U.t

rnax[JLut (Ut) A fLct (V.t)] A rnax [f..txt+1 (xt+1) A f..tat+1 (xt+1)] (32)
UtEU Xt+1EX .

The fuzzy decision is given as

fLD(Uo, ... , UN-1 I Xo) =

T(U0,R0,Xl) A ... AT(UN-1,RN-I,XN) (33)

The problem, for a simpler case with fuzzy constraints at t = 0, 1, ... , N- 1
and a fuzzy goal at t = N, is to determine U0, ... , UJ.v _1 such that

fLD(v.;, ... , UJ.v_ 1 I Xo) =

max max[p.u0 (uo) A P,co(uo) A ... A max (p,uN_ 1 (uN-d A
Uo, ... ,UN-1 uoEU UN-1EU

Af..tcN-1 (v·N-d A max(p,xN(xN) A f..taN(XN)) ...] (34)
XN

It is now easy to see that the structure of (34) makes the use of dynamic pro
gramming possible, and the following set of dynamic programming recurrence

1196 J. KACPRZYK

equations is obtained:

fJ,GN(XN) = maxxNEX [p,xN(XN) 1\ fJ,Q N (xN)]

fJ,GN-i(XN-i) = maxuN-iEu[maxu.N-iEU(P,uN-i (uN-i)l\

1\ fJ,cN-i (UN-i)) 1\ fJ,GN-i+l (XN-i+l)l
fJ,XN-i+l (XN-i+l) = max"'-N-i EX [maXuN- i EU(fJ,UN-i (UN-i)l\

1\ fJ,XN -i+ l (XN-i+l I ·'EN-i, UN-i)) 1\ fJ,XN _,(XN-i)]
i = 1, ... N

(35)

In principle, the above set of dynamic programming recurrence equations
may be solved. However, a serious difficulty may be seen just at first glance.
First, fJ,GN-i(XN-i) is to be specified for each possible fuzzy state XN-i EX.
Second, the maximization of P,u N _, (.) is to proceed over all (well, maybe not all
but a large subset of) the fuzzy controls UN-i E U. Evidently, the number of
all the possible fuzzy controls UN -i and fuzzy states XN -i may be very high:
infinite in the general case but at least very high in our context as we consider
fuzzy sets defined in finite universes of discourse. This clearly makes the solution
of (35) practically impossible.

Basically, the essence of Baldwin and Pilsworth's (1982) approach - it is also
the same as Kacprzyk and Staniewski's (1982) approach - is to assume some
relatively low number of standard (reference) fuzzy states and controls, perform
the solution process in terms of them, and finally adjust the solution to reveal
the "real" solution. For details we refer the interested reader to the source work
(Baldwin and Pilsworth, 1982) or to Kacprzyk's (1997) book.

This concludes our glimpse at Baldwin and Pilsworth's (1982) dynamic
programming-based approach which is , unfortunately, very complica ted and
difficult to implement .

Now we will proceed to a conceptually and computationally simpler Kacp
rzyk's (1979) branch-and-bound approach, which appeared even earlier.

3.2.2. Solution by branch-and-bound

A branch-and-bound approach for solving problem (30) was proposed by Kacp
rzyk (1979). It is analogous to that discussed in Section 3.1.2. for the determin
istic system under control.

Suppose that the fuzzy system under control is given by a fuzzy state transi
tion equation (21) , i.e. Xt+l = F(Xt, Ut), t = 0, 1 ... , where Xt , X t+l are fuzzy
states at control stages t and t + 1, respectively, defined in X = { s1 , ... , s,.},
i. e. Xt, Xt+1 E X, and Ut E U = { c1 , ... , Cm } is a nonfuzzy control at control
stage t, Notice that we assume here a fuzzy system under control but a nonfuzzy
control; this is done for simplicity since the controls will correspond to branches
(edges) in a decision tree. We should, however, bear in mind that one can also
assume fuzzy controls, Ut E U, and then use some (finite, possibly low) number
of predefined reference fuzzy controls. This will not be considered here but the
method presented works analogously in that case.

Multistage control under fuzziness using genetic algorithms 1197

At each t, the control Ut E U is subjected to a fuzzy constraint /-LC' (ut),
and on the final fuzzy state attained a fuzzy goal f.LGN (xN) is imposed. The
initial fuzzy state is X 0 E X. The final fuzzy state XN E X evidently cannot
be introduced directly into the fuzzy goal f.LcN(xN), and hence a "trickery"
outlined in the beginning of this section is employed.

The problem is to find an optimal sequence of (nonfuzzy) controls u0, ... ,
u'fv_1 such that (see (30))

/-LD(v,(), · · ·, u'fv_I I Xo) =

max [p,co (uo) 1\ ... 1\ f.LcN- 1 (uN-l) 1\ 1-LcN (XN)]
uo, .. . ,UN-1

(36)

It is clear that this problem satisfies all the conditions of type (17)- (19)
from Section 3.1.2. which form a basis of the branch-and-bound procedure. The
algorithm is basically the same, with obvious replacements.

We have assumed here that the control is nonfuzzy. This has made it pos
sible to directly construct the corresponding decision tree. In the case of fuzzy
controls, one has to assume some (finite, possibly low) number of TejeTence fv,zzy
contmls. All the controls are then approximated by these reference fuzzy con
trols, and the branches of the decision tree are associated with the particular
reference fuzzy control. This manipulation makes it possible to use the branch
and-bound algorithm presented above. However, we should bear in mind that
we obtain here optimal reference fuzzy controls, which are not the same as
the "real" fuzzy controls. So, to implement these reference fuzzy controls ob
tained we need to employ some procedure to infer proper "real" fuzzy controls.
Kacprzyk's (1993a- c) interpolative reasoning based scheme presented below may
be used here.

3.2.3. Solution by interpolative reasoning

Basically, Kacprzyk's (1993a-c) interpolative reasoning scheme is applied rather
to the dynamic programming approach presented in Section 3.2.1., but can also
be employed for the branch-and-bound approach presented in Section 3.2.2 ..

In Kacprzyk's (1993a- c) approach, a very small number of "non-overlapping"
reference fuzzy states and controls is assumed, and in their terms an auxiliary
(much simpler!) control problem is formulated. Its solution yields an auxiliary
optimal control policy relating optimal reference fuzzy controls to reference fuzzy
states. Such a policy is equated with a fuzzy relation which is then used to
determine an auxiliary optimal control (not necessarily the reference one) for a
particular fuzzy state (not necessarily the reference one).

