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1. Introduction 

In the last two decades quality has become the key factor that determines a mar
ket success for every organization. Continuous quality improvement of products 
or services is now the main strategic: goal for every firm striving for the mar
ket success. In order to arrive at the required quality levels different tools are 
used. The range of applicable methods is very wide: from the installation of so
phisticated (and very costly) equipment for automatic process control to simple 
statistical methods that can be used on a shop floor by inexperie,nced personnel. 
The experience of organizations which are most successful in the implementation 
of quality improvement policies shows that the application of relatively simple 
statistical methods is the most effective way to meet high quality requirements 
for the majority of firms- especially small ones. 

High quality of products or services can be widely recognised if a firm intro
duces a quality system which fulfills the requirements stated in the International 
Standards from the ISO 9000 s·eries. In these standards many managerial tools 
for quality improvement are indicated. However, only one of them ____.: statistical 
process control (SPC)- has direct technical interpretation. Therefore, it has 
become the main tool for controlling quality of production processes. 
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Among various methods which are used in SPC, the control charts, intro
duced by Walter A. Shewhart in 1920s, are the most popular . In the second 
section of this paper we describe the notion of control charts, and discuss the 
problems that are connected with their design and usage. We also try to delimit 
the area of application of control charts in contrast to the methods of automatic 
process control (APC). In the third section of the paper we present the problems 
of the economic design of control charts. 

The main original results of this paper are presented in its fourth section. 
First, we propose a mathematical model that describes the economic conse
quences of the application of SPC procedures in the presence of erroneous pro
cess inspections. Next, we propose some asymptotic simplifications which allow 
to find approximately optimal SPC procedures in a relatively easy way. These 
simplifications give also additional insight into complicated relations between 
different quantities which describe production processes. Finally, in the fifth 
section, we propose further approximations which allow to find approximate 
optimal solutions with even smaller computational effort. 

2. Statistical process control (SPC) 

Statistical process control and related techniques of sampling inspections were 
developed in 1920s. SPC is a part of statistical quality control (SQC) which is 
focused rather on the process itself t han on the final products. This distinction 
motivated some people involved in quality activity to contrast SPC with the 
traditional SQC. This distinction is not correct - as it has been pointed out by 
Wetherill and Brown (1991). SPC procedures can be used in traditional SQC 
activities such as final quality inspections (screenings), and traditional SQC 
methods can also be used as process control procedures. All these procedures 
are based on the same statistical concepts , and sometimes can be viewed upon 
as the same statistical tests used for slightly different purposes. 

The concept of SPC is based on the assumption that there are two basic 
sources of the variation of the process. Some variation of the process, called 
r-andom var-iation is in a certain sense unavoidable, and can be diminished only 
by fundamental changes of the process (e.g. change of technology, implemen
tation of automatic control, etc.) . The remaining part of the total variation of 
the process is due to some special or a~signable causes, such as failures of an 
equipment, errors of operators, etc. When only random variation is observed 
the process is said to be in statistical contml. The role of SPC procedures is to 
detect the moment when an assignable cause occurs, and to alarm the process 
operator. The role of the process operator is to identify the cause of deteriora
tion, and to remove it. Thus, SPC can be looked upon as a collection of simple 
st;:, ·~ 1stical tools that can be used to: 

(1) Provide an evidence of the process performance. 
(2) Assess the current process quality level. 
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(3) Indicate the necessity to investigate the process which has possibly fallen 
in troubles. 

(4) Help in making improvements to the process or product. 
It has to be noticed, however, that positive results can be achieved only then, 
when the statistical procedures are correctly designed and not misused. There
fore, the problem of the design of the SPC procedures is a crucial one, and 
deserves special attention. 

