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Abstract: The paper concerns a new approach to construction 
of optimal feedback control in discrete systems. Indeterminate per
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1. Introduction 

Optimal control of dynamic systems in real time is currently a very important 
problem for engineering. There arc a lot of approaches to this problem in the 
modern optimal control theory (sec Bellman, 1963, Feldbaum, 1963, Krasovskii , 
1977, Leondes, 1976, Moroz, 1987). However, until now, satisfactory results 
have not been obtained for multidimensional problems with direct restrictions 
on control. 

The approach presented in this paper is based on adaptation of the dual 
methods of linear programming to optimization of dynamic: systems (see Gabasov, 
Kirillova, 1977,1980). The main idea of this approach consists in embedding the 
optimal control problem in a one-parameter family of problems along a realizing 
trajectory. Real time is the parameter of the family. 
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At each particular moment our controller constructs an optimal control for 
the current state where the system transfers from the previous one under the 
influence of the control and the perturbation realized at this moment. This 
allows us to save enormous volume of memory at the expense of relatively little 
computational work during the control process. The advantage in the amount of 
current calculations is achieved because the optimal control is not constructed 
anew for each current state, but results from correction of the old optimal control 
in response to continuous perturbations affecting the system trajectory. 

It is known from linear programming that the dual method is an extremely 
effective one for correction of optimal feasible solutions for slight changes of 
problem parameters. That is why the proposed approach is based on special 
implementation of the dual method for solving optimal control problems. 

Under optimal system synthesis the controller algorithm depends on the 
accessible information about perturbations acting on the system. In Gabasov, 
Kirillova, Prischepova (1991) the controller counteracting perturbations which 
arc measured during the control process has been described. Now we consider 
another formulation of the synthesis problem. We shall assume that during 
control design the perturbation is indeterminate and only the domain of its 
possible values is known. Since the quantization period is assumed to be small 
and is defined by the controller speed the variation of the system states over this 
period will be not large. In this context it is interesting to establish a relation 
between the results obtained in the present paper and in Gabasov, Kirillova, 
Prischepova (1991) . 

2. Statement of the problem 

Consider the terminal problem of optimal control 

f(v.) = h'x(t*) __, max, 

.r.(t +h) = Ax(t) + bv.(t), .r- (0) = xo, 

h~x(t*) ~ gi, i = 1, m; 

v.*(t) ::::: 11.(1;)::::: v.*(t), 

t E T(O) = {0, h, ... , t* - h}. 

(1) 

(2) 

(3) 

(4) 

About the n x n-matrix A and the n-vector b we shall assume that they 
have been obtained either by a result of discretization of the continuous system 
.i = Ax+bv. or after application of impulse controls. In the first case the simplest 
Euler method leads to A = E + hA, b = hb. The second one gives A = exp Ah, 
b = I.J~' eA(h-r)lJ jdT. From the preceding, the assumption detA =f. 0 is not an 
essential restriction. 

·without loss of generality t he system (2) is supposed to be controllable over 
restrictions ( 3). 
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As usual a control v.(t), t E T(O), (4), will be called admissible for the 
position {O,x(O)} if the corresponding trajectory x(t), t ~ 0, of system (2) at 
t* satisfies (3). The admissible control v.(t), t E T(O), is said to be an optimal 
(program) one (v.0 (t), t E T(O)), if the quality criterion (1) attains the maximal 
value. 

Here we shall distinguish between two types of solution to problem (1)-(4): 
program and feedback. 

A finite effective algorithm for constructing the optimal (program) control 
v.0 (ti0, x0 ), t E T(O), for a fixed initial position {0, x 0 } is presented in the 
monograph of Gabasov, Kirillova et al. (1984-1991). 

If perturbations do not affect the system (2) then the constructed program 
control solves the synthesis problem completely since for an arbitrary moment 
T E T(O) system (2) is in the state :r:o( T) and the optimal control value for the 
position {T,xo(T)} is equal to v.0 (TIO,x0 }. 

