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Abstract: Two ways of speed stabilillation of the d-e motor arc 
considered. One way consists in the use of additional kinetic en­
ergy accumulated in a wheel with a great inertial moment .J. The 
other way consists in the use of additional information supplied by 
the feedback loop with gain K. In both cases the motor is under 
influence of the same white Gaussian noise. These two ways of sta­
bilization arc compared under the assumption of the same value of 
the speed error in the steady state. 
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1. Introduction 

In the paper the relation between energy and entropy of information is found. 
This serious problem was considered in Kolmogorov (1956;Hl68), McMillan 
(1933), Rissanen (1978), Verdugo Laro and Rathie (1978), Zurek (1989;1990), 
Jaynes (1937), Brillouin (1962), Bennet (1987), Axzel and Daroczy (1973), 
Chaitin (1987), Gray (1990), Kacl':orek (1981). This relation seems to be very 
important from theoretical point of view and, besides, it has some practical 
implications for the design of electrical and hydraulical systems. The references 
give an idea as to where this and related problems have been considered 

The speed stabilil':ation of the direct current motor with external excitation 
is considered. Two ways of speed stabilization arc analyzed. One way is by using 
a wheel with a great inertial moment .J. The second is by the use of feedback 
with a static controller of gain K. The motor is supplied by the constant voltage 
u and is under the influence of the white Gaussian disturbance, Kwakcrnaak, 
Sivan (1972). 

T he same accuracy of these two ways of stabilization is assumed . 
The relation between the kinetic energy of the inertial wheel and the amount 

of information in the feedback is found. 
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U =const 

z (t) 

Uw=const 

Figure 1. The scheme of the speed stabilization of the motor using inertial wheel 

2. The two methods of stabilization 

2.1. The first method of stabilization (using the inertial wheel) 

In Fig. 1, the scheme of motor stabilization is presented. It is assumed that the 
current in the excitation circuit has attained its steady state. 

For the sake of simplicity the nonlinear dfects such as saturation, histeresis 
and the reaction of the winding are neglected. 

The electrical moment of the motor is described by the relation 

where 
iw denotes the steady state current in the excitation circuit 
i(t) the current in the main circuit 
k1 constant coefficient. 

The equation of the voltage balance is 

() '() di(t) () v, + z t = Rz t + L-- + e t 
dt 

where 
the voltage u represents the set-value of the speed 

(1) 

(2) 

z(t) represents the white Gaussian noise; we assume farther that z(t) = Zw(t), 
where Z = 1 represents intensity of this noise. 

R the resistance of the main circuit 
L the inductance of the main circuit 

e(t) = k2w(t) 

voltage induced by the rotation 
w(t) angular velocity of the motor 
k2 constant coefficient 

(3) 
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The equation of the moments is as follows: 

where 
Mst static moment 
.h the inertial moment of the moving parts of the motor 
.h the inertial moment of the wheel 

In the equilibrium state, if z(t) = 0, the angular acceleration 

and 

dw (t) 
--=0 

dt 

di (t) 
--=0 

dt 
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(4) 

(5) 

(6) 

The nominal value Wn of the speed after taking into account (3) and (6) in 
the equation (2) is 

where 
i, is the nominal value of the current in the main circuit. 

After denoting 

6.i(t) = i(t) - i, 

6.w(t) = w(t) - Wn 

~ = To the electromagnetic time constant of the main circuit 
. Jk1 ~" = T1 the electromechanical time constant of the motor 
tw ·1 "'2 

. Jk2 Rk~ = T2 the time constant of the wheel 
1,1!1 1 2 

equations (2) and ( 4) eau be written down as follows: 

[ 
dL'I.w(t) l [ 
d~~(t) 

The total kinetic energy with inertial wheel is equal to: 

The kinetic energy without inertial wheel is equal to: 

1 2 
Er= 2 .hw (t) 

0 
1 

ToR 
] z(t) 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 
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The additional energy of the inertial wheel supplied to the system is equal 
to 

1 2 
flE = E2 - E1 = -J2w (t) 

2 
(13) 

The increment of this energy flE caused by the increment of the speed flw 
according to relation (9) is equal to 

