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Abstract: We consider the classic Bellman and Zadeh's (1970) 
multistage control problem under fuzzy constraints imposed on con­
trols applied and fuzzy goals imposed on states attained. The fuzzy 
decision, serving the purpose of a performance function, is the inter­
section of the fuzzy constraints and goals. An optimal sequence of 
controls is sought which maximizes the fuzzy decision over a fixed 
and specified planning horizon. The basic cases of deterministic 
and fuzzy systems under control are discussed. The use of a ge­
netic algorithm is shown to be a viable alternative to the tradi­
tionally employed solution techniques: Bellman and Zadeh's (1970) 
dynamic programming, augmented with Kacprzyk's (1993a- c) in­
terpolative reasoning, Kacprzyk's (1978a, 1979) branch-and-bound, 
and Francelin and Gomide's (1992, 1993) and Francelin, Gomide and 
Kacprzyk's (1995) neural-network-based approach. 
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1. Introduction 

In recent years we witness an unprecedented interest in fuzzy (logic) control, 
which is triggered and amplified by successful applications in both specialized 
areas (e.g., control of technological processes, cranes, elevators) and everyday 
products (e.g., washing machines , refrigerators, cameras). 

Fuzzy (logic) control was introduced by Mamdani (1974), and its essence 
(even including newer approaches as, e.g., neuro-fuzzy control) may be summa­
rized as follows: 

• the model of the process under control is unknown or too expensive to 
derive, and we "do not care" about it; 

• an experienced process operator knows how to well control the process, 
and this knowledge may be expresses by some linguistic IF- THEN rules, 
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Figure 1. A general framework of the prescriptive, model-based approach to 
multistage fuzzy control 

• the operator is, however, not sure what his or her performance function 
is, and if controls are the "best" (optimal). 

Notice that this is clearly a descriptive, non-model-based approach. 
The above may be viewed as contradicting the traditional control paradigm 

which may be outlined as follows: 
• a (fuzzy, in general) model of the system under control is known, 
• an explicit performance function is known, 
• best (optimal) controls are sought (by an algorithm). 
Notice that this is clearly a prescriptive, model-based appmach. 
Fortunately enough , such a prescriptive, model-based approach can also be 

devised for fuzzy control. In fact , it is even earlier as its roots are seminal 
Chang's (1969a, b) and Bellman and Zadeh's (1970) papers. For details we 
refer the interested reader to Kacprzyk's (1983a, 1997) books. 

Basically, the general control framework adopted in those works , and also in 
this article, may be depicted as in Figure 1. 

We start from an initial state at control stage (time) t = 0, x0 , apply a 
control at t = 0, u0 , attain a state at time t = 1, x 1 , apply v.1 , .. . . Finally, 
being at control stage t = N -1 in state XN-l we apply control v .N-l and attain 
the final state x N. 

The dynamics of the system under control, S, is assumed known and given by 
state transitions from state Xt to Xt+l under control Ut, the consecutive controls 
applied Ut arc subjected to fuzzy constraints et, and on the states attained Xt+l 

fuzzy goals Gt+ 1 are imposed, t = 0, 1, . .. , N - 1. 
The performance (goodness) of the control process is gauged by some ( ag­

gregation) measure of how well , at all the consecutive control stages, the fuzzy 
constraints on controls and fuzzy goals on states are satisfied. And an optimal 
sequence of controls at the consecutive control stages, v.0, . .. , u]V _ 1 , is sought 
(to be determined by an algorithm). 

Notice t hat in this framework we proceed in a sequential manner, at discrete 
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control stages, and hence the problem conside'red is termed multistage fuzzy 
control. 

It can be seen that the above general scheme of a prescriptive approach to 
multistage fuzzy control may be viewed to give rise to the following general 
pmblem classes, for the following types of the termination time and system 
under control: 

• type of termination time: 

1. fixed and specified in advance, 

2. explicitly specified (as the moment of entering for the first time a 
termination set of states), 

3. fuzzy, and 

4. infinite; 

• type of system under contml: 

1. deterministic, 

2. stochastic, and 

3. fuzzy. 

For the solution of the above problem classes, a variety of techniques has 
been proposed, mostly of dynamic programming and branch-and-bound type, 
see Kacprzyk (1997). 

In this paper we will consider the basic case of a fixed and specified termi­
nation time, and the deterministic and fuzzy systems under control. We will 
indicate conceptual and numerical difficulties in the use ofthe above mentioned 
traditional solution techniques, and propose the use of a genetic algorithm which 
is conceptually simple, and proves to be numerically efficient. 

In Section 2 we will briefly present Bellman and Zadeh's (1970) general ap­
proach to decision making under fuzziness which will be employed as a frame­
work. In Section 3 we will outline how to use Bellman and Zadeh's (1970) 
approach to formulate multistage fuzzy control problems. In Section 4 we will 
first consider multistage fuzzy control with a deterministic system, and then 
show how a genetic algorithm can be employed for solution. In Section 5 we. 
will first consider multistage fuzzy control with a fuzzy system, and then show 
how a genetic algorithm can be employed for solution. In Section 6 we provide 
some concluding remarks, and then an extensive list of literature. 

Our fuzzy-sets-related notation will be standard. A fuzzy set A in X = { x} 
will be characterized (and practically equated with its membership function 
!LA :X---> [0, 1] such that fLA(x) E [0, 1] is the grade of membership of element 
.T E X in fuzzy set A. The operations on fuzzy sets will be assumed standard, 
in particular the intersection of A and B in X will be defined as fL AnB ( x) = 

/LA(x) /\ flB(x) = min[ILA(x ), /LB(x)], for each x EX. Moreover, the use of other 
operations, notably t-norms, will be mentioned. Details on these and other 
related aspects can be found in any book on fuzzy sets theory such as Klir and 
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Yuan (1995). However, an initial chapter on fuzzy sets theory in Kacprzyk's 
(1997) book may better serve this purpose as discussions are there tailored to 
the specifics of multistage fuzzy control. 

2. Multistage fuzzy control in Bellman and Zadeh's setting 

In this section we will provide the reader with a brief introduction to Bellman 
and Zadeh's (1970) general approach to decision making under fuzziness, orig­
inally termed decision making in a fu,zzy environment, a simple yet extremely 
powerful framework within which virtually all fuzzy models related to decision 
making, optimization and (optimal) control have been dealt with. This frame­
work will also be employed in our next discussions. 

2.1. Decision making in a fuzzy environment in Bellman and Zadeh's 
setting 

In Bellman and Zadeh'::; (1970) setting the imprecision (fuzziness) of the envi­
ronment within which decision making (or control) proceeds is modeled by the 
so-called fuzzy environment which consists of fuzzy goals, fuzzy constraints, and 
a fuzzy decision. 

We start with the assumption of some set of possible (feasible, relevant, ... )• 
options (alternatives, variants, choices, decisions, . .. ) denoted by X= {x}. 

The fv.zzy goal is now defined as a fuzzy set G in the set of options X , 
characterized by its membership function /.LG :X ----+ [0, 1] such that f.Lc(x) E 
[0, 1] specifies the grade of membership of a particular option :r E X in the fuzzy 
goal G. 

The fuzzy constraint is similarly defined as a fuzzy set C in the set of options 
X, characterized by its membership function f.LC: X----+ [0, 1] such that f.Lc(x) E 
[0, 1] specifies the grade of membership of a particular option x EX in the fuzzy 
constraint C . 

For example, suppose that X = R, the set of real numbers. Then the fuzzy 
&oal ".7: should be much larger than 5" may be represented by a fuzzy set whose 
membership function, f.Lc(.'E), is shown in Figure 2. On the other hand, the 
fuzzy constraint "x should be more or less 6" may be represented by a fuzzy set 
whose membership function, f.Lc(x), is also shown in Figure 2. 

An important issue is how the fuzzy goal and fuzzy constraint are to be 
interpreted. On the one hand, if we suppose that f : X ----+ R is a conventional 
performance (objective) function which associates with each x EX a real num­
ber f(x) E R, and if we denote M = maxxEX f(.'E), assuming M :<::; oo, then 
/.LG ( x) can be defined as a normalized performance function f, i.e. 

f.Lc(x) = f(x) = f(x) , 
M maxxEX f(x) 

for each x EX (1) 
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Figure 2. Fuzzy goal, fuzzy constraint, fuzzy decision, and the optimal (maxi­
mizing) decision 

On the other hand, a fuzzy goal may be viewed from a different perspective, 
which is presumably more convenient for our discussions, in terms of satisfaction 
levels. The piecewise linear membership function of G in Figure 2 should be 
understood as: if the value of x attained is at least xc (equal 8), which is the 
satisfaction level of ::r:, then J.Lc(x) = 1 which means that we are fully satisfied 
with x. If the x attained does not exceed ::fc ( = 5), which is the lowest possible 
value of x, then J.Lc ( x) = 0 which means that we are fully dissatisfied with such 
a value of x . For the intermediate values, ::fc < x < xc , we have 0 < J.Lc(x) < 1 
which means that our satisfaction as to a particular value of x is intermediate. 
The meaning of C is analogous. The above interpretation provides a "common 
denominator" for the fuzzy goal and fuzzy constraint which may be treated in an 
analogous way which is one of merits of Bellman and Zadeh's (1970) approach. 