We understand an optimal control of the classical feedback type to be a 
piec:ewise constant function v0 (.r, t), x ERn, t E T(O), which for every moment 
T E T(O) and every initial state x 0 from the set of controllability generates the 
trajectory of the system 

x(t +h)= Ax(t) + bv0 (x(t), t), x(T) = x0 

coinciding with the optimal trajectory xa(t), t E T(O), of problem (1)-(4). 
The main reason why engineers prefer control of the feedback type to pro

gram control is that real movements of dynamic: systems are described not by 
the equation (2) but by 

x(t +h)= Ax(t) + lm(t) + y(t), x(O) = xo, (5) 

where y(t) , t E T(O), is an unknown n-vcctor function. Under the conditions 
(5), program control cannot provide even admissibility of trajectories. Feedback 
control can cope successfully with a great number of perturbations. 

We define our way of control design of feedback type. 
We shall assume that the controller begins to operate at the moment t = 0 

from the state x(O) = xo and its work is based on a special program solution 
of problem (1)-(4) (sec Gabasov, Kirillova et al., 1984-HHH). Let the controller 
have operated during 

t = O,h, ... ,T- h, 

and the system (2) having transferred from the state x( T - h) not to the state 

X(T) = A:r(T- h)+ !Jv.(T - h) 

but to 

.T(T) = X(T) + JJ(T) 
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under the action of controls u(O), . . . , v,( T- h), and the pcrturbations y(O) , .. . , 
y( T - h). We suppose that at the moment T the value of perturbation y( T) that 
will act on the state x(T) is not known. It is only known that 

y(T) E Y = { z ERn: Gz = q,d* :S: z :S: d*} . 

Using the principle of obtaining the guaranteed result (sec Gabasov, Kir
illova, 19!H) we shall call controller synthesis (or, in other words, the design of 
the control feedback type) the calculation of the control 

for which all the trajectories of the system (2) with initial conditions 

will satisfy the terminal restrictions (3) and the guaranteed (the worst) value of 
the quality criterion 

f(v.(-)) = min h'::c(t*) 
y(r)EY 

will be maximal (.f(u0 (-)) = rnax, f(v.( ·))). 

3. Optimal control under uncertainty conditions 

From linearity of the problem (1)-(4) one can show that the result v,0(t1T , ;y;(T)), 
t; E T( T) , of the synthesis at the moment T can be calculated as a solution of 
the following extrernal problem: 

f(u ) = h~::e(t*) + ~~ ----> max, 

x(t + h) = Ax(t) + lm(t) , x(T) = Xn 

(6) 

where x7 is the measured state x( T) at the moment T; and g[ = .9i - 1[, 
1[, i = 0, ·m., arc the estimates of the following linear programming problems 

~~ minh;.A(t* -r)/hz , 

G z q,d* ::; z::; d*, 

which can be computed in a parallel way. 
According to the investigations of Gabasov, Kirillova et al. (1984-1991) 

solution of the terminal cont rol problem (6) is the set 
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where 

Ssup(T) = {Isup(T), Tsup(T)},Jsup(T) ~I= {1, 2, ... ,m}, 

JSup(T) = {Tl,. · ·, Tz}, T::; T1(T) < T2(T) < . . . < Tt(T)t*- h. 

The set Ssup(T) is called a support. 
The relations 

llsup(T)I = ITsup(T)I = l, 0::; l::; m, rletP(T) -:f. 0, 

P(T) = [ h;,A(t*-t~jh-lb , t E Tsup(T) ] . 
1- E Isup(T) 

arc fulfilled . 
The vector of potentials 

v' = v'(T) = c~upQ(T), 

Csup = (c(t), t E JSup(T)), c(t) = h~A(t*-t)jh-lb, t E T(T), 

Q(T) = p-l(T) 

corresponds to the support Ssu p ( T). 
With the help of the above the accompanying eo-trajectory 

is constructed as a solution to the conjugate system 

'lj/(t- h)= 'lj/(t)A, 'lj/(t*- h)= h~- I/1 (Isup)H(Isup, J), 

}{(I J) - [ h;, ( J) ] J - { } '. - i E I ' . - 1, 2, ... 'n . 