Control charts are the most frequently used SPC procedures. They were 
introduced by Shewhart in 1920s in a form which is now known as Shewhart 
charts. In Shewhart charts a sample is periodically taken from a process. A 
certain statistics (for example, the sample mean X), is used to evaluate the 
process performance. Its value is plotted on a chart, and compared to certain 
control limits. In the case of two-sided quality requirements, two control limits: 
lower control limit (LCL), and upper control limit (UCL) are used. If the 
observed value of th7 statistics of interest is beyond the control limits an alarm 
signal is generated. A typical control chart is schematically presented in Fig. 1. 

* UCL 

• • • • • • 
• • • LCL 

1 2 3 4 5 6 7 8 sample number 

Figure 1. Schematic view of an X chart. 

In Fig. 1 we see that the process remains under control till the sample No.6 . 
For this sample the sample average falls beyond the upper control limit UCL, 
and the alarm signal is generated. After removing an assignable cause of this 
deterioration, the process operates anew under control. 

From this brief description of SPC we can see the basic diffenmce between 
statistical process control (SPC), and automatic process control (APC). The 
role of SPC is to monitor the process, and to indicate moments when it goes 
out of order due to some assignable causes. The role of APC, as it was stated 
in Box and Kramer (1992) is to adjust the process, or keep it on target. This 
basic difference is due mainly to the different origins of SPC and APC. SPC was 
originated in the parts indv.stry, where automatic process control was not fre
quently used. On the other hand, APC was originated in the process industTy. 
The goal of the process industry is to reproduce individual items as accurately 
as possible. The process industries, as it has been indicated in Box and Kramer 
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(1992), were typically interested in yields of product and were attempting to ob
tain the highest possible mean values of the characteristics of interest . With the 
process of automatisation of the production both, SPC and APC, are steadily 
converging. SPC remains , however, the ultimate means to monitor production 
processes, even those fully automatised. 

3. Economically optimal SPC 

Statistical process control has obvious economic consequences. It is not difficult 
to notice that differently designed control charts, when applied in practice, may 
lead to different economic effects. In his pioneering paper Duncan (1956) pro
posed the first mathematical model for the economic design of control charts . 
Since the publication of Duncan's paper many interesting results have been 
published on this subject. The recent results on the economic design of control 
charts have been reviewed in the paper of Ho and Case (1994). Duncan's model 
has been used as a starting point in many papers. Lorenzen and Vance (1986) 
proposed a generalisation of Duncan's model for a wide class of control charts. 
In Del Castillo and Montgomery (1996) a very general model has been proposed 
which allows to design optimal control charts for short run processes. 

Another approach to the problem of economic design of control charts was 
proposed by von Collani (1981b, 1986), and fully described in von Collani (1989). 
In contrast to Duncan, who used profit per time unit as his objective function, 
von Collani proposed to define the objective function in terms of profit per 
unit produced . As the result , much simpler mathematical models have been 
proposed with a significantly smaller number of input parameters. The model 
of von Collani has been generalised by Hryniewicz (1992), and by other authors, 
mainly in the Research Reports of The Wiirzburg Research Group on Quality 
Control. In this paper we propose a further generalisation of the model proposed 
in Hryniewicz (1992) which is based on von Collani's approach. 

According to the unified approach by von Collani (1989) we consider three 
type of actions connected with the implementation of an SPC procedure: 

a) monitoring of the process (sampling), 
b) inspection (searching for an assignable cause), 
c) renewal of the process. 
By monitoring we understand any procedure which allows us to determine 

the actua l state of the considered process basing on its observation. In this 
paper we identify monitoring with sampling of the process, but other methods 
of monitoring (e.g. continuous observation) are also possible. The role of mo
nitoring is to generate a signal (an alarm) that the process may not operate in 
an acceptable STATE I. In the case of such alarm the inspection is performed 
with the aim to decide whether a renewal of the process is necessary. When a 
monitoring action generates an alarm signal an inspection begins. By inspection 
we understand any action which uses non-statistical methods and reveals the 
actual state of the process. If the results of the inspection indicate that the 
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process is in STATE II a renewal action is undertaken. After the renewal the 
process operates anew in STATE I. 