Then, the (auxiliary) optimal solution (control) obtained in some way is
adjusted to become a "real" optimal fuzzy control, by using some interpolation.

For a detailed description of this technique we refer the reader to Kacprzyk's
(1997) book. In general, the method works well though is somehow complicated
and difficult to implement.

1198 J. KACPRZYK

In the next section we will present a conceptually and numerically simple
genetic algorithm for solving the problem considered.

4. A genetic algorithm for the solution of the multistage
fuzzy control problem with a deterministic system under
control

From the previous sections we have learned that the solution of the multistage
control problem considered (12) may be really difficult for practical problems
of a non-trivial size, in spite of being relatively simple conceptually. Though
this has been particularly true for dynamic programming, plagued by its inher
ent "curse of dimensionality", the same can also be said of branch-and-bound.
On the other hand, Francelin and Gomide's (1992, 1993) and Francelin, Go
mide and Kacprzyk's (1995) neural network approach is conceptually somehow
corn plicated.

In the recent Kacprzyk's (1995a- c) papers the use of a genetic algorithm was
proposed. This has provided, first , a conceptually simple and general solution
tool, and, second, it has turned out to be numerically efficient. The essence
of that approach, and its further extension, will be presented below. First, we
will outline the basic idea of the genetic algorithm to be employed, then show
its application to the solution of the problem considered, and finally present
computational results.

4.1. Idea of a genetic algorithm

Genetic algorithms are stochastic algorithms whose search methods "mirror"
some phenomena underlying natural evolution processes, notably genetic inher
itance and the Darwinian survival of the fittest.

In our context, by an individual we will mean a particular solution, i.e.
particular values of controls at the consecutive control stages, v.o, ... , uN-l·
It is evalv.ated by the fuzzy decision (11), which is here the so-called fitness
function.

A set of potential solutions will be termed a population, and its size will be
assumed fixed. So, we initially assume some (e.g., randomly generated) poten
tial solutions (the initial population). Then, some members of the population,
who play the role of parents, will undergo reproduction through the so-called
crossover and mutation to produce their off-springs (children), i.e. some new
solutions. Then, the best ones (the fitt est) will "survive", i.e. will be used
while repeating this process. Finally, one may expect to find a very good (if not
optimal) solution.

The structure of a genetic algorithm may be portrayed as follows:

begin
t =: 0

Multistage control under fuzziness using genetic algorithms

set the initial population P(t)
evaluate strings in P(t)
while termination condition is not fulfilled do:
begin

t := t + 1
select current population P(t) from P(t- 1)
perform reproduction on elements of P(t)
calculate the evaluation function for each element of P(t)

end
end

Its basic elements:
• how to represent a potential solution,
• how to create (generate) an initial population,
• how to define the fitness (evaluation) function,
• how to perform the reproduction (crossover and mutation), and
• how to choose some parameters,

will now be clarified on a simple example.

1199

First , the potential solutions are here sequences of controls such as u 0 , v,1 , v,2

for a control process with the termination time N = 3. If now uo, v.1 , v.2 E

{0, 1, ... , 7}, then there may be the following solution candidates:

Solution 1:

Solution 2:

Solution 3:

(2, 4, 5)

(1, 7, 6)

(3, 2, 5)

which are represented in binary notation (i .e. as binary strings) as, respectively:

Solution 1:

Solution 2:

Solution 3:

Ill o I 1 I o 11 1 I o I o 11 1 I o 11 Ill
Ill 1 I o I o 11 1 I 1 I 1 11 o I 1 I 1 Ill
Ill 1 I 1 I o 11 o I 1 I o 11 1 I o I 1 Ill

Each of the above three solution candidates (generated , e.g., randomly) is
then evaluated by using the fuzzy decision (11) (or (10)). For instance, we
obtain

e1 = P.D(2,4,5I .) = 0.7

e2 = ILD(1 , 7, 61 .) = 0.3

e3 = P.D(3,2,5I.) = 0.9

Now, the probability of selection of the solution candidate i E {1, 2, 3} is
defined as

(37)

1200 J. KACPRZYK

Then, suppose that based on this selection probability, Pi, the solutions 2
and 3 are selected out of the initial population to be the "parents" who are next
subjected to the two basic operations to "produce" their offsprings (children).
The first operation is cr'OssoveT. We generate, using a cmssover- pmbability,
some point (bit number) in the binary string from 1 to the length of the string
(9 in our case), e.g., 3 as shown by a vertical arrow as

Solution 2:

Solution 3:

Ill 1 I o I o 11 1 I 1 I 1 11 o I 1 I 1 Ill

JJ.
Ill 1 I 1 I o 11 o I 1 I o 11 1 I o I 1 Ill

The crossover exchanges the respective bits between the two parents from
bit 4 on which yields the following two new candidate solutions: ·

Solution 2':

Solution 3':

Ill 1 I o I o 11 o I 1 I o 11 · 1 I o I 1 Ill

JJ.
Ill 1 I 1 I o 11 1 I 1 I 1 11 o I 1 I 1 Ill

One of the two above candidates is selected at random and taken as the new
individual, for instance Solution 3', i. e.

Solution 3': Ill 1 I 1 I o 11 1 I 1 I 1 11 o I 1 11 Ill

Next, using a prespecified mutation pmbability, we select a point in the above
binary string, say 5, and change this bit in the string to the opposite value (i.e.
0 to 1 and vice versa) and this new candidate solution is introduced into the
new population.

The process of random selection of the parents, crossover, and mutation is
repeated until the new population of the predefined size is obtained. Then, the
whole process is repeated, and is continued until some termination condition is
satisfied as, e.g., the maximum number of iterations or a time limit .

The above process is conceptually and implementationally simple, and usu
ally leads to good results. Due to random mechanisms widely employed, it
escapes from local optima, and helps find a globally best (optimal) solution.

The idea of a genetic algorithm presented above is basic, and many modifi
cations of both the crossover and mutation, as well as new operations, have been
proposed, see Davis (1991) or Michalewicz (1994). Moreover, let us remark that
though the binary representation of solutions (binary coding) is traditionally
employed, one can well use a real coding of solutions in which solution candi
dates are represented as strings of real numbers (the subsequent controls). Such
a real coding will be employed in this paper with crossover and mutation being
direct derivatives of the traditional ones.