The eo-trajectory generates the eo-control 

~(t) =~(tiT), t E T(T): ~(t) = -'lj/(t)b. 

The optimal control v0 (tiT, .T(T)), t E TN(T) 
non-support moments of time is calculated by 

Without loss of generality we may suppose that 

h:1:(t*) = g[, i E Isup(T)(v(i)::; O,i E Isup(T)). 

231 

(7) 

(8) 
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The set of values v.£up = (v.0(t), t E Tsup(T)) of optimal control at the 
support moments is found by 

where 

g(T) [ i E·~S~~~(T) ] ',9i(T) = gT-

L h~A(t* -t)/h-1/m(t)- h~A(t*-T)fhxT. 

tETN(T) 

According to (8) the form of optimal control is defined by the time moments 
in which the eo-control 6.(t), t E T(T), (7), changes its sign. Because of this, 
the algorithm proposed below is essentially based on observing the movement of 
these moments at the interval T( T). We shall consider for simplicity that except 
the support moments Tsup(T) the sign of eo-control may be changed only at 
one non-support moment TN E TN(T). 

We construct the auxiliary sets TN+ ( T), TN- ( T) connected with alternation 
of the eo-control signs according to relations 

{t; E TN(T): 6.(t) > 0, 6.(t - h) < 0} U 

U {t E TN(T): 6.(1;) > 0, t-hE Tsup(T)}, 

TN - (T) {t E TN(T): 6.(1;) < 0, 6.(t- h) > 0} u 
U {t E TN(T): 6.(t) < 0, t - h E Tsup(T)}, 

ITN+ (T)I +ITN- (T)I rn. + 1, (TN E TN+ (T) U TN- (T), TN- h ~ 1Sup(T)) . 

Let the information array be known 

V7 (t) = A(t*-t)fh-1b, t E Tsup(T) U TN U (t*- h). 

4. Optimal controller synthesis 

Let us pass to the description of the algorithm for the optimal controller for an 
arbitrary position { T, .r( T)}. In this context we shall assume that the system 
state does not leave the domain of controllability while the controller acts. 

The set 

Ck(T) = {u(kl(t),t E T(T);W\Sk;T~+ ;T~- ; 

6.g\ Vk(t), t E Ti'ur u TN u (t*- h) ; 6.k(t- h), 6.k(t + h) , t E Ttu.r, 

6.(t),t = TN,TN- h,t*- h;Qk;vk} 

will be called the current state of the algorithm at the moment T. As an initial 
state C0(T) we shall choose the set with the following COmponents: 

u(0l(t) = 71.0(t iT - h), t E T(T); W 0 = Hx0(t*) - g7 ; 
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S~up 
6.go 

V0 (t) 
6.o(t - h) 

6,_ 0 (TN) 

6.o(t* - h) 

Ssup(T); TJ:r+ = TN+(T- h); TJ:r_ = TN- (T - h); (9) 

/r-h -1t + H(Axr-h + bv.0(T- hiT- h, x(T- h))- Xr ); 

Vr(t - h), t E T~up U TN U (t* - h); 

6.(1;- hiT- h), 6. 0 (t +h) = 6.(t +hiT- h), t E T~up; 

6.(TNIT- h), 6.0 (TN- h)= 6.(TN- hiT- h) , 

6.(t* - hiT- h); Q0 = Q(T- h); v0 = v(T - h) . 

A starting state C0(T = h) is constructed by (9) with help of the optimal 
program solution v.0 (t l0 , x0 ), t E T(h) (sec Gabasov, Kirillova et al., 1984-1991). 