Let us notice that some profits and losses are connected with the implemen
tation of statistical process control procedures such as control charts. Suppose 
that there exists a certain acceptable state of the process, and we wish the pro
cess to operate in this state as long as possible. Denote this state by STATE I. 
Every process which operates under statistical control is in STATE I. When the 
process deteriorates it enters an unacceptable STATE II. Let T be the expected 
duration of STATE I, 91 the average profit from a unit produced while the pro
cess operates in STATE I, and 92 the average profit from a unit produced while 
the process operates in STATE II. The expected profit from operating a control 
procedure can be computed as follows 

(1) 

Profits from the operation of statistical control procedures are diminished by 
costs related to monitoring (sampling) of the process, inspections, and renewal 
actions. Let a0 be a constant cost of a monitoring action, and a 1 a cost of 
inspection of one unit from a sample. Denote now by n 1 the expected number 
of sampled units (expected sample size) during a monitoring action while the 
process operates in STATE I, and by n 2 the expected number of sampled units 
during a monitoring action while the process operates in STATE II. It is worth 
noticing that these expected sample sizes in general rnay not be equal. In the 
case of simple control charts we have, of course, n 1 = n 2 ::;:: n, where n is the 
sample size. We can now calculate the expected cost of one monitoring action 
in STATE I 

(2) 

and the same expected cost while the process remains in STATE II 

(3) 

Denote now by A1 the expected number of monitoring actions in STATE I, and 
by A2 the expected number of monitoring actions in STATE II. We can now 
calculate the total expected cost of monitoring as 

(4) 

As the decisions resulting from the monitoring action are based on random 
results there exists a certain probability a of a false alarm. Let e* be the cost 
of unnecessary inspection caused by a false alarm, and r* be the total cost of 
inspection and renewal when the monitoring action reveals the deterioration of 
the process. The expected cost of inspection and renewal actions can be now 
calculated as follows 

(5) 
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Define now a renewal cycle as a time (measured in unit produced) between two 
consecutive renewal actions. Let N be the expected duration of the renewal 
cycle. Then the average profit per unit produced can be calculated from a 
general formula 

G= P-CM -CIR 
N 

(6) 

To design optimally any statistical process control procedure using von Collani's 
approach we have to maximise ( 6) for a given mathematical model of the process. 

4. Optimal SPC procedures in the presence of erroneous 
inspections 

In the papers on optimal SPC procedures it is usually assumed that false alarms 
do not cause renewals of the process. It is assumed that an inspection which fol
lows an alarm signal reveals the true state of the inspected process. Thus, in the 
case of false alarms inspections confirm that the process remains in the accept
able STATE I, and unnecessary renewal actions are not undertaken. However, 
in real situations process inspections may not undoubtedly confirm that the 
process does not require renewal. In such cases the operators of the inspected 
process may decide to stop it , and to perform renewal actions. The possibility 
of such unnecessary actions makes the process less profitable, .and should be 
taken into account in the design of SPC procedures. This problem was first 
considered by von Collani (1981a), who derived the mathematical formulae for 
the description of the process. In this section we introduce a general mathemat
ical model which allows to design optimal SPC procedures, and we find some 
approximate solutions to the stated problem. 

4.1. Mathematical model . 

Suppose that the considered production process is described by a random vari
able X (univariate or multivariate) which in an acceptable STATE I has a 
certain probability distribution characterised by a vector of parameters p1 = 

(p11 , p12 , ... , Plk). When the process deteriorates, i. e. enters an unacceptable 
STATE II the vector of parameters describing the probability distribution of 
X becomes P2 = (p21,P22, ... ,P2k) · The moment of transition from STATE I 
to STATE II is described by a random variable T distributed accordingly to a 
continuous distribution function F( t), and is not directly observable. Moreover, 
we assume that the transition from STATE I to STATE II can be achieved only 
by a special renewal action. 