Mult istage control under fuzziness using genetic algorithms 1201

4.2. Using the genetic algorithm for solving the multistage fuzzy
control problem with a detrministic system under control

To present the idea of Kacprzyk's (1995a-c) genetic-algorithm-based approach,
it may be expedient to briefly restate the problem considered.

First, the deterministic system under control is given by the state transition
equation (9), i.e.

t = 0, 1, ... (38)

where: Xt,Xt+I EX= {s1 , ... ,sn} is the state (output) at control stages t and
t + 1, respectively, and v.t E U = { c1., . .. , cm} is the control (input) at t . The
initial state is :ro EX, and the (finite) termination time N is fixed and specified
in advance.

At each control stage t, the control Vt E U is subjected to a fv.zzy constraint
Jl.C' (V.t), and on the final state .'1: N E X a fv.zzy goal!LcN (x N) is imposed [fuzzy
goals at the subsequent t's may also be assumed, and the reasoning remains
valid - cf. (10)].

The fitness (evaluation or performance) function is the fuzzy decision (11),
i.e.

JLD(v,o, ... ,v·N-1 I xo) =

/Leo (V.o) 1\ . . . 1\ Jl.CN-1 (v,N-1) 1\ Jl.GN (xN) (39)

and the problem is [cf. (12)] to find an optimal seqv.ence of controls, v.0, . .. , v.jy_ 1 ,

such that

JLD(v,0, .. . , v.jy_ 1 I xo) =
max fLD(v,o, ... ,uN-IIxo)= max [JLcp(v.o)/\ .. .

UQ, . .. ,UN-1 ua, .. :,uN-1

(40)

where XN = f(xN-I,uN_I) by the state transition equation (38), and"/\" (mi
nimum) may be replaced by another operation, notably a t-norm, Kacprzyk
(1997).

The basic elements of the genetic algorithm to be used for solving the above
problem are meant as follows:

• the problem is represented by strings of controls v,o, . . . , 1LN-I , and we use
real coding;

• the fitness function is the fuzzy decision (39),
• standard random selec tions of elements from the consecutive populations,

standard concepts of crossover and mutation (applied to real coded strings),
and a standard termination condition, mainly a predefined number of it
erations, or iteration-to-iteration improvement lower than a threshold is
used;

Further, we assume that:

1202 J. KACPR.ZYK

• controls are "evenly spaced" real numbers in [0, 1] corresponding to c1 , .. . ,

Cm, and
• states are defined as "evenly spaced" real numbers from [0, 1] correspond

ing to s1, ... , Sn.

The genetic algorithm works now as follows:

begin
t =: 0
set the initial population P(t) which consists of

randomly generated strings of controls
(i.e. of randomly generated real numbers from [0, 1]) ;

for each u0, . . . , uN _ 1 in each
string in the population P(t),
find t he resulting Xt+l

by using the state transition
equation Xt+l = f(xt, Ut),
and use the evaluation function (39)
fLD (uo, ... , uN-1 I x 0 to evaluate each string in P(t);

while t < maximv.m number- of itemtions do
begin

t := t + 1
assign the probabilities to each string in P(t- 1)

which are proportional to the value of the evaluation
function for each string;

randomly (using those probabilities) generate
the new population P(t);

perform crossover and mutation on the strings in P(t);
calculate the value of the evaluation function (39) for each string in P(t) .

end
end

We will illustrate now this algorithm by a simple example.

Example 4 Suppose that X= {s1, ... ,s2o}, U = {c1, ... ,c32 } , N = 10, and
xo = s1.

The state transition equation (38) is given as

.Tt+l = j(Xt, Ut) =
.Tt = S1 S2 83 S4 ss S6 S7 ss Sg SlQ

Ut= c1 Sl sl S2 S3 S4 ss S6 S7 ss Sg

c2 s2 83 S3 83 86 S7 ss Sg SlQ su

C3 S2 83 s3 S4 ss S6 S7 ss Sg 81Q

c3o S4 ss s6 S7 SlQ sn Sl2 Sl4 SlS 81S

C31 ss S6 S7 ss SlQ su S12 S14 S15 816

C32 S6 S7 ss SlQ sn s12 Sl4 Sl5 Sl6 Sl7

Multistage control unde r fuzziness using genetic algorithms 1203

Xt = 8u 812 813 814 815 816 817 818 819 820

v.t = c1 81Q 8u 812 813 814 815 816 817 818 819

C2 812 813 814 815 816 817 818 819 820 820

C3 su 812 .5'13 .5'14 815 .5'16 .5'17 .5'18 .5'19 .5'20

C30 .5'16 .5'17 .5'19 .5'19 .5'20 .5'20 .5'20 820 .5'20 .5'20

C31 .5'16 .5'17 .5'18 .5'19 .5'20 .5'20 .5'20 .5'20 .5'20 .5'20

C32 .5'17 .5'18 .5'19 820 82o s2o s2o .5'20 .5'20 .5'20

The fuzzy constraints and fuzzy goals at the consecutive control stages are
given as trapezoid fuzzy numbers in [0, 1], i.e. are equated with the 4-tuples.

The fuzzy constraints and goals are therefore assumed to be:

C0
= (C1, C1, C4, C32)

C1
= (cl,cl,c7,c32)

C2
=(cl, C1, Cg, C32)

C3
= (cl,cl,ClQ,C31)

C4
= (cl,cl , cl2,c32)

C5
=(cl, c1, c13, c32)

C6
=(cl, C1, C15, C32)

C7
= (C1 1 C1, C17, C32)

C 8
= (cl,cl,cls,c32)

C 9
= (cl,Cl,C2Q,C32)

G1
= (81, 82, 87, 89)

G2 = (82,83,89,8u)

G3 = (83,85,89,8u)

G4
= (84,87,812,814)

G5
= (8s , 8s,814,816)

G6 = (86,810,816,818

G7
= (87,8u816,81s)

G8
= (89, 814, 81s; 82o)

G9
= (8n,816,82o,82o)

G10
= (814, 81s, 82o, 82o)