The algorithm's iteration Ck(T) _, Ck+1 (T)(Ck(T) _, C 0 (T +h)) is the im
plementation of the dual method of linear programming (see Gabasov, Kirillova, 
1977-1980) for the situation arising in the discrete control problem and consists 
of the following steps. 
Step 1. If l = 0, then pass to Step 2. Let l ::::0: 1. Compare T- h with 7 1 . If 

T - h < 7 1 then pass to the following Step. At T - h = 7 1 pass to Step 8. 
Step 2. Calc:ulate the change directions for the control and the vector of in

equality restrictions 
6.uk(T~up) 

6.uk(Tk) 

6.Wk(I~) 

(6.uk(t),t E Ttup) = Qk6.l'(I~'up); 

0, Tt = T(T) \ T~up; 

L H(I~, .J)Vk(t)6.uk(t), 

tET~up 

6.Wk(I~up) = 0, I~= I\ I~up· 
Step 3. Calculate the maximal feasible steps a."', (3k, e~<: along the directions 

from Step 2 
a.k = a.(Ys) = mina.(t), t E Ttup, 

{ 

n . (t) - n(k)(t) h 6. k(t) 0 
fl.uk (t) ' w en 'lJ, , < ' 

a.(t) = n *(t) -,Pl(t) when 6.v,k(t) > 0 
t~.uk(t) ' ' 

oo, when 6.uk(t) = 0, t E Tgup ; 

(3k = f3(i0 ) = minf3(i) , i E I'N, 

7, - 1. g'l. (3( ") - { - 6. w~!tl. k' when 6. wik - 6.gf < 0, 
oo, when 6.W;k- 6.f ::::0: 0. 

Let 8k = min{1, a.k, (3k}. If ek = 1, then pass to Step 4. At ek < 1 we 
pass to Step 5. 

Step 4. Compute v.0 (TIT, x(T)) = u(k) (y) + 6.:J,l,k(T). If T = t * - lh then the 
algorithm completes the work: 

1J,0 (T + ih!T + ih, x(T + i h)) = 'lJ,(k)(T + ih) + 6.uk(T + ih), i = 1, l- 1. 
If T < t* - lh we construct the initial state C 0 ( T + h) for the moment T + h 
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with the following components: 
v.(o)(t) v.(k)(t) + D.v.k(t), t E T(T +h); W 0 = Wk + D.Wk; 

S k . yo _ yk . yo _ yk . 
SUp> N+- N+> N-- N-, 

"{- "YT+h + H(Ax7 + lm0 (T IT, x(T))- xT+h); 

D.k(t- h), D.0 (t +h)= D.k(t +h), t E T~upi 

D,.k(TN),D.0 (TN- h)= D,.k(TN- h) ,D.0 (t*- h)= 

D.k(t*- h) ; 

V 0 (t) = Vk(t), t E T~up U TN U (t*- h) ; Q0 = Qk; v0 = vk. 
Pass to Step 1. 

Step 5. If ek = (3k = (3(i0) calculate the dual directions for the vector of po-
tentials and the eo-control 

fi.k(Itup) [h~0 Vk(t), t E T~up]Q'', 

ok(t +h) [h~o - p.k' Utup)H(J~Up> J)]A-lVk(t), t E T~upi 

ok(t- h) [h~o- p.k' Utup)H(J~Up> J)]AVk(t), t E T:tup u TNj 

ok ( t) [h~o - f.Lk' Utup)H(J~Up> J)]Vk (t)) t E { TN) t* - h} . 
If 8k ~ O!k = a(Ts) ealculate these directions by formula 

k (Ik ) Qk ( Ik ) 11• sup P Ts, sup ' 

ok(t +h) pQk(T8 , I~up)H(Itup> J)]A- 1Vk(t), t E Ttupi 

ok(t- h) pQk(Ts, I~up)H(Itup, J)]AVk(t), t E Ttup'U.TNi 

ok(t) pQk(TsJtup)H(Itup > .J)]Vk(t) , t E {TN, t* - h}; 

(J 

p 
Pass to Step G. 

signD.v.(Ts) if v.(k)(Ts) > 0, 

-signD.v.(Ts) if v.(k)(Ts) < 0. 