Now the following general formulation of the decision making problem in a 
fuzzy environment may be postulated: 

"Attain G and satisfy C" (2) 

The fuzziness of the fuzzy goal and fuzzy constraint implies the fuzziness of 
the outcome (decision), which is called a fuzzy decision, and is a result of some 
aggregation of the fuzzy goal and fuzzy constraint which is equivalent to the 
intersection of two fuzzy sets that corresponds to the "and" connective. 

Formally, if G is a fuzzy goal and C is a fuzzy constraint , both defined as 
fuzzy sets in X = { x}, the fuzzy decision D is a fuzzy set defined also in X such 
that 

f..LD( .T) = J.Lc(x) 1\ J.Lc(x), for each x EX (3) 

where "A" is the minimum operation, i.e. a 1\ b = min(a, b). 
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Example 1 Suppose that G is "x should be much larger than 5", and C is "x 
should be more or less 6" , as in Figure 2. The membership function of fuzzy 
decision is given in bold line, and should be interpreted as follows. The set of 
possible options is the interval [5, 10] because f..Ln(x) > 0, for 5 ::=; x ::=; 10. The 
other options, i.e. x < 5 and x > 10 are impossible since f..Ln(.T) = 0. The value 
of f..Ln(x) E [0, 1] may be meant as the degree of satisfaction from the choice of 
a particular x E X, from 0 for full dissatisfaction (impossibility of x) to 1 for 
full satisfaction, through all intermediate values; thus, the higher the value of 
JJ.n(x), the higher the satisfaction from .T. D 

Note that in Figure 2, f..Ln(.T) < 1 which means that there is no option which 
fully satisfies both the fuzzy goal and fuzzy constraint. In other words, there is 
a discrepancy or conflict between the goal and constraint. 

The fuzzy decision provides a fuzzy solution to the decision making problem 
(2). In practice, however, if we wish to implement such a solution, we need to 
find a nonfuzzy solution. A straightforward choice is here the one corresponding 
to the highest value of f..Ln(x). 

The maximizing decision is defined as an x* E X such that 

(4) 

and an example may be found in Figure 2 where x* = 7.5. 
The fuzzy decision (3), the so-called min- type fuzzy decison, is the most 

widely used , but one can use other aggregation operators, notably t-norms; 
details can be found in Kacprzyk's (1997) book. In the following we will employ 
the min- typc fuzzy decision only, tacitly assuming that our discussions will be 
extendable (in most cases) to other types of fuzzy decision. 

The case of one fuzzy goal and fuzzy constraint is very illustrative, but in all 
nontrivial practical problems we face multiple fuzzy goals and fuzzy constraints. 

Suppose that we have n > 1 fuzzy goals, G 1 , ... , Gn, and m > 1 fuzzy 
constraints, C1 , ... , Cm, all defined in X. 

The fuzzy decision can be defined analogously as in the case of one fuzzy 
goal and one fuzzy constraint, that is 

f..Ln(x) =f..Lc1 (x)/\ ... f..Lcn(x)/\ 

/\f..Lc1 (x) 1\ ... 1\ f..LC, (x), for each x EX 

The maximizing decision x* E X is found as in ( 4) , i .e. 

(5) 

Our discussion of the Bellman and Zadeh's (1970) approach has concerned so 
far the fuzzy goals and fuzzy constraints defined in the same space X. However, 
for the issues considered here, and for virtually all applications in general, an 
extension of the approach is needed to cover the case of fuzzy goals and fuzzy 
constraints defined as fuzzy sets in different spaces. 
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Suppose that the fuzzy constraint C is defined as a fuzzy set in X = { x }, 
and the fuzzy goal G is defined as a fuzzy set in Y = {y}. Moreover, suppose 
that a function f : X ______, Y, y = f(x), is known. Typically, X and Y may be 
sets of options and outcomes, causes and effects, etc. 

The ind11,ced j11.zzy goal G' in X generated by the given fuzzy goal G in Y is 
defined as 

P.c'(x) = p.c[f(x)], for each x EX (6) 

Example 2 Let X= {1, 2, 3, 4}, Y = {2, 3, ... , 10}, and y = 2x + 1. If now 

G = 0.1/2 + 0.2/3 + 0.4/4 + 0.5/5 + 0.6/6 + 0.7/7 + 0.8/8 + 1/9 + 1/10 

then 

G' = p.c(3)/1 + p.c(5)/2 + p.c(7)/7 = 0.2/1 + 0.5/2 + 0.7/3 + 1/4 

D 

The fnzzy decision is now defined analogously, i.e. as 

p,D(x) = fJ.G'(x) 1\ p.c(x), for each x EX (7) 

Finally, for n > 1 fuzzy goals G1 , ... , Gn defined in Y, m > 1 fuzzy con­
straints C1 , ... , Cm defined in X, and a function f : X ______, Y, y = f(x), we 
have 

/£-v (X) = !J,G~ (X) 1\ 00 

' 1\ fJ,G;, (X) 

1\ fJ.C 1 (x) 1\ 00 ·I\ P.c"(x), for each x EX (8) 

In all the types of fuzzy decision, an optimal decision is assumed, analogously 
as in the case of one fuzzy goal and one fuzzy constraint , to be the max·imizing 
decision defined as (4), i.e. JJ.D(x*) = maxxEX JJ.D(x). 

We are now in a position to proceed to the formulation of multistage fuzzy 
control problems in Bellman and Zadeh's (1970) setting presented in this section. 

3. Multistage fuzzy control in Bellman and Zadeh's set-
ting 

Now, we will apply the general Bellman and Zadeh's (1970) approach presented 
in Section 2 to formulate multistage fuzzy control problems. Decisions will be 
referred to as contTOls, the discrete time moments at which decisions are to be 
made - as control stages, and the input- output (or cause- effect) relationship ­
as a system nnder· contr-ol. 

We will start with the basic, simpler case of a deterministic system under 
control, and then proceed to the case of a fuzzy system. 
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Suppose that the control space is U = { v.} = { c1 , .. . , cm} and the state 
space is X = { x} = { s1 , .. . , sn}, and both are assumed finite. For simplicity, 
the control is equated with the input, and the state with the output. 

The contr-ol pmcess proceeds basically as it has already been depicted in 
Figure 1. In the beginning we are in an initial state x0 E X . We apply a 
control v.0 E U which is subjected to a fuzzy constraint flea ( u0 ). We attain 
a state x1 E X via a known input- output (cause- effect) relationship, i.e. a 
state transition equation of the system under control S; a fuzzy goal flGl (x1 ) 

is imposed on x1 . Next, we apply a control u1 which is subjected to a fuzzy 
constraint fle1(u1), and attain a fuzzy state Xz on which a fuzzy goal flG2(x 2 ) 

is imposed, etc. 
The states and state transition equations (i .e. the system under control) 

can be deterministic, stochastic and fuzzy. In this paper we assume the basic 
cases of a deterministic and fuzzy systems under control. The formulation and 
analysis of the control process for each of them is different , and will now be 
consecutively discussed. 

3.1. The case of a deterministic system under control 
., 

Suppose that the system under control is deterministic and its temporal evolu­
tion is governed by a state tr-ansition eqv.ation 

t = 0, 1,' .. (9) 

where Xt, Xt+l E X = { s 1 , . .. , Sn} are the states at control stages t and t + 1, 
respectively, and Ut E U = { c1 , ... , cm} is the control at control stage t . 

At each control stage t, t = 0, 1, ... , the control applied Ut E U is subjected 
to a fv.zzy constmint fle'(v.t ), and on the state attained Xt+l EX a fv.zzy goal 
is imposed . 

The initial state is x0 E X and is assumed to be known, and given in advance. 
The t'ermination time (planning, or control, horizon), i.e . the maximum number 
of control stages, is denoted by NE {1, 2, .. . }, and is assumed to be fixed and 
specified in advance throughout this paper. 

The perfonnance (goodness) of the multistage fuzzy control process is eval­
uated by the fuzzy decision 

flD(ua, ... ,v.N-ll xo) = 

flea ( V.o) /\ flGl (xi) /\ · · · (\ JLeN -1 ( 'IJ,N-1) (\ flGN (.'EN) (10) 

In most cases, however, a slightly simplified form of the fuzzy decision is 
used by assuming that all the subsequent fuzzy controls, uo , u1, .. . , V·N-l, are 
subjected to the fuzzy constraints, flea(v.o),flel(v.l), . .. ,fleN-l(v.N-l), while 
the fuzzy goal is just imposed on the final state XN, flGN(xN)· In such a case 
the fuzzy decision becomes 
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We will basically assume such a simplified form of the fuzzy decision in the 
following, but this will not limit the generality of discussion. 