The main parameters are assumed to be:
• the population size is 250,
• · the number of trials is 32,000,
• the crossover rate is 0.6, and
• the mutation rate is 0.001.
We obtain 3 best (optimal) results (starting from xo = s1):

v.(j = C3 v.i = C4 Uz = C4 v.3 = c5 u* 4 =ea

v.5 = cu v.;; = Cl2 u7 = C14 v.8 = C15 v.* 9 = C15

u0 = c2 ui = cs v.2 = C3 u3 = cs v.4 = c 8

v.f, = cu v.;; = C13 u7 = C14 u* 8 = Cl4 . u* 9 = C15

v.(j = C3 u* 1 = C6 u2 = c3 v.3 = c5 u* 4 =ea

v.f, =en u(; = C12 u7 = c 14 v.8 = c15 u* 9 = C15

for which the corresponding value of the fuzzy decision (39) is

f.LD(v.0, ... ,v.91 81) = 1

1204 J. KACPRZYK

c 0.685
0
iii
'i:)

0.68
Ill 0.675 "Cl

~ 0.67
z 0.665
0

0.66 Ill
::l
iii 0.655
>

0.65

0.645

0 200 400 600 800 1000

Iteration number

Figure 3. The value of the fuzzy dec~sion obtained in the course of iterations in
Example 4

The next best result is

u0 = c3

v.;; = c12

v.i = c5

v.;; = cl3

u2 = c3

v.7 = c15

u!; = c5

v.;; = c12

and its corresponding value of the fuzzy decision (39) is

while the tenth best result is

v.0 = c2

u;; = c12

v.i = c4

v.;; = cl3

v.; = c3

u? = c15

v.; = c5

u;; = c12

u~ =ea
v.9 = c14

and its corresponding value of the fuzzy decision (39) is

f.LD(u~, . .. ,u~ I s1) =0.973684

In Figure 3 the best values of the fuzzy decision (39) obtained in the course
of iterations are shown, and it may readily be seen that the optimal solution
has been attained quite early, so that 32,000 iterations assumed have not been
necessary. D

Note that the results obtained are clearly very good, with the best results
obtained being optimal indeed. Obviously, the solution of the problem consid
ered, i. e. with the assumed number of control stages, and the size of t he state
and control spaces, by using any of the other techniques (dynamic programming,
branch-and-bound and neural networks) would certainly be more complicated
from the conceptual, implementational and computational points of view.

Multistage control under fuzziness using genetic algorithms 1205

5. A genetic algorithm for the solution of the multistage
fuzzy control problem with a fuzzy system under con
trol

As it can easily be seen from Section 3.2., the case of multistage fuzzy con
trol with a fuzzy system under control is more difficult - both cortceptually
and numerically - than the case of a deterministic system. Though the ba
sic solution techniques proposed, i.e. Baldwin and Pilsworth's (1982) dynamic
programming, possibly enhanced with Kacprzyk's (1993a-c) interpolative rea
soning, and Kacprzyk's (1979) branch-and-bound, do share the same numerical
difficulties with the case of the deterministic system, these are clearly more pro
nounced when a fuzzy system is assumed. This does clearly suggest that the
use of a genetic algorithm can here be even more justified as it was proposed by
Kacprzyk (1995a- c).

We employ here the same basic framework of a genetic algorithm as pre
sented earlier in Section 4.1. By an individv,al we mean a particular solution,
i.e. the particular values of the fuzzy controls at the consecutive control stages,
Uo, ... , UN-l· An individual is evaluated by the fuzzy decision (29), which is
here the .fitness function. A set of potential solutions is termed a popv,lation
which is assumed to be of a fixed size. The population is generated and trans
formed analogously as outlined in Section 4.1.

The general structure of a genetic algorithm is analogous as presented in
Section 4.1., and the basic problems are also the same, i.e.

• how to represent a potential solution,
• how to create (generate) an initial population,
• how to define a fitness function,
• how to perform the reproduction (croSi)over and mutation), and
• how to choose some parameters.
Before the description of the genetic algorithm tailgred to the problem con

sidered, we will briefly restate the problem formulation (cf. Section 3.2.).
The dynamics of a fuzzy system under control is given by a state transition

equation (21), i.e.

t = 0, 1, ... (41)

where Xt, Xt+ 1 E X are fuzzy states at control stage t and t + 1, and Ut E X
is a fuzzy control at t, t = 0, 1, ... ; (41) is equivalent to a conditioned fuzzy set
p,x,+

1
(xt+1 I Xt, 'll.t) or a fuzzy relation in X x X x U (see Kacprzyk, 1997).

At each t, the fuzzy control applied Ut is subjected to a fuzzy constraint
f..LC' ('U.t), and on the resulting fuzzy state Xt+l a fuzzy goal J.Lct+l (xt+l) is im
posed, t = 0, 1, ... , N- 1.

Both the fuzzy controls, Ut's, and fuzzy states, Xt+1 's, are now fuzzy, hence
(see Section 3.2.) their grades of membership in the fuzzy constraints and goals
cannot be directly determined as the values of J.Lct('U.t) and J.Lct+l(xt+1). In the

1206 J. KACPRZYK

source papers (Kacprzyk's, 1995a- b), on which our discussion is based, it was
generally used as a measure of dissimilarity (23), i.e.

f.Lc'(Ut) = 1- diss(et, Ut), t = o, 1, .. . , N -1 (42)

and, to be more specific, Kaufmann and Gupta's (1985) dissimilarity index (46),
to be shown below.

Thus, the fuzzy decision is

J.LD(Uo, ... , UN-1 I Xo) =

= f.L"(f (Uo) /\ f.Lcl (X1) /\: .. /\ J.L0 N-l (UN -1) /\ f.LcN (XN) (43)

and the problem is to find U0, ... , U'fv _1 such that

f.LD(U~, ... , U'fv_ 1 I Xo) = max J.LD(Uo, .. . , UN-1 I Xo)
Uo, ... ,UN - 1

(44)

Due to the specifics of the problem with a fuzzy system, the basic elements
of the genetic algorithm are meant as:

• the problem is represented by strings of fuzzy controls U0 , ... , UN_1 (real
coding), and we use triangular fuzzy numbers to represent fuzzy controls
(moreover, some reference fuzzy controls, U0 , ... , U N-1 are also used);

• the fitness (evaluation) function is (43), i. e.
f.LD(Uo, ... , UN-1 I Xo) = J.L"(f(Uo) A J.Lc1(X1) A ...