When statistical procedures are used to evaluate the results of monitoring 
two types of errors are involved: 

a) type I error when the monitoring procedure indicates the necessity of 
inspection while the process is operating in STATE I, and 
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b) type II error when the monitoring does not indicate the necessity of any 
action while the process is in an unacceptable STATE II. 

Suppose that the statistical procedure used for the evaluation of the results of 
monitoring is described by a vector of parameters 1 = (11 , ... , !m)· We assume 
that the probability of type I error a, which is also called the probability of a 
false alarm, is given by a certain known function a= a(p1 ,1). Analogously, we 
assume that the probability of type II error {3 is described by a certain known 
function {3 = {3 (P2 , 1). To corn plete the description of monitoring we assume 
that monitoring actions are performed periodically after every h produced units. 
It has to be noted, however, that monitoring processes with varying monitoring 
intervals can be also considered (see, for example, Rahim and Banerjee, 1993). 

In the majority of mathematical models of SPC it is assumed that inspection 
is perfect, i.e. reveals all false alarms with probability one. In real situations, 
however, it happens that the technical staff who inspects the process decides 
to renew it even if some results of inspection indicate that the inspection was 
caused by a false alarm. In this case we take into account this possibility by 
introducing the probability p of an erroneous inspection which indicates the 
necessity of renewal when the process is operating in an acceptable STATE I. 
Knowing the probability of the erroneous inspection p, and the probability of 
the false alarm a we can calculate the probability 6 that no renewal action will 
follow a monitoring action while the process remains in STATE I. 

6 = 1- ap (7) 

As it was indicated in the previous section, in order to describ E! economic con
sequences of any SPC procedure it is necessary to evaluate the·time when the 
process remains in STATE I. In contrast to the models where the probability of 
erroneous inspection is equal to zero, the duration of STATE I does not equal 
the time to the transition between STATE I and STATE II - denoted here by 
T. Denote by E the expected value of the duration of STATE I. In the case 
of perfect inspections E = T = E(T). Erroneous inspections can decrease the 
duration of STATE I and in such a cast; the value of E is given von Collani 
(1981a) by 

E = (1 - 6) ~ ihR(ih)6i-l + ~ 6i- l .f~l)h tf(t)dt 

where R(t) = 1- F(t), and f(t) = F'(t). 

(8) 

The expected number of monitoring actions while the process remains in 
STATE I can be computed using the formula proposed in the paper of von 
Collani (1981a) 

00 

Al = L i{(1 - 6)R(ih)6i-l + 6i[F(i +h)- F(ih)]} (9) 
i=l 
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Let us notice that due to the possibility of a renewal action while the process 
remains in STATE I it is also possible that during one renewal action the con
sidered process does not enter STATE II. We have to take it into account while 
computing the average run length in STATE II. Following von Collani (1981a) 
we arrive at the expression for the average number of monitoring actions in 
STATE II 

1 00 1 00 

A2 = 
1

_ {3 l:)F(ih)- F[(i- 1)h]}6i- 1 = ;5A2[1- (1- 6) L:_>iR(ih)] (10) 
i=1 i=O 

where 

A*- _ 1_ 
2-1-{3 (11) 

is the expected number of monitoring actions in STATE II in the case of perfect 
inspection(p = 0). 

Now, we can calculate the expected profit per one item produced during a 
renewal cycle by inserting the derived quantities into the general formula (6). 