The multistage control problem in a fuzzy environment is now formulated as 
to find an optimal sequence of controls v0, .. . , v.jy _1 , u; E U, t = 0, 1, ... , N -1, 
such that . 

J-lD(v.0, ... ,vjy_1 fxo)= max J-lD(ua, ... ,vN-1Ixo) 
UQ, ... ,'UN-lEU 

(12) 

This problem can be solved using the following two basic traditional tech­
niques: 

• dynamic prog.ramming, and 
• branch-and-bound, 

and also using the following two new ones: 
• a neural network, and 
• a genetic algorithm. 
In this section we will outline the use of the three first techniques, and it 

will be obvious that they suffer from numerical problems (the infamous curse of 
dimensionality) caused by a combinatorial character of the problem considered. 

In Section 4 we will present the solution by using a genetic algorithm. 

' 3.1.1. Solution by dynamic programming 

The application of .dynamic programming for the solution of problem (12) was 
proposed in the seminal paper of Bellman and Zadeh (1970). 

First, let us slightly rewrite (12) as to find u0, ... , vjy _1 such that 

J-lD( v.0, ... , v,N - 1 I .To) = max [J-lco ( vo) 1\ ... 
ua, ... ,uN-1 

(13) 

Clearly, its structure makes the application of dynamic programming possi­
ble. Namely, the last two right-hand-side terms, i.e. 

depend only on control VN-1 and not on any previous controls, and hence the 
maximization over u 0 , ... , v,N_ 1 in (13) can be divided into: 

• maximization over v.0 , ... , VN-2, and 
• maximization over VN-1, 

that is 

J-lD(v.0, .. ·, v'N-1 I xo) = 

max {J-lco(vo) 1\ ... I\ J-lcN-2(VN-2) 1\ 
uo, .. . ,uN-2 

(14) 
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And further, continuing the same line of reasoning, for uN_2, v,N_3, etc. we 
arrive at the following set of dynamic programming recurrence equations: 

{ 
flcN ~i (x!::_i) = maxu.N_JflcN-i(~-i) A flcN-i+ l (XN-i+l)] (15) 
XN-1.+1- f(xN_,, v,N_,), ~- 0, 1, ... , N 

where flcN -i(XN-i)· may be regarded as a fuzzy goal at control stage t = N - i 
induced by the fuzzy goal at t = N- i + 1, i = 0, 1, . .. , N. 

The optimal sequence of control sought, u0, ... , ujV_ 1, is given by the succes­
sive maximizing values of v.N-i, i = 1, ... , N in (15). Each such a maximizing 
value, v.jV_i is obviously obtained as a function of XN-i, i.e. a policy. 

Example 3 Suppose that X= {81,82,83}, U = {c1, c2 }, N = 2, and fuzzy 
constraints and fuzzy goal are 

C0 = 0. 7 I Cl + 1 I C2 

C 1 = 11c1 + 0.8lc2 
C2 = o.31 81 + 1182 + o.s183 

and the state transition equation (9) is given as 

Xt+ l = (16) 

First, using (15) fori= 1, we obtain C 1 = 0.6181 +0.8182 +0.6183, and the 
corresponding optimal control policy 

ai(sl) = c2 ai(82) = c1 ai(83) = c2 

Next, (15), fori= 2, yields G0 = 0.8181 + 0.6ls2 + 0.6183 and the corre­
sponding optimal control policy 

Therefore, for instance, if we start at t = 0 from .To = 81, then v.0 = 
a0(sl) = c2 and we obtain x1 = 82. Next, at t = 1, ui = ai(82) = c1 and 
fLD(u0,v.i I si)= fi.D(c2,c1 I 81) = 0.8. D 

3.1.2. Solution by branch-and-bound 

As an alternative to dynamic programming for solving problem (12), a branch­
and-bound approach was proposed by Kacprzyk (1978a). 

The branch-and-bound procedure starts from the initial state x 0 . We apply 
control u 0 and proceed to state x1. Next, we apply u1 and proceed to x2, etc. 
Finally, being in XN-l, we apply V·N-l and attain XN. 

This may be represented as a decison tree whose nodes are associated with 
the particular states obtained, and whose edges represent the controls applied. 
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To each path there corresponds some value of the fuzzy decision (11) [or (10)], 
and the problem is to find the one with the highest value. 

The branch-and-bound procedure is basically an implicit enumeration scheme 
(equivalent to the traversing of a possibly small number of paths in the decison 
tree) the very essence of which boils down to the answering of the following 
question: 

If we currently (at the current control stage) arrive at some node 
(state) , then to which node (out of those traversed so far) should we 
most rationally (to proceed further along the currently most promis­
ing path) add next edges (controls)? 

To present the idea of Kacprzyk's (1978a) approach, let us first denote 

VN _ 1 = J.Lco ( Uo) 1\ .. . 1\ J.lCN-1 ( UN-1) = VN-2 1\ f.LCN-1 ( UN-1) 
VN = J.Lco( uo) 1\ . .. 1\ J.lCN - 1 (UN -1) 1\ j.LQN (XN) = 

= vN_ 1 1\ J.LaN(xN) = J.LD(u0, ... ,v·N- 1 I xo) 

(17) 

The use of "/\" (minimum) implies that if we consider some sequence of 
controls u 0 , ... , v.k, 0 < k < N- 1, then, for each k < w ::; N- 1: 

(18) 

because, due to "/\", by "adding" to vk any further terms we cannot increase 
the value of Vw. 

In particular, there also holds 

(19) 

Now, if we are at the k-th control stage, and have traversed so far some 
nodes and edges (from xo to Xk), the most promising current choice is to choose 
the most promising node, i.e. the one which corresponds to the greatest value of 
vi attained so far, i- 1, . .. , k. The other nodes cannot lead (at that particular 
moment!) to any optimal solution since they cannot obviously yield any higher 
value of vi if we add next edges. 

The above property of the min-type fuzzy decision makes it possible to devise 
a branch-and-bound algorithm in which the branching is through the controls 
applied at the consecutive control stages, and the bounding is via the values of 
the particular vk 's, k = 0, ... , N. For details, we refer the interested reader to 
Kacprzyk's (1983a, 1997) books. 

Evidently, by solving Example 3 we obtain the same results as for dynamic 
programming. 
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3.1.3. Solution by an artificial neural network 

This nonconventional solution techniques for solving problem (12) was proposed 
by Francelin and Gomide (1992, 1993), and Francelin, Gomide and Kacprzyk 
(1995). 

Basically, we start with the dynamic programming formulation for solving 
problem (12) presented in Section 3.1.1. 

First, we rewrite the dynamic programming recurrence equations (15) as 

JlcN-i (XN-i) = 

= max [JlcN - i ( UN-i) 1\ JlGN-i (XN-i) 1\ Jl(JN-i+l (XN-i+l)l 
UN-i~------------------~-------------------' 

minimization at t = N - i (20) 

maximization at t = N - i 
XN-i+l = j(XN-i, UN- i ); i = 0, 1, ... 'N 

So, proceeding backwards from the final (t = N) to the initial (t = 0) control 
stage, at each particular control stage we perform two phases: 

• minimization, and 
• maximization 

as schematically shown in (20). 
Such a flow of computation "minimization at t = N- 1, maximization at 

t = N - 1, minimization at t = N - 2, maximization at t = N - 2, ... , 
minimization at t = 0, maximization at t = 0" may be modeled by a special 
neural network. 

First, note that it cannot be a traditional neural network since we have here 
some "non-traditional" operations: the minimum "/\" and the maximization. 
We need some special types of neurons which may implement these two opera­
tions. Luckily enough, such neurons may be obtained as special cases of some 
generalized recurrent neurons proposed by Rocha (1993). 

Francelin and Gomide's (1992, 1993) neural network for solving fuzzy dy­
namic programming problems is composed of alternate layers of min-type and 
max-type neurons [corresponding to the minimization and maximization phases 
indicated in (20)] of the type defined above. 

The network's weights are not derived by training in usual manner, i.e. by 
feeding the network with examples, but are somehow designed, or even predeter­
mined by the description of the problem (state transitions, fuzzy constraints and 
goals, etc.). So, from some points of view it may regarded as not a "real" neural 
network. However, on the other hand, it has a clear neural network topology, 
and - what is crucial for our purposes - it exhibits an inherent parallelism in 
its operation. 

It is proved (Francelin and Gomide, 1992, 1993; Francelin, Gomide and 
Kacprzyk, 1995) that the above method yields the same results as dynamic 
programming presented in Section 3.l.i. 
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A detailed description of this approach is beyond the scope of our discussion, 
and the interested reader is referred to the source work of Francelin and Gomide 
(1992, 1993), or - even better - to Kacprzyk's (1997) book. 