... /\j.L0 N-l(UN_I)/\ p.0 N(XN) (45)
and for its calculation [of f.Lc'(Ut) and f.Lct +l (Xt+1)] we use the degree
of dissemblance by Kaufmann and Gupta (1985) which is defined, for
triangular fuzzy numbers, as: if A and B are triangular fuzzy numbers,
then the degr-ee of dissemblance of A and B is

j ·1 1
diss(A, B) = -(1 g:_"'- !l' I + I aa- Tt I) da

a=O 2
(46)

where [g_a, aa] and [!{, b] are the so-called a-cuts (intervals) of A and B,
\la E (0, 1]; the a -cut of a fuzzy set A in X= {.x}, Aa, is defined as the
nonfuzzy set Aa = {x EX: f.LA(x) 2': a}, Va E (0, 1].

Therefore, if
ft(Ut, et, Xt+1, ct+1) = [1 - diss(Ut , et)] A [1 - diss(Xt+l, Gt+1)],

t = 0, 1, ... N- 1, then the fitness function (45) becomes
f(Uo, x1, ... , UN-1, XN) =

= f.LD(Uo , ... , UN-1 I Xo) = fo(Uo, e 0,X1, G1) /\ ...

. . . /\ fN-1(UN-1, eN-I,XN, GN) (47)
• standard random selections of elements from the consecutive populations,

standard crossover and mutation (evidently, applied to real coded strings),
and a standard termination condition, mainly a predefined number of
iterations, or iteration-to-iteration improvement lower than a threshhold)
are used.

Multistage contro l under fuzziness using genetic a lgorithms 1207

Further, we assume that:
• fuzzy controls are fuzzy sets in [0, 1] defined as triangular fuzzy numbers

in [0, 1], i.e. as the triples (a,b,c), 0::; a::; b::; x::; 1; the left and right
spreads (widths) are assumed to be equal to 5% each, for simplicity, hence
only the mean value (b) is generated; moreover, 10 reference fuzzy controls
arc introduced;

• fuzzy states are defined as fuzzy sets in X = { 8 1 , ... , 810};

• fuzzy constraints are defined as trapezoid fuzzy numbers in [0, 1] ;
• fuzzy goals are defined as fuzzy sets in { 81, ... , 810};

• the dynamics of the fuzzy system under control (41), i.e . the state tran
sition equation, is defined as a set of fuzzy relations Ru in S x S, for
each of the reference fuzzy control (we need reference fuzzy controls as
otherwise we would need infinitely many fuzzy relations, for each possible
fuzzy control); so, to choose an appropriate table to determine the state
transition, first we find a reference fuzzy control that is the closest [in the
sense of the dissemblance index used (46)] to the current control, and then
we take its corresponding fuzzy relation to find the resulting fuzzy state

Xt+1 ·
The genetic algorithm employed is as follows:

begin
t := 0
set the initial population P(t)

which consists of randomly generated
strings of triangular fuzzy controls
(i.e. of randomly generated mean
values from [0, 1], with 5% left and right spreads);

for each U0 , ... , UN- 1 in each string in the population P(t):
find the resulting Xt+1 (by finding first the closest reference

fuzzy control to choose an appropriate relation
which is followed by using
the compositional rule of inference),

and use the evaluation function (4 7)
to evaluate each string in P(t);

while t < rnaxirrmrn number of ite-rations do
begin

t := t + 1
assign the probabilities to each

string in P(t- 1) which are proportional
to the value of the evaluation function for each string;

randomly (using those probabilities)
generate the new population P(t);

perform crossover and mutation on the strings in P(t);
calculate the cval uation function (4 7) for each string in P (t).

1208 J. KACPRZYK

end
end

To illustrate this algorithm we will now solve a simple example.

Example 5 Suppose that: N = 10, X = { s1 , .. . , s10}, the controls are trian
gular fuzzy numbers in [0 , 1], and there are 10 "equally-spaced" (with the mean
values at 0.1, ... , 0.9 , 1) reference fuzzy controls defined as the trapezoid fuzzy
numbers in [0, 1] as follows:

c1 = (o.o, 0.1, o.1, o.2)
c3 = (0.2, o:3, o.3, o.4)
c5 = (0.4, o.5, o.5, o.6)
c1 = (0.6, o.7, o.7, o.8)
Cg = (0.8, 0.9, 0.9, 1.0)

c2 = (o.1 , 0.2, 0.2, o.3)
c4 = (o.3, o.4, oA, o.5)
c6 = (0.5, o.6, o.6, o.7)
Cs = (0.7, 0.8, 0.8, 0.9)
Cw = (0.9, 1.0, 1.0, 1.0)

The initial fuzzy state is Xo = 1.0/ s1 +o.7 / s2 + 0.4/ s3 + 0.1/ s4.
The fuzzy constraints at the particular control stages are also given as the

following trapezoid fuzzy numbers:

-=<! c = (0.0, 0.0, 0.5, 0.8)
- 2 c = (0.0, 0.0, 0.5, 0.8)
-=4 c = (0.0, 0.0, 0.5 , 0.8)
-=6 c = (0.0, 0.0, 0.5, 0.8)
-s c = (0.0, 0.0, 0.5, 0.8)

-1 c = (0.0, 0.0, 0.5, 0.8)
-3 c = (0.0, 0.0, 0.5, 0.8)
-5 c = (0.0, 0.0, 0.5, 0.8)
-7 c = (0.0, 0.0, 0.5 , 0.8)
-9 c = (0.0, 0.0, 0.5, 0.8)

The fuzzy goals at the particular control stages are:

-1
G = 0.1/s1 + 0.2/s2 + 0.3/s3 + 0.6js4+

+ l.O/s5 + 0.6/s6 + 0.3/s7 + 0.2/ss + 0.1/sg + 0.0/sw
- 2
G = 0.1/s1 + 0.2/s2 + 0.3/s3 + 0.6/s4+

+ 1.0/s5 + 0.6/s6 + 0.3/s7 + 0.2/ss + 0.1/sg + 0.0/sw
-3
G = 0.1/sl + 0.2/s2 + 0.3/s3 + 0.6js4+

+ 1.0/ S5 + 0.6/ S6 + 0.3/ S7 + 0.2/ Ss+ 0.1/ Sg + 0.0/ SlQ
-=4
G = 0.1/ s1 + 0.2/s2 + 0.3/ s3 + 0.6/ s4 + 1.0/ s5 + 0.6/ s6+

+ 0.3/ S7 + 0.2/ Ss+ 0.1/ Sg + 0.0/ SlQ
-5
G = 0.1/s1 + 0.2/s2 + 0.3/s3 + 0.6js4+