G = .91E + g2[(A1 + A2)h- E]- aA1e*- S~A1- S2A2- r* (
12

) 
(A1 + A2)h 

Let us introduce now some new transformed ql!-_antities 

w=a+SUe* 

r = r* je* 

b* = (.91- .92)/e* 

G* = (G- .92)/e* 

(13) 

(14) 

(15) 

(16) 

(17) 

The maximisation of the average profit per item G with respect to the length of 
sampling interval h. and the parameters of the sampling procedure"( is equivalent 
to the maximisation of the standardised profit G* given by 

G* = Eb* - wA1 - S2A2 -,-- r 
h(A1 + A2) 

(18) 

where A1 and E are functions of h, A2 is a function of hand "(, w and 82 are 
functions of T 

Maximisation of the objective function is very difficult due to very complex 
relations between the value of the standardised profit G* and the optimised 
variables. Moreover, the objective function can be expressed in a closed form 
only in a few special cases. One of them is the case when the time to the 
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deterioration ·of the process is described by the exponential ~istribution F(t) = 

1 - exp(->..t). This case, however, is frequently used in practice because of 
its simplicity, and obvious practical interpretation (pure random mechanism 
of deteriorations). In the case of exponentially distributed time T the main 
characteristics in the considered model are given by the following formulae 

A1 = (e>-.h- b)- 1 

A2 = A2(e>-.h - 1)/(e>-.h- b) 

E = )... -l ( e>-.h - 1) / ( e>-.h - b) 

(19) 

(20) 

(21) 

We will use theseformulae to evaluate numerically the influence of inspection 
errors on the value of profit per item G. 

Suppose that the production process, and the control procedures are char
acterised by the following parameters: )... = 0.00001, g1 = 1.0, g2 = 0.1, 
S1 = S2 = 1.0, e* = 20, r* = 200, a = 0.05, and (3 = 0.1. Using the re
sults from Hryniewicz (1992) we can find that in the case of perfect inspection 
(p = 0) the optimal sampling interval is h = 605. Now, let us analyse how 
the profit per unit changes in the presence of inspection errors. In Table 1 
we present this comparison for a few values of the probability of the erroneous 
inspection p. 

p G 
0.0 0.9914 
0.1 0.9898 
0.3 0.9865 
0.5 0.9832 
0.7 0.9799 
1.0 ' 0.9750 

Table 1. Dependence of the profit per unit produced G on the probability of 
the erroneous inspection p. 

In the considered example the probability offalse alarm a is reasonably low, 
so the frequency of false alarms is also low. Thus, false inspections have not 
a very large impact on the value of the profit per item produced. However, 
the loss from neglecting this fact taken for a long production period may be 
substantial. 

4.2. Simplified approximately optimal design 

The parameters ( 'Y*, h *) of the optimally designed statistical process control 
procedures can be found by numerical maximisation of (18). From the analysis 
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of numerical examples presented in Hryniewicz (1989) one can find that the 
economic effectiveness of a control procedure depends mainly upon the value of 
the sampling interval h. To find the optimal value of h we have to solve the 
following equation 

8G* 
{}h 

h{b*(Al + A2)E' +(A~+ A;)(r- b* E)+ (w- S2)(A1A;- A~A2)}+ 

-(A1 + A2)(b* E- wA1 - S2A2- r) = 0 (22) 

where A~, A;, and E' are the derivatives with respect to h of A1 ,A2 , and E , 
respectively. 

The equation (22) can be solved only numerically. To obtain its approxi
mate solution that could be used as an initial point of an iteration process we 
transform it to the following form 

cl>( h)+ w = 0 

where 

and, 

hb* E' j(A1 + A2) 

b*E -r +A2(w-S2) 

(A1 + A2)-1 + hA~j(A1 + A2) 2 

hA;/(Al + A2 )
2 

b*E-r-A1(w-S2) 

(23) 

(24) 

(25) 

(26) 

(27) 
(28) 

(29) 

It is easy to notice that in the case of perfect inspection (i.e. when p = 0), the 
form (23) reduces to 