3.2. The case of a fuzzy system under control 

In this section we will consider the case of a fuzzy system under control whose 
dynamics is given as a state transition equation 

t = 0, 1, ... (21) 

where Xt, Xt+1 E X are fuzzy states at control stage t and t + 1, respectively, 
and Ut E U is a fuzzy control at control stage t, t = 0, 1, ... ; U = { C1 , ... , C1} 

is the set of fuzzy controls, and X = { S1, ... , Sq} is the set of fuzzy states. 
The state transition equation (21) may be equated with a conditioned fuzzy 

set whose membership function is fJ.x,+ 1 (xt+l I Xt, Ut), and then the state tran­
sitions are governed by (Kacprzyk, 1997): 

fl.x,+1 (xt+l) = 

for each Xt+l E X (22) 

Notice also the the above general form of a state transition relation can be 
represented in various forms exemplified by a state transition equation itself, 
IF- THEN rules, a neural network, etc. This wiH not be considered here and 
we will refer the interested reader to Kacprzyk (1997). Moreover, we will not 
discuss the relevant problem of identification of fuzzy systems under control 
see, Cao and Rees (1992), Czogala and Pedrycz (1981, 1984), Kacprzyk (1997), 
Pedrycz (1993, 1996), Sugeno and Yasukawa (1993), etc.]. 

First, it should be noted that in case of the deterministic system under 
control, the consecutive controls , applied, v.0 , ... ,v.N-l E U, and the states 
attained, x 1 , ... , XN E X, were nonfuzzy, hence we could directly determine 
their grade of membership in the fuzzy constraints, fJ.co (no), ... , fJ.cN-1 ( v,N_I), 
and in the fuzzy goals, fl.Gl (x1 ), ... , fl.GN (xN ), respectively (see Section 2). 

In the case of a fuzzy system the control applied and states attained are fuzzy, 
and their grade of membership in the fuzzy constraints and in the fuzzy goal 
cannot be directly determined, and some manipulation ("trickery") is needed 
which will be employed below. 

Suppose that at each t, Ut E U is subjected to a fuzzy constraint fi.C' (ut), and 
on the resulting Xt+l E X a fuzzy goal fJ.c<+l (xt+l) is imposed, t = 0, 1, ... , N-
1. To account for the fuzziness ~f the controls and states, some redefinitiob of 
the fuzzy constraints and fuzzy goals is needed, for instance as follows: 

t = 0, 1, . . . , N- 1 (23) 

and 

t = 0, 1, . . . , N- 1 (24) 
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where diss: [0, 1] x [0, 1] _____.. [0, 1] is some measure of dissemblance. 
Traditionally, this measure is assumed to be a normalized distance between 

fuzzy sets, d : X x X _____.. [0, 1], so that (23) becomes 

t = 0, 1, ... , N- 1 (25) 

which will obviously serve the purpose of measuring the closeness (similarity) 
of Ut's and et's, and may be used instead of J.Lce(v.t)'s in the control problem 
formulation. 

And similarly for the fuzzy goals: employing the same line of reasoning, we 
obtain 

t = 0, 1, ... , N- 1 

For the normalized distances, we usually employ: 
• the normalized linear (Hamming) distance 

1 N 

dl(XN, GN) = N L I J.LxN(si)- J.LcN(si) I 
i=1 

• the normalized quadratic (Euclidean) distance 

(26) 

(27) 

1 N 
dq(XN, eN)= N L[J.LxN(si)- J.Lc N(si)]2 (28) 

i=1 

As to other choices, a degree of equality of two fuzzy sets proposed by 
Kacprzyk and Staniewski (1982) is also a plausible choice. 

We may also use other indices or measures of ( dis )similiarity, and one of 
them - Kaufmann and Gupta's (1985) dissimilarity index - will be discussed in 
Section 5. 

Then, generally, the fuzzy decision is 

f..LD(Uo , .. . , UN-1 I Xo) = 
= f..L(f (Uo) 1\ f..Lc? (X1) 1\ ... 1\ J.L0 N- t (U N-1) 1\ f..LcN (XN) (29) 

and we seek an optimal sequence of fuzzy controls U0, ... , UJv_ 1 such that 

f..LD(U0, ... , UJv_ 1 I Xo) = max f..LD(Uo , .. . , UN-1 I Xo) 
Uo, ... ,UN-1 

(30) 

One can clearly readily obtain a simpler formulation with fuzzy constraints 
on all intermediate stages and a fuzzy goals at the end. 

Its is easy to see that problem (30) is more complicated than problem (12) 
for the deterministic system under control. We will outline the application of 
more traditional dynamic programming and branch-and-bound approaches to 
solve the resulting control problems, and then a newer one based on interpola­
tive reasoning. All' will suffer from conceptual and/or numerical difficulties. 
In Section 5 we will propose a genetic algorithm and show its simplicity and 
efficiency. 
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3.2.1. Solution by dynamic programming 

The application of dynamic programming to solving the problem of multistage 
fuzzy control of a fuzzy system under control was proposed by Baldwin and 
Pilsworth (1982). 

The fuzzy system under control is assumed, as previously mentioned, to be 
described by a fuzzy state transition equation (21). At each t, Ut is subjected to 
f..J,ct(ut), and on the resulting xt+1, f..tat+1(Xt+1) is imposed, t = 0, 1, ... 'N -1. 

Both the control at stage t, Ut, and the state at t+1, Xt+1, are now fuzzy, and 
hence their grades of membership in the fuzzy constraints et and Gt+1 cannot 
be directly determined as the values of f..tct (Ut) and f..tat+1 (xt+1), respectively. 
For each t, we construct a fuzzy relation R defined in U x X such that 

f..tRt ('u,t, Xt) = 

f..tct(v.t) A f..tat+1(Xt+1), for each Ut E U, Xt+1 EX (31) 

which represents the degree of how well (to which degree, between 0 and 1) et 
and ct+1 are satisfied. 

The degree to which a particular Ut and. Xt+1 satisfy et and ct+1, respec­
tively, is defined as 

T(Ut, Rt, Xt+l) = max [max(p,ut(v.t) A f..tRt(V.t, Xt)) A f..txt+ 1 (xt+1)] = 
Xt+1EX 'U.tEU 

max [max(Jtut(ut) A f.J.ct(v.t) A f..tat+1(Xt+1) A f..txt+ 1 (xt+I))] = 
Xt+1EX 'U.t 

rnax[JLut (Ut) A fLct ( V.t)] A ..... rnax [f..txt+1 (xt+1) A f..tat+1 (xt+1 )] (32) 
UtEU Xt+1EX . 

The fuzzy decision is given as 

fLD(Uo, ... , UN-1 I Xo) = 

T(U0,R0,Xl) A ... AT(UN-1,RN-I,XN) (33) 

The problem, for a simpler case with fuzzy constraints at t = 0, 1, ... , N- 1 
and a fuzzy goal at t = N, is to determine U0, ... , UJ.v _1 such that 

fLD(v.;, ... , UJ.v_ 1 I Xo) = 

max max[p.u0 (uo) A P,co(uo) A ... A max (p,uN_ 1 (uN-d A 
Uo, ... ,UN-1 uoEU UN-1EU 

Af..tcN-1 (v·N-d A max(p,xN(xN) A f..taN(XN )) ... ] (34) 
XN 

It is now easy to see that the structure of (34) makes the use of dynamic pro­
gramming possible, and the following set of dynamic programming recurrence 
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equations is obtained: 

fJ,GN(XN) = maxxNEX [p,xN(XN) 1\ fJ,Q N (xN )] 

fJ,GN-i(XN-i) = maxuN-iEu[maxu.N-iEU(P,uN-i (uN-i)l\ 

1\ fJ,cN-i ( UN-i)) 1\ fJ,GN-i+l (XN-i+l)l 
fJ,XN-i+l (XN-i+l) = max"'-N-i EX [maXuN- i EU(fJ,UN-i ( UN-i)l\ 

1\ fJ,XN -i+ l (XN-i+l I ·'EN-i, UN-i)) 1\ fJ,XN _,(XN-i)] 
i = 1, ... N 

(35) 

In principle, the above set of dynamic programming recurrence equations 
may be solved. However, a serious difficulty may be seen just at first glance. 
First, fJ,GN-i(XN-i) is to be specified for each possible fuzzy state XN-i EX. 
Second, the maximization of P,u N _, (.) is to proceed over all (well, maybe not all 
but a large subset of) the fuzzy controls UN-i E U. Evidently, the number of 
all the possible fuzzy controls UN -i and fuzzy states XN -i may be very high: 
infinite in the general case but at least very high in our context as we consider 
fuzzy sets defined in finite universes of discourse. This clearly makes the solution 
of (35) practically impossible. 

Basically, the essence of Baldwin and Pilsworth's (1982) approach - it is also 
the same as Kacprzyk and Staniewski's (1982) approach - is to assume some 
relatively low number of standard (reference) fuzzy states and controls, perform 
the solution process in terms of them, and finally adjust the solution to reveal 
the "real" solution. For details we refer the interested reader to the source work 
(Baldwin and Pilsworth, 1982) or to Kacprzyk's (1997) book. 