1 2 
8( fl E) = .lzwnllw(t) + 2.12 [flw(t;)] 

or in the differential form 

Returning to the equation (10) we denote 

A=[_ ~& 
ToR 

B=[ 0 
1 

RTo 

The steady state error is equal to 

h = lirn 2_ { ; ·T ~rT (t) Wx(t)dt;} = tr (BTPB) 
T--->00 T . 0 

where 

. [ !:::..w(t;) ] x(t,) = fli(t;) 

W is a symmetric nonnegat ivc defi.nite matrix 

W= [ 1 () l 
() ~ 

and P is a constant matrix which satisfies the matrix algebraic equation 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 

(20) 

(21) 

T he assumption that the matrix A is asymptotically stable guarantees that 
this algebraic equation has a unique solution. 

T he substitution of (16) and (20) into the equation (21) gives the solution 
for matrix P 

(22) 
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where 

1 
Pu = 2 To + T1 + T2 (23) 

1R 
P12 =--To 

2 k2 
(24) 

1 R 2 ( To ) 
p22 = 2 k~ To 1 + T1 + T2 

(25) 

The steady state error according to (18) after the substitution of (17) and 
(23)-(25) is equal to 

(26) 

2.2. The second method of stabilization 

u =const 

z (t) 
Uw=const 

Figure 2. The scheme of speed stabilization of the motor using feedback loop 

In Fig. 2 the scheme of stabilization of the speed of the motor using a tachometer 
Tc and the gain J( in the feedback loop is presented . 

The equations of motion are the following: 

Me(t) = kliwi(t) 

) "( ) di(t) ( ) ( ) v. + z(t = R1. t + L-- +et + v.c t 
dt 

(27) 

where 
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v.0 (t) the voltage from tachometer 

v.a(t) = K t:.w(t) (28) 

The equation of moments 

(29) 

Following the same way as in the first method of stabilization we obtain a 
matrix equation corresponding to the matrix equation (10) : 

[ ~ l [ 0 dLJ.t(t) _ k2+K 
~ RTo 

T1 
:; ] [ t:.w(t) ] [ 0 ] 1 i2 . . + 1 z 

-To f::.?.(t) ToR 
(30) 

The solution of the corresponding Lyapunov equation gives the steady state 
error equal to 

(31) 

These two systems of stabilization are equivalent if the steady state errors 
arc the same 

or 

h = I2 

Comparing (26) with (31) gives 

K 
T2 = -k T1 

"2 

The substitution of the relation (33) into (14) yields 

or in a differential form 

k2 rlt:.E 
K.h = ---

wn rlw 

(32) 

(33) 

(34) 

(35) 

(36) 

The increment of entropy of information in the system with the second 
rnethod of stabili:,mtion is, Kolmogorov ( 1968): 

(37) 

where 
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H 2 denotes the entropy of information of the system with feedback 
H 1 denotes the entropy of information of the system without feedback 

The entropy of information for a continuous system is 

H(p) = - L: p(x) !n[p(x)]dx 

where TJ(x) is the density of the probability distribution. 
In this case 

1 (:r.-72.)2 
p(x) = rn=e- 2" 

(J'y 27r 
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(38) 

(39) 

where m is the expected value, and (}' the dispersion or standard deviation. 
The substitution of the expression (39) into (38) gives 

[
In (J'vfiK ;·oo -<"' -'2)2 1 ;·oo (.r-- ml - ("'-'2)2 l 

H = vf2K e 2" dx + m= 2 e 2" dx ( 40) 
(}' 27r 0 -00 (J'y 27r 0 -00 2(}' 

Putting :7z = t in ( 40) gives 

[
In (J'vfiK ;·oo -t2 1 ;·oo 2 -t2 l 

H = VK . -oo e dt + VK . -oo t e dt 

But 

"? 2 } 
fir .J e- t dt = 1 

-00 

1 "? 2 -t2 - l ..fo .J t e dt- 2 
-00 

as the integrals of Euler-Poisson. 
Finally 

1 
H= ln (J'vfiK+ 2 

Returning to (37) gives 

D.H = ln(J'2~ - ln(J'1~ = In (}'2 
(}'1 

( 41) 