(30) 

which is equivalent to the equation already obtained in Hryniewicz (1992). It 
has been shown in Hryniewicz (1992) that this equation has the following ap
proximate solution 

ho = T (31) 

where 
S1=Si/e* 
b = b*T- r 
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In practical situations the probability of the erroneous inspection p is dose 
to zero and h0 can be used as the first approximation for the optimal value of 
the monitoring (sampling) interval. However, in many cases this approximation 
may not be sufficient, so we can calculate the approximation of the second order 
from the following equation 

where 

and 

b* {E* j(A1 + A2) + h[E" j(A1 + A2) + 
-E'(A~ + A;)J(A1 + A2 )

2
]} 

b* E' + A;(w- S2) 

h{A~j(A1 +- A2)2 - 2(A~) 2 /(A1 + A2)3
} 

A;j(Al + A2) 2 + h{A~j(A1 + A2) 2 + 
-2A;(A~ + A;)

2 
/(A1 + A2 )

3
} 

b* E'- A~(w- S2) 

(32) 

(33) 

(34) 

(35) 
(36) 

(37) 

(38) 

E" ,A~, and A~ are the second derivatives with respect to h of E, A1 , and A2 , 

respectively. 
The accuracy of this approximation can be evaluated numerically. In the 

case of exponentially distributed times to the deterioration of the process the 
optimal value hopt can be found relatively easily thanks to the existence of closed 
formulae forE, A1 , and A2 . In Table 2 we present the results of such evaluation 
for the case when >- = 0.00001, 91 = 1.0, 92 = 0.1, S1 = S2 = 1.0, e* = 20, 
r* = 200, a.= 0.05, and f3 = 0.1. 

Similar results have been obtained for different sets of input parameters for 
exponential and Weibull distributions. The approximation seems to be very 
accurate. Slightly worse results might be expected when the profit from moni
toring is not much greater than the cost of renewal. Moreover, it is worth to 
notice that even in the case of differences between the values of h 1 and hopt, the 
differences between the values of the objective function can be neglected. 

To simplify the optimisation procedure for the set of parameters '"Y is a much 
more difficult task. First, notice that for a reasonably designed procedure the 
duration of STATE II should be much smaller than the duration of STATE I. 
Thus, it is reasonable to assume that A1 > > A2. Second, we can also assume 
that the profit P = E(g1 - 92) is much greater than the cost of renewal r*. 
Moreover, for a well designed procedure we can expect that h < T. Thus, 



1228 0. HRYNIEWICZ 

p hl G(hl) hopt G(hopt) 
0.01 622 0.99123 620 0.99123 
0.05 691 0.99062 677 0.99062 
0.1 764 0.98992 742 0.98992 
0.3 963 0.98759 958 0.98759 
0.5 1131 0.98570 1135 0.98570 
0.7 1296 0.98407 1288 0.98407 
1.0 1540 0.98194 1489 0.98194 

Table 2. Dependence of the profit per unit produced G upon the length of the 
sampling interval (approximately optimal h1 , and optimal hopt). 

taking into account that A1h < E < A2 h we can assume that E ~ A 1h. We 
can now notice that 

Hence, for a fixed value of h the maximisation of G* is approximately equivalent 
to the minimisation of a much simpler objective function 

G** = a+ Si/e* 
h 

(40) 

In the case of perfect inspections we can insert (31) into (40) and the mini
mised objective function is now expressed as 

G0* =(a+ s;je*)(2A; - 1) ~-~ ( 41) 

This result was already obtained in Hryniewicz (1992). Now we can propose 
the following algorithm for optimisation of I· 

1 o Find the first approximate solution ':to by the minimisation of ( 41). 
2° From (31) find the approximation for the optimal value of h. 
3° Insert the approximate value of the optimal h into (40), and- find the 

approximation for the optimal value of f. 
5° From (32) find the approximate sampling interval h. 
6° Repeat 3° to 5° 
7° Stop the algorithm when there is no significant improvement in the value 

of the objective function. 
Numerical experiments have revealed that the proposed algorithm converges 

in only few steps to the result which is usually very close to the optimal one. 
The accuracy of this approximation depends upon the degree to which the as
sumptions used for the derivation of ( 40) are fulfilled. 
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5. Further useful approximations 