This concludes our glimpse at Baldwin and Pilsworth's (1982) dynamic­
programming-based approach which is , unfortunately, very complica ted and 
difficult to implement . 

Now we will proceed to a conceptually and computationally simpler Kacp­
rzyk's (1979) branch-and-bound approach, which appeared even earlier. 

3.2.2. Solution by branch-and-bound 

A branch-and-bound approach for solving problem (30) was proposed by Kacp­
rzyk (1979). It is analogous to that discussed in Section 3.1.2. for the determin­
istic system under control. 

Suppose that the fuzzy system under control is given by a fuzzy state transi­
tion equation (21) , i.e. Xt+l = F(Xt, Ut), t = 0, 1 ... , where Xt , X t+l are fuzzy 
states at control stages t and t + 1, respectively, defined in X = { s1 , ... , s,.}, 
i. e. Xt, Xt+1 E X, and Ut E U = { c1 , ... , Cm } is a nonfuzzy control at control 
stage t, Notice that we assume here a fuzzy system under control but a nonfuzzy 
control; this is done for simplicity since the controls will correspond to branches 
(edges) in a decision tree. We should, however, bear in mind that one can also 
assume fuzzy controls, Ut E U, and then use some (finite, possibly low) number 
of predefined reference fuzzy controls. This will not be considered here but the 
method presented works analogously in that case. 
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At each t, the control Ut E U is subjected to a fuzzy constraint /-LC' (ut), 
and on the final fuzzy state attained a fuzzy goal f.LGN (xN) is imposed. The 
initial fuzzy state is X 0 E X. The final fuzzy state XN E X evidently cannot 
be introduced directly into the fuzzy goal f.LcN(xN), and hence a "trickery" 
outlined in the beginning of this section is employed. 

The problem is to find an optimal sequence of (nonfuzzy) controls u0, ... , 
u'fv_1 such that (see (30)) 

/-LD(v,(), · · ·, u'fv_I I Xo) = 

max [p,co (uo) 1\ ... 1\ f.LcN- 1 (uN-l) 1\ 1-LcN (XN )] 
uo, .. . ,UN-1 

(36) 

It is clear that this problem satisfies all the conditions of type (17)- (19) 
from Section 3.1.2. which form a basis of the branch-and-bound procedure. The 
algorithm is basically the same, with obvious replacements. 

We have assumed here that the control is nonfuzzy. This has made it pos­
sible to directly construct the corresponding decision tree. In the case of fuzzy 
controls, one has to assume some (finite, possibly low) number of TejeTence fv,zzy 
contmls. All the controls are then approximated by these reference fuzzy con­
trols, and the branches of the decision tree are associated with the particular 
reference fuzzy control. This manipulation makes it possible to use the branch­
and-bound algorithm presented above. However, we should bear in mind that 
we obtain here optimal reference fuzzy controls, which are not the same as 
the "real" fuzzy controls. So, to implement these reference fuzzy controls ob­
tained we need to employ some procedure to infer proper "real" fuzzy controls. 
Kacprzyk's (1993a- c) interpolative reasoning based scheme presented below may 
be used here. 

3.2.3. Solution by interpolative reasoning 

Basically, Kacprzyk's (1993a-c) interpolative reasoning scheme is applied rather 
to the dynamic programming approach presented in Section 3.2.1., but can also 
be employed for the branch-and-bound approach presented in Section 3.2.2 .. 

In Kacprzyk's (1993a- c) approach, a very small number of "non-overlapping" 
reference fuzzy states and controls is assumed, and in their terms an auxiliary 
(much simpler!) control problem is formulated. Its solution yields an auxiliary 
optimal control policy relating optimal reference fuzzy controls to reference fuzzy 
states. Such a policy is equated with a fuzzy relation which is then used to 
determine an auxiliary optimal control (not necessarily the reference one) for a 
particular fuzzy state (not necessarily the reference one). 

Then, the (auxiliary) optimal solution (control) obtained in some way is 
adjusted to become a "real" optimal fuzzy control, by using some interpolation. 

For a detailed description of this technique we refer the reader to Kacprzyk's 
(1997) book. In general, the method works well though is somehow complicated 
and difficult to implement. 
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In the next section we will present a conceptually and numerically simple 
genetic algorithm for solving the problem considered. 

4. A genetic algorithm for the solution of the multistage 
fuzzy control problem with a deterministic system under 
control 

From the previous sections we have learned that the solution of the multistage 
control problem considered (12) may be really difficult for practical problems 
of a non-trivial size, in spite of being relatively simple conceptually. Though 
this has been particularly true for dynamic programming, plagued by its inher­
ent "curse of dimensionality", the same can also be said of branch-and-bound. 
On the other hand, Francelin and Gomide's (1992, 1993) and Francelin, Go­
mide and Kacprzyk's (1995) neural network approach is conceptually somehow 
corn plicated. 

In the recent Kacprzyk's (1995a- c) papers the use of a genetic algorithm was 
proposed. This has provided, first , a conceptually simple and general solution 
tool, and, second, it has turned out to be numerically efficient. The essence 
of that approach, and its further extension, will be presented below. First, we 
will outline the basic idea of the genetic algorithm to be employed, then show 
its application to the solution of the problem considered, and finally present 
computational results. 

4.1. Idea of a genetic algorithm 

Genetic algorithms are stochastic algorithms whose search methods "mirror" 
some phenomena underlying natural evolution processes, notably genetic inher­
itance and the Darwinian survival of the fittest. 

In our context, by an individual we will mean a particular solution, i.e. 
particular values of controls at the consecutive control stages, v.o, ... , uN-l· 
It is evalv.ated by the fuzzy decision (11), which is here the so-called fitness 
function. 

A set of potential solutions will be termed a population, and its size will be 
assumed fixed. So, we initially assume some (e.g., randomly generated) poten­
tial solutions (the initial population). Then, some members of the population, 
who play the role of parents, will undergo reproduction through the so-called 
crossover and mutation to produce their off-springs (children), i.e. some new 
solutions. Then, the best ones (the fitt est) will "survive", i.e. will be used 
while repeating this process. Finally, one may expect to find a very good (if not 
optimal) solution. 

The structure of a genetic algorithm may be portrayed as follows: 

begin 
t =: 0 
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set the initial population P(t) 
evaluate strings in P(t) 
while termination condition is not fulfilled do: 
begin 

t := t + 1 
select current population P(t) from P(t- 1) 
perform reproduction on elements of P(t) 
calculate the evaluation function for each element of P(t) 

end 
end 

Its basic elements: 
• how to represent a potential solution, 
• how to create (generate) an initial population, 
• how to define the fitness (evaluation) function, 
• how to perform the reproduction (crossover and mutation), and 
• how to choose some parameters, 

will now be clarified on a simple example. 

1199 

First , the potential solutions are here sequences of controls such as u 0 , v,1 , v,2 

for a control process with the termination time N = 3. If now uo, v.1 , v.2 E 

{0, 1, ... , 7}, then there may be the following solution candidates: 

Solution 1: 

Solution 2: 

Solution 3: 

(2, 4, 5) 

(1, 7, 6) 

(3, 2, 5) 

which are represented in binary notation (i .e. as binary strings) as, respectively: 

Solution 1: 

Solution 2: 

Solution 3: 

Ill o I 1 I o 11 1 I o I o 11 1 I o 11 Ill 
Ill 1 I o I o 11 1 I 1 I 1 11 o I 1 I 1 Ill 
Ill 1 I 1 I o 11 o I 1 I o 11 1 I o I 1 Ill 

Each of the above three solution candidates (generated , e.g., randomly) is 
then evaluated by using the fuzzy decision (11) (or (10)). For instance, we 
obtain 

e1 = P.D(2,4,5I .) = 0.7 

e2 = ILD(1 , 7, 61 .) = 0.3 

e3 = P.D(3,2,5I.) = 0.9 

Now, the probability of selection of the solution candidate i E {1, 2, 3} is 
defined as 

(37) 
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Then, suppose that based on this selection probability, Pi, the solutions 2 
and 3 are selected out of the initial population to be the "parents" who are next 
subjected to the two basic operations to "produce" their offsprings (children). 
The first operation is cr'OssoveT. We generate, using a cmssover- pmbability, 
some point (bit number) in the binary string from 1 to the length of the string 
(9 in our case), e.g., 3 as shown by a vertical arrow as 

Solution 2: 

Solution 3: 

Ill 1 I o I o 11 1 I 1 I 1 11 o I 1 I 1 Ill 

JJ. 
Ill 1 I 1 I o 11 o I 1 I o 11 1 I o I 1 Ill 

The crossover exchanges the respective bits between the two parents from 
bit 4 on which yields the following two new candidate solutions: · 

Solution 2': 

Solution 3': 

Ill 1 I o I o 11 o I 1 I o 11 · 1 I o I 1 Ill 

JJ. 
Ill 1 I 1 I o 11 1 I 1 I 1 11 o I 1 I 1 Ill 

One of the two above candidates is selected at random and taken as the new 
individual, for instance Solution 3', i. e. 