(42) 

( 43) 

(44) 

The steady state variance matrix Q is the solution of the following algebraic 
equation 

AQ+ QAT +BzBT = 0 ( 45) 

The solution of this equation in the case of the state equation (30) is 

Q = [ 1~1 1~2 J (46) 
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where 
1 

qn = = O"~ 
2k2T1(k2 + K) 

(47) 

1 2 
q22 = 2R2To = O"o 

( 48) 

In the case of the system without feedback loop (K = 0) we have 

1 2 
q11 = 2k~Tl = (J 1 

1 2 
q22 = 2R2To = !Jo 

From the cq uation ( 44) after using ( 4 7) and ( 48) we find that 

(J2 A,( 
b..Ih = ln - = - ln . 1 + -;:-

0"1 "·2 

O"o 
6.H2 = ln- = 0 

O"o 

We can rewrite the equation (51) in the form 

K 1 + - = e-2t:>.H, 
k2 

The substitution of the relation (53) into (35) gives 

(o- 2t:>.H, - 1) ] - 8(6.E) 
,, ·I - 1 2 

Wnb..w + 2 (b..w) 

(49) 

(GO) 

(51) 

(52) 

(53) 

(54) 

After denoting the kinetic energy of the system without any stabili;.-;ation in 
the nominal state by 

E 1 1 2 
1 = 2' lwn 

and after introdncing relative variables 

b..Er = 6.E 
El 

b..w 
b..wr = -

Wn 

the rela tion (54) takes t he form 

e-26.I:T, = 1 + 1 8(6.E,.) 
' 2 1 2 b..w,. + 2 [b..wr] 

or in the differential form 
- 26.!1 1 rlb..Er 

e 1 =1+---
2 rlw,. 

which is the basic: relation. 

(55) 

(GG) 

(57) 

(58) 

(::iD) 
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3. Conclusion 

The relation (S!J) leads to the following fundamental statement: 
The increment of information or decrement of entropy of infonna­

tion in the system is proportional to the logarithm of the derivative 
of the additional energy supplied to the system with respect to its 
carrier. Observe that if the ddf'>.Er = 0 then 6.H is also equal to zero, 

Wr 

and vice-versa, if 6.H = 0 then ddf'>.Er = 0. w,, 

Remark Generalization for multivariable systems, Kaczorek (1981). 
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The formal generalization is straightforward, Kwakernaak, Sivan (1!J72). 
The analogon of equation (10), the equation of motion, is the stoc:hastic 

vector differential equation. 

where 

x(t) = Ax(t) + Bz(t) 
x(to) = xo 

A and B arc constant matrices. 

(60) 

z (t) is a vector of white noise Gaussian stoc:h&<>tic process with constant inten­
sity Z. 
Then if A is asymptotically stable and to __,. - oo or t __,. oo the variance 
matrix of :1:(t) tends to the constant nonnegativc-definite matrix. 

T he analogy to relations (18), (26) and (31) is as follows. 
Vector of steady-state error is equal 

lim ~ {J:Z: xT(t;)Rx(t)rlt} = tr (BTPB) 
T->oo T 

0 

where 
R is a symmetric nonnegative-dcfinitc constant matrix 

(61) 

P is a constant matrix, which is a unique solution of the Lyapunov equation 

(62) 

T he vector probability density function can be written m the analogy to 
relation (3!J) as 

{ 
[ C, x - ·m., ] } 

1 1 det (x - m.,f 0 

[. I( n J 1/2 exp 2 ------=.____<_let Cx----=--
V 27r) cl et Co: 

(63) 
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where Cx is the compound covariance matrix 

[ Cx1x1 Cx1x2 

Cx = Cx2x1 Cx2x2 

CxnXl CxnX2 

X2- 'm,T2 
X- 'm.x = r 

x 1 - rnx1 1 
Xn - rnx11 

CX!Xn ] Cx2Xu 

CXnXn 

H. G6RECKI 

(64) 

(65) 

If the components .1:1 , ... Xn of the stochastic vector x are not correlated, 
then the vector probability density function is equal 

(66) 

and 

(67) 

The subsequent calculations follow the same way as for scalar case. 
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