Step G. Calculate the maximal feasible dual steps along directions from Step 5 
O'k = rnin{O'(t-h),O'(t+h),tETti.tpi 

O'(t- h) 

O'(t +h) 

O'(t),t = TN,TN- h,t*- h; 

w(i),i E Itup};s(t),t E TF:r+ uTF:r-: 

D,.k(t-h) 
- k( ),s(t)=h, 

ti t- h 

when t-hE TF:r+,ok(t- h)< 0 

or t-h E TF:r-, tik(t;)O; 

D,.k(t+h) 
- k( ) ,s(t) = - h , 

0 t + h 

when t +hE Tt:r+,tik(t- h) 

or t +hE TF:r - , tik(t- h) > 0, t E T::i1p; 
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(J ( t) 
tJ.k(t) 

- 15k(t) ' 
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when !J.k(t)/5k(t) < 0, t = TN, TN- h, t* - h, s(t) = 0; 

u(t- h) = u(t +h) = u(t) = oo in other cases. 

w(i) 

Pass to Step 7. 

vk(i) 
-fLk(i)' 

when vk(i)p,k(i) < 0 

or vk(i) = O, p,k(i) > O,w(i) = oo in other cases, 
. Ik 

1, E s'up· 

Step 7. Transform the support set Sgup = {Jgup' T~1p} and the support matrix 
Qk, 

1. Let Gk = f3(io) < 1, uk = w(i.). Then 

I k+l (lk ' ) u ' T.k+l T.k sup sup 1,* 1.o, sup = sup' 

Qk+l(Tj, i) = Qk(Tj, i) + Qk(Tj, i.)rk(i)/rk(i.), i = i.; 
Qk+1(T1,i.) = Qk(T1,i.)/rk(i.),j = T,l,i = 1,1, 

where rk = (rk(i), ieigup) = [h;,0 Vk(t), t E Tgup]Qk(Tjup,Jg11p) · 

2. Let Gk = f3(i 0 ) < 1, uk = u(tq- s(tq)). Then 

I~\M I~up u io, r;~J = -r:;up u (tq- .s(tq)) 

Qk+1 (Tj,i) Qk(Tj,i) + r~(T1 )r~(i)jp/5(tq- s(tq)), 

Qk+l(tq- .s(tq), i) -r~(i)/ p/5(tq- s(tq)), 

Qk+l(T1,i0) -r~(T1 )jp/5(tq- s(tq)), 

Qk+ 1(tq- s(tq),i0 ) - 1/p6(tq- s(tq)),j = 1,1, i = D , 
k ' -(r1 (Tf),J = 1, l) = 

Qk H(I~up' J)Vk(tq - s(tq))), 

(r~(i),i = 1,1) = 
[h;,0 Vk(t), t E Tti_1p]Qk. 

3. Let 8k = ak = a(Ts) < 1, uk = w(i.). Then 

l k+l lk \ ' T.k+l T.k \ sup sup 1·•, sup = sup Ts, 

Qk+l(T.k+l Jk+l) - Qk(T.k \ lk 1 ) sup' sup - sup Ts, sup * -

- Qk(Tti_1p \ T8 ,i.)Qk(T8 ,1~up1*)jpp, (i.). 

4. Let 8k = ak = a(Ts) < 1, uk = u(tq- s(t;q)). Then 

J;j'J 1;up, Ts\iJ = (Tgup \ Ts) U (tq- .s(tq)), 

Qk+lh, i) = Q"'(Tj, i)- Qk(T8 , i)rk(Ti)/rk(Ts), i = i.; 
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Qk(T8 ,i)jrk(T8 ),j = 1,7, i = 1,7, 
k . -(r (T1),J = 1, l) = 

Qk H(J;up> J)Vk(tq - s(tq)). 

The vector Vk(tq- s(tq)) is calculated easily with respect to the vector 
Vk(tq)· 
Let 

v.(k+1l(t) 

t:..gk+1 
v,(k)(t) + 8h't:,.v,k(t), t E T(T); 

(1 _ ek)t:..gk; t:,.k+1(t) = t:..k(t) + O'kok(t), 

t ET~+ UT~- U (t*- h); 
vk+1 vk + ()'k /-lk; Wk+1 = Wk + ek t:..Wk. 

Let in Cases 1), 3) T~-1;1 UT~~1 = (T~+ UT~_ ), in Case 2) (T~-+;,1 U 

T~~1 ) = (T~+ UT~_ ) U (tq- s(tq) +h) , in Case 4) (T~-+;. 1 u T~~1 ) = 
(T~+ UT~-)\ (Ts +h) U (tq- s(tq) +h). 
Pass to Step 2. 