Solution 3': Ill 1 I 1 I o 11 1 I 1 I 1 11 o I 1 11 Ill 

Next, using a prespecified mutation pmbability, we select a point in the above 
binary string, say 5, and change this bit in the string to the opposite value (i.e. 
0 to 1 and vice versa) and this new candidate solution is introduced into the 
new population. 

The process of random selection of the parents, crossover, and mutation is 
repeated until the new population of the predefined size is obtained. Then, the 
whole process is repeated, and is continued until some termination condition is 
satisfied as, e.g., the maximum number of iterations or a time limit . 

The above process is conceptually and implementationally simple, and usu­
ally leads to good results. Due to random mechanisms widely employed, it 
escapes from local optima, and helps find a globally best (optimal) solution. 

The idea of a genetic algorithm presented above is basic, and many modifi­
cations of both the crossover and mutation, as well as new operations, have been 
proposed, see Davis (1991) or Michalewicz (1994). Moreover, let us remark that 
though the binary representation of solutions (binary coding) is traditionally 
employed, one can well use a real coding of solutions in which solution candi­
dates are represented as strings of real numbers (the subsequent controls). Such 
a real coding will be employed in this paper with crossover and mutation being 
direct derivatives of the traditional ones. 
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4.2. Using the genetic algorithm for solving the multistage fuzzy 
control problem with a detrministic system under control 

To present the idea of Kacprzyk's (1995a-c) genetic-algorithm-based approach, 
it may be expedient to briefly restate the problem considered. 

First, the deterministic system under control is given by the state transition 
equation (9), i.e. 

t = 0, 1, ... (38) 

where: Xt,Xt+I EX= {s1 , ... ,sn} is the state (output) at control stages t and 
t + 1, respectively, and v.t E U = { c1., . .. , cm} is the control (input) at t . The 
initial state is :ro EX, and the (finite) termination time N is fixed and specified 
in advance. 

At each control stage t, the control Vt E U is subjected to a fv.zzy constraint 
Jl.C' ( V.t), and on the final state .'1: N E X a fv.zzy goal!LcN ( x N) is imposed [fuzzy 
goals at the subsequent t's may also be assumed, and the reasoning remains 
valid - cf. (10) ]. 

The fitness (evaluation or performance) function is the fuzzy decision (11), 
i.e. 

JLD(v,o, ... ,v·N-1 I xo) = 

/Leo ( V.o) 1\ . . . 1\ Jl.CN-1 ( v,N-1) 1\ Jl.GN (xN) (39) 

and the problem is [cf. (12)] to find an optimal seqv.ence of controls, v.0, . .. , v.jy_ 1 , 

such that 

JLD(v,0, .. . , v.jy_ 1 I xo) = 
max fLD(v,o, ... ,uN-IIxo)= max [JLcp(v.o)/\ .. . 

UQ, . .. ,UN-1 ua, .. :,uN-1 

(40) 

where XN = f(xN-I,uN_I) by the state transition equation (38), and"/\" (mi­
nimum) may be replaced by another operation, notably a t-norm, Kacprzyk 
(1997). 

The basic elements of the genetic algorithm to be used for solving the above 
problem are meant as follows: 

• the problem is represented by strings of controls v,o, . . . , 1LN-I , and we use 
real coding; 

• the fitness function is the fuzzy decision (39), 
• standard random selec tions of elements from the consecutive populations, 

standard concepts of crossover and mutation (applied to real coded strings), 
and a standard termination condition, mainly a predefined number of it­
erations, or iteration-to-iteration improvement lower than a threshold is 
used; 

Further, we assume that: 
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• controls are "evenly spaced" real numbers in [0, 1] corresponding to c1 , .. . , 

Cm, and 
• states are defined as "evenly spaced" real numbers from [0, 1] correspond­

ing to s1, ... , Sn. 

The genetic algorithm works now as follows: 

begin 
t =: 0 
set the initial population P(t) which consists of 

randomly generated strings of controls 
(i.e. of randomly generated real numbers from [0, 1]) ; 

for each u0, . . . , uN _ 1 in each 
string in the population P(t), 
find t he resulting Xt+l 

by using the state transition 
equation Xt+l = f(xt, Ut), 
and use the evaluation function (39) 
fLD (uo, ... , uN-1 I x 0 to evaluate each string in P(t); 

while t < maximv.m number- of itemtions do 
begin 

t := t + 1 
assign the probabilities to each string in P(t- 1) 

which are proportional to the value of the evaluation 
function for each string; 

randomly (using those probabilities) generate 
the new population P(t); 

perform crossover and mutation on the strings in P(t); 
calculate the value of the evaluation function (39) for each string in P(t) . 

end 
end 

We will illustrate now this algorithm by a simple example. 

Example 4 Suppose that X= {s1, ... ,s2o}, U = {c1, ... ,c32 } , N = 10, and 
xo = s1. 

The state transition equation (38) is given as 

.Tt+l = j(Xt, Ut) = 
.Tt = S1 S2 83 S4 ss S6 S7 ss Sg SlQ 

Ut= c1 Sl sl S2 S3 S4 ss S6 S7 ss Sg 

c2 s2 83 S3 83 86 S7 ss Sg SlQ su 

C3 S2 83 s3 S4 ss S6 S7 ss Sg 81Q 

c3o S4 ss s6 S7 SlQ sn Sl2 Sl4 SlS 81S 

C31 ss S6 S7 ss SlQ su S12 S14 S15 816 

C32 S6 S7 ss SlQ sn s12 Sl4 Sl5 Sl6 Sl7 



Multistage control unde r fuzziness using genetic algorithms 1203 

Xt = 8u 812 813 814 815 816 817 818 819 820 

v.t = c1 81Q 8u 812 813 814 815 816 817 818 819 

C2 812 813 814 815 816 817 818 819 820 820 

C3 su 812 .5'13 .5'14 815 .5'16 .5'17 .5'18 .5'19 .5'20 

C30 .5'16 .5'17 .5'19 .5'19 .5'20 .5'20 .5'20 820 .5'20 .5'20 

C31 .5'16 .5'17 .5'18 .5'19 .5'20 .5'20 .5'20 .5'20 .5'20 .5'20 

C32 .5'17 .5'18 .5'19 820 82o s2o s2o .5'20 .5'20 .5'20 

The fuzzy constraints and fuzzy goals at the consecutive control stages are 
given as trapezoid fuzzy numbers in [0, 1], i.e. are equated with the 4-tuples. 

The fuzzy constraints and goals are therefore assumed to be: 

C0 
= ( C1, C1, C4, C32) 

C1 
= (cl,cl,c7,c32) 

C2 
=(cl, C1, Cg, C32) 

C3 
= (cl,cl,ClQ,C31) 

C4 
= (cl,cl , cl2,c32) 

C5 
=(cl, c1, c13, c32) 

C6 
=(cl, C1, C15, C32) 

C7 
= ( C1 1 C1, C17, C32) 

C 8 
= (cl,cl,cls,c32) 

C 9 
= (cl,Cl,C2Q,C32) 

G1 
= (81, 82, 87, 89) 

G2 = (82,83,89,8u) 

G3 = (83,85,89,8u) 

G4 
= (84,87,812,814) 

G5 
= (8s , 8s,814,816) 

G6 = (86,810,816,818 

G7 
= (87,8u816,81s) 

G8 
= (89, 814, 81s; 82o) 

G9 
= (8n,816,82o,82o) 

G10 
= (814, 81s, 82o, 82o) 

The main parameters are assumed to be: 
• the population size is 250, 
• · the number of trials is 32,000, 
• the crossover rate is 0.6, and 
• the mutation rate is 0.001. 
We obtain 3 best (optimal) results (starting from xo = s1): 

v.(j = C3 v.i = C4 Uz = C4 v.3 = c5 u* 4 =ea 

v.5 = cu v.;; = Cl2 u7 = C14 v.8 = C15 v.* 9 = C15 

u0 = c2 ui = cs v.2 = C3 u3 = cs v.4 = c 8 

v.f, = cu v.;; = C13 u7 = C14 u* 8 = Cl4 . u* 9 = C15 

v.(j = C3 u* 1 = C6 u2 = c3 v.3 = c5 u* 4 =ea 

v.f, =en u(; = C12 u7 = c 14 v.8 = c15 u* 9 = C15 

for which the corresponding value of the fuzzy decision (39) is 

f.LD(v.0, ... ,v.91 81) = 1 
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Figure 3. The value of the fuzzy dec~sion obtained in the course of iterations in 
Example 4 