+ l.O/s5 + 0.6/ S6 + 0.3/ S7 + 0.2/ ss+ 0.1/ sg + 0.0/ sw
-=6
G = O.l/s1 + 0.2/s2 + 0.3/s3 + 0.6js4+

+ 1.0/ s5 + 0.6/ s6 + 0.3/s7 + 0.2/ ss+ 0.1/ sg + 0.0/ sw

Multistage control under fuzziness using genetic algorithms 1209

-7
G = 0.1/sl + 0.2/s2 + 0.3/s3 + 0.6js4+

+ l.Ojs5 + 0.6/s6 + 0.3/s7 + 0.2/ss + 0.1/sg + O.Ojs10
-=il
G = 0.1/ s1 + 0.2/ s2 + 0.3/ s3 + 0.6/ s4+

+ l.O/s5 + 0.6js6 + 0.3js7 + 0.2/ss + 0.1/sg + O.Ojs10
-9
G = 0.1/s1 + 0.2/s2 + 0.3/s3 + 0.6js4+

+ l.Ojs5 + 0.6/s6 + 0.3/s7 + 0.2/ss + 0.1/sg + O.Ojs10
-10
G = 0.1/s1 + 0.2/s2 + 0.3/s3 + 0.6js4+

+ 1.0/ S5 + 0.6/ S6 + 0.3/ S7 + 0.2/ Ss+ 0.1/ Sg + Q.Qj SlQ

The fuzzy state transitions (41) , are specified as conditioned fuzzy sets for
each particular reference fuzzy control, C1, . .. , C10 . Due to lack of space we will
only present below the state transtion equations for the first and last reference
fuzzy control, i.e. cl and clO, and these are:

• for cl
Xt+l = S1 S2 S3 S4 S5 S6 S7 ss Sg SlQ

Xt = S1 0.0 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.1
s2 0.0 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.1
S3 0.0 0.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.1
S4 0.0 0.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.1
s5 0.0 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.1
S6 0.0 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.1
S7 0.0 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.1
ss 0.0 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.1
Sg 0.0 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.1

SlQ 0.0 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.1
• 0 0 0

• for clO
.Tt+l = S1 s2 S3 S4 s5 86 87 ss 8g 810

.Tt = S1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0
82 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0
83 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0
84 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0
s5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0
86 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0
S7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0
ss 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0
Sg 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0

SlQ 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0
The main parameters are:
• the population size is 50,
• the maximum number of iterations (termination condition) is 1000,
• the crossover rate is 0.6, and
• the mutation rate is 0.001.
The t en best results obtained may be summarized as follows:

1210 J. KACPRZYK

0,67

0,66

0,65

0,64

0 200 400 600 800 1000

Iteration number

Figure 4. The value of the fuzzy decision obtained in the course of iterations in
Example 5

• the best fuzzy controls a t t = 0, 1, ... , 9 are:
U0 = (0.4885, 0.5142, 0.5399) U{ = (0.5031 , 0.5296, 0.5561)
u.; = (0.4236, 0.4459 , 0.4682) u; = (0.4842, o.5097, 0.5352)
u4 = (0.4651 , 0.4895 , o.5140) u; = (0 .4916 , o.5175 , o.5434)
U6 = (;0 .3218, 0.3387, o.3556) u; = (0.5225, o.55oo, 0.5775)
U8 = (0.3451 , 0.3633 , 0.3815) U9 = (0.2615 , 0.2752, 0.2890)

and the value of the fuzzy decision (4 7) is
f.tD(U()) . . .) u; I Xo) = 0.681881

• the second best result is
Uo = (0.4885, 0.5142, 0.5399) U1 = (0.5031, 0.5296 , 0.5561)
u2 = (0.4236, 0.4459, 0.4682) u3 = (0.4842, 0.5097, 0.5352)
u4 = (0.4651 , 0.4895, 0.5140) u5 = (0.4916, 0.5175, 0.5434)
u6 = (0.3218, 0.3387, 0.3556) u7 = (0. 5225, o.550o, 0.5775)
U8 = (0.3451, 0.3633, 0.3815) Ug = (0.2615, 0.2752, 0.2890)

and the value of the fuzzy decision (4 7) is
f.tD(U~) . . .) u; I Xo) = 0.681881

• while the tenth best result is:
ur; = (0.2510, 0.2642, 0.2774) U{ = (0.4758, o.5008, 0.5259)
u.; = (0.4855, o.5111, 0.5366) u; = (0.5432, o.5718 , o.6o0,4)
u4 = (0.4 780, o.5032, o.5284) u; = (0.5182, o.5455, o.5728)
U6 = (0.5100, 0.5368, o.5637) u; = (0.3316, 0.3491, 0.3665)
u;, = (0.4639, 0.4883 , 0.5127) u; = (0.3816, 0.4016 , 0.4217)

and the value of the fuzzy decision (4 7) is
f.l·D(U~) .. .) u; I Xo) = 0.679795

The best values of the fuzzy decision (4 7) obtained in the course of iterations
arc shown in Figure 4, and it may readily be see that the best (maybe optimal)
solution has been attained quite early, before the 1,000 iterations assumed. D

In general, also for many different ~roblems solved , t he algorithm has proven
to be efficient.

Multistage control under fuzziness using genetic a lgori t hms 1211

6. Concluding remarks

In this paper we have shown the use of a genetic algorithm for the solution
of multistage fuzzy control problems with a fixed and specified termination
time, and with a deterministic and fuzzy systems under control. The genetic
algorithm proposed is conceptually simpler than the traditionally employed
techniques which are mainly based on dynamic programming and branch-and
bound. Moreover, it is computationally efficient. It seems that genetic algo
rithms may provide a viable alternative for the multistage fuzzy control prob
lems.

References

BALDWIN, J.F. and PILSWORTH, B.W. (1982) Dynamic programming forfuz
zy systems with fuzzy environment. Jov.rnal of Mathematical Analysis and
Applications, 85, 1-23.

BELLMAN, R.E. and ZADEH, L.A. (1970) Decision making in a fuzzy envi
ronment. Management Science, 17, 141- 164.

BRITOV, G.S . and REZNIK, L.K. (1981) Optimal control of linear fuzzy sys
tems (in Russian). A?J.tomation and Remote Control, 42, 462- 465.