The computation of the optimal parameters of the monitoring procedures re
quires, in a general case, multiple computations of infinite sums, such as in (8), 
(9), and (10). The expressions for E, A1 , A2, and their derivatives are very 
seldom in a closed form. Numerical experiments have revealed, however, that 
in many practical cases these infinite sums converge rather slowly. Thus, there 
is a need to take into account a large number of their terms. It usually results 
in long lasting computations even on fast microcomputers. Therefore, it is of 
interest to find some relatively accurate approximations which can be expressed 
in a closed form. 

To find such approximations we assume that the monitoring interval is small 
enough that the following equality holds approximately 

R(x + h)~R(x)- f(x)h + 0.5f'(x)h2 ( 42) 

We use this approximation to present A1 given by (9) in the following form 

1 00 . 

Al = 6 L i8'[R(ih) - 8R((i + 1)h)] 
i=l 

~ 1 ~ 8 h-2 f(ih)e[ln8/h]ihR(ih)h 
i=l 

00 

i=l 
00 

+0.5 L(ih)e[ln.5/h]ih J'(ih)h (43) 
i=l 

For small values of h we can approximate infinite sums in ( 43) by corresponding 
intervals, arriving at the following expression 

A1~ 

--h-2 xeax R(x)dx + h-1 xeax f(x)dx + 0.5 xeax J'(x)dx 1-8 loo loo 100 

8 0 0 0 0 0 

where 

Let 

and 

a= h-1 ln8 

M(x) = {oo ext f(t)dt 
.fo 

(44) 

(45) 

( 46) 

(47) 
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8 E(A1) E(A2) E(E) 
0.9 0.27 0.18 0.09 
0.99 <0.01 0.01 < 0.01 
0.999 <0.01 <0.01 < 0.01 

. Table 3. Relative errors for the approximations of E, A1 , and A2 . 

After some transformations we find the following approximation 

.A1~ 
1-8 
-

8
-h-2 {a-2 [1- M(a)] + a-1 M'(a)} + h-1 M'(a)- 0.5[M(a) + aM'(a)] (48) 

Using similar derivations we obtain the approximations for A2 , and E. 

- * { In 8 In 8 } A2 ~ A2 M(a) 1- 2(1- 3) (49) 

- 1 1- 8 ln 8 
E ~ ln

8
-

8
-{a- 1 [1- M(a)] + M'(a)} + M'(a)- TM'(a) (50) 

The accuracy of these approximations has been investigated numerically for 
several probability distributions F(t). Let us adopt the following notation: X
the quantity to be approximated, X - its approximation. The relative error of 
an approximation is evaluated from the following formula 

E(X) = IX- XI lOO% 
X 

(51) 

In Table 3 we present the relative errors of approximations for the exponential 
distribution such that )..h = 0.1, and for different values of 8. 

For shorter monitoring intervals (such that )..h < 0.1) the accuracy of these 
approximations is significantly better. Even for hardly possible sets of parame
ters (e.g. 8 = 0.5) the relative errors of these approximations have not exceeded 
5%. The approximations for the derivatives of E, A1 , and A2 can be obtained 
using the same approach. However, we can find very good approximations just 
by differentiating E, A1 , and A2. Such approximations have been also found to 
be very accurate. 

If we use E, A1 , A2 , and their derivatives instead of the exact values of 
these functions the results of optimisation do not change very much. This is 
especially true when we compare the values of the objective functions for exact 
and approximate solutions. We have to notice, however, that our approximation 
cannot be used in certain circumstances . First of all, it cannot be used in the 
case of the very popular Weibull distribution, as in this case the integral ( 46) 
does not exist. Moreover, when F(t) is characterised by a very small variance the 
approximation of infinite sums by corresponding integrals may not be accurate. 
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