The next best result is 

u0 = c3 

v.;; = c12 

v.i = c5 

v.;; = cl3 

u2 = c3 

v.7 = c15 

u!; = c5 

v.;; = c12 

and its corresponding value of the fuzzy decision (39) is 

while the tenth best result is 

v.0 = c2 

u;; = c12 

v.i = c4 

v.;; = cl3 

v.; = c3 

u? = c15 

v.; = c5 

u;; = c12 

u~ =ea 
v.9 = c14 

and its corresponding value of the fuzzy decision (39) is 

f.LD(u~, . .. ,u~ I s1) =0.973684 

In Figure 3 the best values of the fuzzy decision (39) obtained in the course 
of iterations are shown, and it may readily be seen that the optimal solution 
has been attained quite early, so that 32,000 iterations assumed have not been 
necessary. D 

Note that the results obtained are clearly very good, with the best results 
obtained being optimal indeed. Obviously, the solution of the problem consid­
ered, i. e. with the assumed number of control stages, and the size of t he state 
and control spaces, by using any of the other techniques (dynamic programming, 
branch-and-bound and neural networks) would certainly be more complicated 
from the conceptual, implementational and computational points of view. 
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5. A genetic algorithm for the solution of the multistage 
fuzzy control problem with a fuzzy system under con­
trol 

As it can easily be seen from Section 3.2., the case of multistage fuzzy con­
trol with a fuzzy system under control is more difficult - both cortceptually 
and numerically - than the case of a deterministic system. Though the ba­
sic solution techniques proposed, i.e. Baldwin and Pilsworth's (1982) dynamic 
programming, possibly enhanced with Kacprzyk's (1993a-c) interpolative rea­
soning, and Kacprzyk's (1979) branch-and-bound, do share the same numerical 
difficulties with the case of the deterministic system, these are clearly more pro­
nounced when a fuzzy system is assumed. This does clearly suggest that the 
use of a genetic algorithm can here be even more justified as it was proposed by 
Kacprzyk (1995a- c). 

We employ here the same basic framework of a genetic algorithm as pre­
sented earlier in Section 4.1. By an individv,al we mean a particular solution, 
i.e. the particular values of the fuzzy controls at the consecutive control stages, 
Uo, ... , UN-l· An individual is evaluated by the fuzzy decision (29), which is 
here the .fitness function. A set of potential solutions is termed a popv,lation 
which is assumed to be of a fixed size. The population is generated and trans­
formed analogously as outlined in Section 4.1. 

The general structure of a genetic algorithm is analogous as presented in 
Section 4.1., and the basic problems are also the same, i.e. 

• how to represent a potential solution, 
• how to create (generate) an initial population, 
• how to define a fitness function, 
• how to perform the reproduction (croSi)over and mutation), and 
• how to choose some parameters. 
Before the description of the genetic algorithm tailgred to the problem con­

sidered, we will briefly restate the problem formulation (cf. Section 3.2.). 
The dynamics of a fuzzy system under control is given by a state transition 

equation (21), i.e. 

t = 0, 1, ... ( 41) 

where Xt, Xt+ 1 E X are fuzzy states at control stage t and t + 1, and Ut E X 
is a fuzzy control at t, t = 0, 1, ... ; ( 41) is equivalent to a conditioned fuzzy set 
p,x,+

1 
(xt+1 I Xt, 'll.t) or a fuzzy relation in X x X x U (see Kacprzyk, 1997). 

At each t, the fuzzy control applied Ut is subjected to a fuzzy constraint 
f..LC' ( 'U.t), and on the resulting fuzzy state Xt+l a fuzzy goal J.Lct+l (xt+l) is im­
posed, t = 0, 1, ... , N- 1. 

Both the fuzzy controls, Ut's, and fuzzy states, Xt+1 's, are now fuzzy, hence 
(see Section 3.2.) their grades of membership in the fuzzy constraints and goals 
cannot be directly determined as the values of J.Lct('U.t) and J.Lct+l(xt+1 ). In the 
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source papers (Kacprzyk's, 1995a- b), on which our discussion is based, it was 
generally used as a measure of dissimilarity (23), i.e. 

f.Lc'(Ut) = 1- diss(et, Ut), t = o, 1, .. . , N -1 ( 42) 

and, to be more specific, Kaufmann and Gupta's (1985) dissimilarity index (46), 
to be shown below. 

Thus, the fuzzy decision is 

J.LD(Uo, ... , UN-1 I Xo) = 

= f.L"(f (Uo) /\ f.Lcl (X1) /\: .. /\ J.L0 N-l (UN -1) /\ f.LcN (XN) ( 43) 

and the problem is to find U0, ... , U'fv _1 such that 

f.LD(U~, ... , U'fv_ 1 I Xo) = max J.LD(Uo, .. . , UN-1 I Xo) 
Uo, ... ,UN - 1 

(44) 

Due to the specifics of the problem with a fuzzy system, the basic elements 
of the genetic algorithm are meant as: 

• the problem is represented by strings of fuzzy controls U0 , ... , UN_1 (real 
coding), and we use triangular fuzzy numbers to represent fuzzy controls 
(moreover, some reference fuzzy controls, U0 , ... , U N-1 are also used); 

• the fitness (evaluation) function is (43), i. e. 
f.LD(Uo, ... , UN-1 I Xo) = J.L"(f(Uo) A J.Lc1(X1) A ... 

... /\j.L0 N-l(UN_I)/\ p.0 N(XN) (45) 
and for its calculation [of f.Lc'(Ut) and f.Lct +l (Xt+1)] we use the degree 
of dissemblance by Kaufmann and Gupta (1985) which is defined, for 
triangular fuzzy numbers, as: if A and B are triangular fuzzy numbers, 
then the degr-ee of dissemblance of A and B is 

j ·1 1 
diss(A, B) = -(1 g:_"'- !l' I + I aa- Tt I) da 

a=O 2 
(46) 

where [g_a, aa] and [!{, b] are the so-called a-cuts (intervals) of A and B, 
\la E (0, 1]; the a -cut of a fuzzy set A in X= {.x}, Aa, is defined as the 
nonfuzzy set Aa = {x EX: f.LA(x) 2': a}, Va E (0, 1]. 

Therefore, if 
ft(Ut, et, Xt+1, ct+1) = [1 - diss(Ut , et)] A [1 - diss(Xt+l, Gt+1)], 

t = 0, 1, ... N- 1, then the fitness function (45) becomes 
f(Uo, x1, ... , UN-1, XN) = 

= f.LD(Uo , ... , UN-1 I Xo) = fo(Uo, e 0,X1, G1) /\ ... 

. . . /\ fN-1(UN-1, eN-I,XN, GN) (47) 
• standard random selections of elements from the consecutive populations, 

standard crossover and mutation (evidently, applied to real coded strings), 
and a standard termination condition, mainly a predefined number of 
iterations, or iteration-to-iteration improvement lower than a threshhold) 
are used. 
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Further, we assume that: 
• fuzzy controls are fuzzy sets in [0, 1] defined as triangular fuzzy numbers 

in [0, 1], i.e. as the triples (a,b,c), 0::; a::; b::; x::; 1; the left and right 
spreads (widths) are assumed to be equal to 5% each, for simplicity, hence 
only the mean value (b) is generated; moreover, 10 reference fuzzy controls 
arc introduced; 

• fuzzy states are defined as fuzzy sets in X = { 8 1 , ... , 810}; 

• fuzzy constraints are defined as trapezoid fuzzy numbers in [0, 1] ; 
• fuzzy goals are defined as fuzzy sets in { 81, ... , 810}; 

• the dynamics of the fuzzy system under control (41), i.e . the state tran­
sition equation, is defined as a set of fuzzy relations Ru in S x S, for 
each of the reference fuzzy control (we need reference fuzzy controls as 
otherwise we would need infinitely many fuzzy relations, for each possible 
fuzzy control); so, to choose an appropriate table to determine the state 
transition, first we find a reference fuzzy control that is the closest [in the 
sense of the dissemblance index used ( 46)] to the current control, and then 
we take its corresponding fuzzy relation to find the resulting fuzzy state 

Xt+1 · 
The genetic algorithm employed is as follows: 

begin 
t := 0 
set the initial population P(t) 

which consists of randomly generated 
strings of triangular fuzzy controls 
(i.e. of randomly generated mean 
values from [0, 1], with 5% left and right spreads); 

for each U0 , ... , UN- 1 in each string in the population P(t): 
find the resulting Xt+1 (by finding first the closest reference 

fuzzy control to choose an appropriate relation 
which is followed by using 
the compositional rule of inference), 

and use the evaluation function ( 4 7) 
to evaluate each string in P(t); 

while t < rnaxirrmrn number of ite-rations do 
begin 

t := t + 1 
assign the probabilities to each 

string in P(t- 1) which are proportional 
to the value of the evaluation function for each string; 

randomly (using those probabilities) 
generate the new population P(t); 

perform crossover and mutation on the strings in P(t); 
calculate the cval uation function ( 4 7) for each string in P ( t). 