Step 8. Let 8 = 1, 8° = oP = cv.(T1) = 0, 6.v.0(T1)Qk(T1, Igup)b..g(Jgup) , and 
pass to Step 5. 

Remarks: 
1. The situation O'k = oo testifies that the arising perturbations do not allow 

us to satisfy the constraints (3) at the expense of choice of control on the 
segment T(T) . In this case the algorithm stops abnormally. 

2. The method for constructing the optimal controller described a bove pre
supposes certain properties· of eo-control. Cases where the sets T N+ ( T) U 
T N- ( T) contain essentially more elements than the set I:<; up ( T), and where 
in the process of operation of the controller there appear new elements 
in Tsup(T) which differ from those described above, can be investigated 
according to the scheme outlined, but now the controller becomes more 
complicated. 

3. It is not difficult to verify that the synthesis algorithm can be extended 
to include the case of nonstationary domain of perturbations when the set 
Y = Y(xn T) depends both on time and values of the current state. 

4. The algorithm can be obviously generalized for the case when it is known 
that the perturbation will act not only at the moment T but also at the 
moments T + h, . .. , T +rh :S t * - h . 

5. Example 

Let us illustrate the results obtained by the simple example of optimization of 
the mechanical motion. 

The material point, starting the motion in the rectilinear way from some 
neighbourhood of the given point and being acted upon by indeterminate per
turbations, is required to be moved into the given domain at the given moment 
and to acquire velocity the guaranteed value of which is maximal. 
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1 

04---~--~--~-------.---.----
0.0 0.5 1.0 1.5 2.0 2.5 3.0 t 

Figure 1. 

The mathematical model of the problem is 

x2(3) --t max, x 1 (t +h) = .T1 (t) + hx2(t), 

x2(t +h)= x2(t) + hv.(t), x1(3) :S: 2, x1(0) = .T2(0) = 0, 

0 :S: v.(t) :S: 1, -1 :S: 1/1(/;) :S: 1, 

Y2(t) = 0, t = 0, h, ... , 3, h = 0.5. 

Let us present the results of the optimal controller's operation for the case 
when the perturbations 

1/1 (0) = 1/2, 1/1 (0.5) = 1/4, ?/1 (1) = - 1/2, 

1/1(1.5) = -1/4, 1/1(2) = 1/4, 1/1 (2.5) = 0, 

have been actually realized but the values of this noise arc unknown for the 
controller at the corresponding moments. 

During the operation described above the controller has designed the control 
presented in Fig. 1. 

The efficiency of this control is equal to f ( v.~ (-)) = 3/2. 
If the information about the perturbations were entered during the process 

the controller would design the control presented in Fig. 2, with the value of 
the criterion for the designed control equal j(11.~(-)) = 5/ 3. 

Let the perturbation be known before the beginning of the process. Then 
the optimal control has the configuration presented in Fig. 3. The effectiveness 
of the control is now equal f(v.g(·)) = 9/4. 

The controller from Gabasov, Kirillova, Prischcpova (1991) produces the 
control for the nearest period after the perturbation measurement which is made 
at already after the control has been adopted. Assume that the perturbation 
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0.0 0.5 1.0 1.5 2.0 2.5 3.0 /; 

I 

---I 
I 

Figure 2. 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 t; 

Figure 3. 

0 +-..,...--+---.-----r--,--,------
0.0 0.5 1.0 1.5 2.0 2.5 3.0 t 

Figure 4. 
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measurement at each period is made before the control selection. In this case 
the controller produces the control presented in Fig. 4 (f(v.~(-)) = 2). 

From the above example the dependence between the control efficiency and 
information conditions is seen . In relation to full information the loss of effi
ciency is equal to f ( v.~ ( ·)) - f ( v.~ ( ·)) = 3/4, in relation to the partial information 
it is equal to f(v.g (-))- j(11.~(-)) = 1/6. 
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