CAo, S.G. and REElS, N.W. (1995) Identification offuzzy models. Fv.zzy Sets
and Systems, 74, 307-320.

CHANG, R.L.P. and PAVLIDIS, T. (1977) Fuzzy decision tree algorithms.
IEEE Transactions on Systems, Man and Cybernetics, SMC-7, 28- 35.

CHANG, S.S.L. (1969A) Fuzzy dynamic programming and the decision mak
ing process. Pmceedings of the Third Princeton Conference on Infor-ma
tion Sciences (Princeton, NJ, USA).

CHANG, S.S.L. (1969B) Fuzzy dynamic programming and approximate opti
mization of partially known systems. Proceedings of the Second Hawaii
International Conference on Systems Science (Honolulu, HI, USA).

CHANG, S.S.L. and ZADEH, L.A. (1972) On fuzzy mapping and control.
IEEE Tmnsactions on Systems, Man and Cybernetics, SMC-2, 30- 34.

CHEN, Y.Y. and TSAO, T.C. (1989) A description of the dynamical behavior
of fuzzy systems. IEEE Tmnsactions on Systems, Man and Cyber-netics,
19, 745- 755.

CzoGALA, E. and PEDRYCZ, W. (1981) On identification of fuzzy systems
and its application in control problems. F?J.zzy Sets and Systems, 6, 73- 83.

CzoGALA, E. and PEDRYCZ, W. (1984) Identification and control problems
in fuzzy systems. TIMS Stv.dies in the Management Sciences5 20, 447-
466.

DAVIS , L. (1991) Handbook of Genetic Algorithms. Van Nostrand Reinhold,
New York.

DELGADO, M., KACPRZYK, J., VERDEGAY, J.L. and VILA, M.A., eds.
(1994)F7j,zzy Optimization: Recent Advances, Physica-Verlag, Heidelberg.

1212 J . KACPRZYK

DRIANKOV ,D. , HELLENDOORN, H. and REINFRANK, M. (1993) An Intr-o
duction to Fv.zzy Control. Springer-Verlag, Berlin .

ESOGBUE, A .O. (1991) Computational aspects and applications of a branch
and bound algorithm for fuzzy multistage decision processes. Computers
and Mathematics with Applications, 21, 117- 127.

ESOGBUE, A.O. and BELLMAN, R.E . (1984) Fuzzy dynamic programming and
its extensions. TIMS/Stv.dies in the Management Sciences, 20, 147- 167.

EsOGBUE, A.O., FEDRIZZI, M. and KACPRZYK, J. (1988) Fuzzy dynamic pro
gramming with stochastic systems. In J. Kacprzyk and M. Fedrizzi, eds .,
Combining Fuzzy ImpTecision with Probabilistic UnceTtainty in Decision
Making. Springer-Verlag, Berlin/New York, 266- 285.

FILE V, D. and ANGELOV, P. (1992) Fuzzy optimal control. Fuzzy Sets and
Systems, 47, 151- 156.

FRANCELIN, R.A. and GOMIDE, F.A.C. (1992) Neural network to solve fuzzy
discrete programming problems. Tech. Rep . 018/92, DCA/FEE UNI
CAMP, Campinas, Brazil.

FRANCELIN, R.A. and GOMIDE, F.A.C. (1993) A neural network for fuzzy
decision making problems. Pmceedings of Second IEEE InteTnational
ConfeTence on Fuzzy Systems - FUZZ-IEEE'93 (San Francisco, CA, USA),
1, 655-660.

FRANCELIN, R.A., GOMIDE, F.A.C. and KACPRZYK, J. (1995) A class of neu
ral networks for dynamic programming. Pmceedings of Sixth InteTnational
Fv.zzy Systems Association WoTld CongTess {Sao Paolo, Brazil) , 11, 221-
224.

FuNG, L.W. and F u, K.S . (1977) Characterization of a class offuzzy optimal
control problems. In: M.M. Gupta, G.N. Saridis and B.R. Gaines, eds.,
Fuzzy Automata and Decision Pmcesses, New York: North-Holland , 209-
219.

KACPRZYK, J . (1977) Control of a nonfuzzy system in a fuzzy environment
with a fuzzy termination time. Systems Science, 3, 320- 334.

KACPRZYK, J. (1978A) A branch-and-bound algorithm for the multistage con
trol of a nonfuzzy system in a fuzzy environment . Control and CybeTnetics,
7, 51- 64.

KACPRZYK, J. (1978B) Control of a stochastic system in a fuzzy environment
with a fuzzy termination time. Systems Science, 4, 291- 300.

KACPRZYK, J. (1978c) Decision-making in a fuzzy environment with fuzzy
termination time. Fuzzy Sets and Systems, 1, 169- 179.

KACPRZYK , J. (1979) A branch-and-bound algorithm for t he multistage con
trol of a fuzzy system in a fuzzy environment. Kybernetes, 8, 139- 147.

KACPRZYK, J. (1983A) Multistage Decision Making 11.ndeT Fuzziness, Verlag
TUV Rheinland, Cologne.

KACPRZYK, J. (1983B) A generalization of fuzzy multistage decision making
and control via linguistic quantifiers. International Journal of Contml,
38 , 1249- 1270.

Multistage control under fuzziness using genetic algorithms 1213

KACPRZYK, J. (1986) Towards 'human-consistent' multistage decision making
and control models via fuzzy sets and fuzzy logic. Bellman Memorial Issue
(A.O. Esogbue, Ed.), Fv.zzy Sets and Systems, 18, 299-314.

KACPRZYK, J. (1987) Stochastic systems in fuzzy environments: control. In:
M.G. Singh, ed., Systems and Control Encyclopedia, Pergamon Press, Ox
ford, 4657- 4661.

KACPRZYK , J. (1992) Fuzzy logic with linguistic quantifiers in decision making
and c"ontrol. Archives of Control Sciences, 1, XXXVII, 127- 141.

KACPRZYK , J. (1993A) Interpolative reasoning in optimal fuzzy control. Pr-o
ceedings of Second IEEE Inter-national Conference on Fv.zzy Systems
- FUZZ- IEEE '93 (San Francisco, CA, USA), 11, 1259-1263.

KACPRZYK, J. (1993B) Fuzzy control with an explicit performance function
using dynamic programming and interpolative reasoning. Proceedings of
First European Congress on F1;,zzy and Intelligent Technologies - EU
FIT'93 (Aachen, Germany), 3, 1459- 1463.