1208 J. KACPRZYK 

end 
end 

To illustrate this algorithm we will now solve a simple example. 

Example 5 Suppose that: N = 10, X = { s1 , .. . , s10}, the controls are trian­
gular fuzzy numbers in [0 , 1], and there are 10 "equally-spaced" (with the mean 
values at 0.1, ... , 0.9 , 1) reference fuzzy controls defined as the trapezoid fuzzy 
numbers in [0, 1] as follows: 

c1 = (o.o, 0.1, o.1, o.2) 
c3 = (0.2, o:3, o.3, o.4) 
c5 = (0.4, o.5, o.5, o.6) 
c1 = (0.6, o.7, o.7, o.8) 
Cg = (0.8, 0.9, 0.9, 1.0) 

c2 = (o.1 , 0.2, 0.2, o.3) 
c4 = (o.3, o.4, oA, o.5) 
c6 = (0.5, o.6, o.6, o.7) 
Cs = (0.7, 0.8, 0.8, 0.9) 
Cw = (0.9, 1.0, 1.0, 1.0) 

The initial fuzzy state is Xo = 1.0/ s1 +o.7 / s2 + 0.4/ s3 + 0.1/ s4. 
The fuzzy constraints at the particular control stages are also given as the 

following trapezoid fuzzy numbers: 

-=<! c = (0.0, 0.0, 0.5, 0.8) 
- 2 c = (0.0, 0.0, 0.5, 0.8) 
-=4 c = (0.0, 0.0, 0.5 , 0.8) 
-=6 c = (0.0, 0.0, 0.5, 0.8) 
-s c = (0.0, 0.0, 0.5, 0.8) 

-1 c = (0.0, 0.0, 0.5, 0.8) 
-3 c = (0.0, 0.0, 0.5, 0.8) 
-5 c = (0.0, 0.0, 0.5, 0.8) 
-7 c = (0.0, 0.0, 0.5 , 0.8) 
-9 c = (0.0, 0.0, 0.5, 0.8) 

The fuzzy goals at the particular control stages are: 

-1 
G = 0.1/s1 + 0.2/s2 + 0.3/s3 + 0.6js4+ 

+ l.O/s5 + 0.6/s6 + 0.3/s7 + 0.2/ss + 0.1/sg + 0.0/sw 
- 2 
G = 0.1/s1 + 0.2/s2 + 0.3/s3 + 0.6/s4+ 

+ 1.0/s5 + 0.6/s6 + 0.3/s7 + 0.2/ss + 0.1/sg + 0.0/sw 
-3 
G = 0.1/sl + 0.2/s2 + 0.3/s3 + 0.6js4+ 

+ 1.0/ S5 + 0.6/ S6 + 0.3/ S7 + 0.2/ Ss+ 0.1/ Sg + 0.0/ SlQ 
-=4 
G = 0.1/ s1 + 0.2/s2 + 0.3/ s3 + 0.6/ s4 + 1.0/ s5 + 0.6/ s6+ 

+ 0.3/ S7 + 0.2/ Ss+ 0.1/ Sg + 0.0/ SlQ 
-5 
G = 0.1/s1 + 0.2/s2 + 0.3/s3 + 0.6js4+ 

+ l.O/s5 + 0.6/ S6 + 0.3/ S7 + 0.2/ ss+ 0.1/ sg + 0.0/ sw 
-=6 
G = O.l/s1 + 0.2/s2 + 0.3/s3 + 0.6js4+ 

+ 1.0/ s5 + 0.6/ s6 + 0.3/s7 + 0.2/ ss+ 0.1/ sg + 0.0/ sw 
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-7 
G = 0.1/sl + 0.2/s2 + 0.3/s3 + 0.6js4+ 

+ l.Ojs5 + 0.6/s6 + 0.3/s7 + 0.2/ss + 0.1/sg + O.Ojs10 
-=il 
G = 0.1/ s1 + 0.2/ s2 + 0.3/ s3 + 0.6/ s4+ 

+ l.O/s5 + 0.6js6 + 0.3js7 + 0.2/ss + 0.1/sg + O.Ojs10 
-9 
G = 0.1/s1 + 0.2/s2 + 0.3/s3 + 0.6js4+ 

+ l.Ojs5 + 0.6/s6 + 0.3/s7 + 0.2/ss + 0.1/sg + O.Ojs10 
-10 
G = 0.1/s1 + 0.2/s2 + 0.3/s3 + 0.6js4+ 

+ 1.0/ S5 + 0.6/ S6 + 0.3/ S7 + 0.2/ Ss+ 0.1/ Sg + Q.Qj SlQ 

The fuzzy state transitions (41) , are specified as conditioned fuzzy sets for 
each particular reference fuzzy control, C1, . .. , C10 . Due to lack of space we will 
only present below the state transtion equations for the first and last reference 
fuzzy control, i.e. cl and clO, and these are: 

• for cl 
Xt+l = S1 S2 S3 S4 S5 S6 S7 ss Sg SlQ 

Xt = S1 0.0 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.1 
s2 0.0 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.1 
S3 0.0 0.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.1 
S4 0.0 0.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.1 
s5 0.0 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.1 
S6 0.0 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.1 
S7 0.0 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.1 
ss 0.0 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.1 
Sg 0.0 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.1 

SlQ 0.0 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.1 
• 0 0 0 

• for clO 
.Tt+l = S1 s2 S3 S4 s5 86 87 ss 8g 810 

.Tt = S1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 
82 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 
83 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 
84 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 
s5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 
86 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 
S7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 
ss 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 
Sg 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 

SlQ 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 
The main parameters are: 
• the population size is 50, 
• the maximum number of iterations (termination condition) is 1000, 
• the crossover rate is 0.6, and 
• the mutation rate is 0.001. 
The t en best results obtained may be summarized as follows: 
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Figure 4. The value of the fuzzy decision obtained in the course of iterations in 
Example 5 

• the best fuzzy controls a t t = 0, 1, ... , 9 are: 
U0 = (0.4885, 0.5142, 0.5399) U{ = (0.5031 , 0.5296, 0.5561) 
u.; = (0.4236, 0.4459 , 0.4682) u; = (0.4842, o.5097, 0.5352) 
u4 = (0.4651 , 0.4895 , o.5140) u; = (0 .4916 , o.5175 , o.5434) 
U6 = (;0 .3218, 0.3387, o.3556) u; = (0.5225, o.55oo, 0.5775) 
U8 = (0.3451 , 0.3633 , 0.3815) U9 = (0.2615 , 0.2752, 0.2890) 

and the value of the fuzzy decision ( 4 7) is 
f.tD(U() ) . . . ) u; I Xo) = 0.681881 

• the second best result is 
Uo = (0.4885, 0.5142, 0.5399) U1 = (0.5031, 0.5296 , 0.5561) 
u2 = (0.4236, 0.4459, 0.4682) u3 = (0.4842, 0.5097, 0.5352) 
u4 = (0.4651 , 0.4895, 0.5140) u5 = (0.4916, 0.5175, 0.5434) 
u6 = (0.3218, 0.3387, 0.3556) u7 = (0. 5225, o.550o, 0.5775) 
U8 = (0.3451, 0.3633, 0.3815) Ug = (0.2615, 0.2752, 0.2890) 

and the value of the fuzzy decision ( 4 7) is 
f.tD(U~) . . . ) u; I Xo) = 0.681881 

• while the tenth best result is: 
ur; = (0.2510, 0.2642, 0.2774) U{ = (0.4758, o.5008, 0.5259) 
u.; = (0.4855, o.5111, 0.5366) u; = (0.5432, o.5718 , o.6o0,4) 
u4 = (0.4 780, o.5032, o.5284) u; = (0.5182, o.5455, o.5728) 
U6 = (0.5100, 0.5368, o.5637) u; = (0.3316, 0.3491, 0.3665) 
u;, = (0.4639, 0.4883 , 0.5127) u; = (0.3816, 0.4016 , 0.4217) 

and the value of the fuzzy decision ( 4 7) is 
f.l·D(U~) .. . ) u; I Xo) = 0.679795 

The best values of the fuzzy decision ( 4 7) obtained in the course of iterations 
arc shown in Figure 4, and it may readily be see that the best (maybe optimal) 
solution has been attained quite early, before the 1,000 iterations assumed. D 

In general, also for many different ~roblems solved , t he algorithm has proven 
to be efficient. 
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6. Concluding remarks 

In this paper we have shown the use of a genetic algorithm for the solution 
of multistage fuzzy control problems with a fixed and specified termination 
time, and with a deterministic and fuzzy systems under control. The genetic 
algorithm proposed is conceptually simpler than the traditionally employed 
techniques which are mainly based on dynamic programming and branch-and­
bound. Moreover, it is computationally efficient. It seems that genetic algo­
rithms may provide a viable alternative for the multistage fuzzy control prob­
lems. 
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