KACPRZYK, J . (1993c) Interpolative reasoning for computationally efficient
optimal fuzzy control. Proceedings of Fifth Inter-national Fuzzy Systems
Association Wor-ld Congress '98 (Seoul, Korea), 11, 1270- 1273.

KACPRZYK, J., (1994) Fuzzy dynamic programming- basic issues. In M. Del
gado, J. Kacprzyk, J.-L. Verdegay and M.A. Vila, eds., Fv.zzy Optimiza
tion: Recent Advances, Physica-Verlag, Heidelberg, 321-331.

KACPRZYK, J. (1995A) A genetic algorithm for the multistage control of a
fuzzy system in a fuzzy environment. Proceedings of Joint Third InteT
national IEEE ConfeTence on Fv.zzy Systems and Second Inter-national
Symposium on Puzzy EngineeTing - FUZZ-IEEE'95/IFES'95 (Yokohama,
Japan), Ill, 1083- 1088

KACPRZYK, J. (1995B) Multistage fuzzy control using a genetic algorithm.
PToceedings of Sixth Wor-ld International Fv.zzy Systems Association Con
gress (Sa6 Paolo, Brazil), 11, 225- 228

KACPRZYK , J. (1995c) A modified genetic algorithm for multistage control of
a fuzzy system. Proceedings of Third European Congress on Intelligent
Techniqv.es and Soft Computing -' EUFIT'95 (Aachen, Germany), 1, 463-
466.

KACPRZYK, J. (1997) Mv.ltistage Fv.zzy Control. Wiley, Chichester.
KACPRZYK, J. and ESOGBUE, A.O. (1996) Fuzzy dynamic programming:

main developments and applications. Fv.zzy Sets and Systems, 81, 31-
46 .

KACPRZYK, J . and IWANSKI, C. (1987) A generalization of discounted multi
stage decision making and control through fuzzy linguistic quantifiers: an
attempt to introduce commonsense knowledge. Inter-national Journal of
Contr-ol, 45 , 1909-;-1930.

KACPRZYK, J ., SAFTERUK, K. and STANIEWSKI, P. (1981) On the control of
stochastic systems in a fuzzy environment over infinite horizon. Systems
Science, 7, 121- 131.

1214 J. KACPRZYK

KACPRZYK, J. and STANIEWSKI, P. (1980) A new approach to the control
of stochastic systems in a fuzzy environment. Archiwum Av.tomatyki i
Telemechaniki, XXV, 433- 443.

KACPRZYK, J. and STANIEWSKI, P. (1982) Long-term inventory policy-ma
king through fuzzy decision-making models. Fuzzy Sets and Systems, 8,
117- 132.

KACPRZYK, J. and STANIEWSKI, P. (1983) Control of a deterministic system
in a fuzzy environment over an infinite planning horizon. F?;,zzy Sets and
Systems, 10, 291- 298.

KACPRZYK, J. and STRASZAK, A. (1984) Determination of stable trajecto
ries for integrated regional development using fuzzy decision models. IEEE
Tr-ansactions on Systems, Man and Cybernetics, SMC-14, 310- 313.

KACPRZYK, J. and YAGER, R.R. (1984) "Softer" optimization and control
models via fuzzy linguistic quantifiers. Information Sciences, 34, 157-
178.

KAUFMANN, A. and GUPTA, M.M. (1985) Introduction to Fv.zzy Mathematics
- Theory and Applications. Van Nostrand Reinhold, New York.

KLIR, G.J. and YUAN, B. (1995) Fv.zzy Sets and Fv.zzy Logic: Theory and
Application. Prentice-Hall, Englewood Cliffs, NJ.

KoMOLOV, S.V., MAKEEV, S.P., SEROV, G.P. and SHAKHNOV, I.F. (1979)
On the problem of optimal control of a finite automaton with fuzzy con
straints and fuzzy goal (in Russian). Kybernetika (Kiev), 6, 30- 34.

Lru, B.D. and EsoGBUE, A.O. (1996) Fuzzy criterion set and fuzzy criterion
dynamic programming. Jov.rnal of Mathematical Analysis and Applica
tions, 199, 293- 311.

MAMDANI, E.H. (1974) Application of fuzzy algorithms for the control of a
simple dynamic plant. Proceedings of lEE, 121, 1585- 1588.

MICHALEWICZ, Z. (1994) Genetic Algorithms + Data Struct7J.T·es = Genetic
Progmmming. Springer-Verlag, Heidelberg.

PEDRYCZ, W. (1993) Fv.zzy Contr-ol and Fv.zzy Systems. Research Studies
Press/Wiley, Taunton/New York (Second edition).

PEDRYCZ, W., ed. (1996) Fv.zzy Modelling: Paradigms and Pmctice. Kluwer,
Boston.

ROCHA, A.F. (1993) Nev.ral Nets: A Theory for Brain and Machines. Springer
Verlag, Heidelberg.

SuGENO, M. and YASUKAWA, T. (1993) A fuzzy-logic-based approach to qual
itative modeling. IEEE Transactions on Fuzzy Systems, FS-1, 7- 31.

YAGER, R.R. and FILEV, D.P. (1994) Foundations of Fv.zzy Contml. Wiley,
New York.

YAGER, R.R. and KACPRZYK, J., eds. (1997) The Ordered Weighted Averag
ing Operators: Theor-y, Methodology and Applications. Kluwer, Boston.

ZADEH, L.A. (1965) Fuzzy sets. Infor-mation and Control, 8, 338- 353.
ZADEH, L.A. (1972) A rationale for fuzzy control. Measurement and Contml,

34, 3- 4.

Multistage control under fuzziness using genetic algorithms 1215

ZADEH , L.A. (1973) Outline of a new approach to the analysis of complex
systems and decision processes. IEEE Transactions on Systems, Man and
Cybernetics, SMC-2, 28- 44.

ZADEH, L.A. and KACPRZYK, J., eds. (1992) F112zy Logic for the Manage
ment of Uncertainty, Wiley, New York.

ZIMMERMANN , H.-J. (1976) Description and optimization of fuzzy systems.
International Jo11.rnal of General Systems, 2, 209-215.

ZIMMERMANN, H.-J. (1996) Fv.zzy Set Theory and its Applications. Kluwer,
Boston (Third edition).

	Bez nazwy

