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Abstract: In this paper, we first present some intrinsic point-
wise property for the real part of interval transfer function family
evaluated along the imaginary axis, and then provide a simple direct
proof of the eight-vertex result on strict positive realness of the inter-
val transfer function family. One salient feature of our approach is
that all the results are obtained directly from Kharitonov’s Theorem
on robust stability of interval polynomials. Some illustrative exam-
ples are also provided. Based on our discussion, a Kharitonov-like
result can be established for the stronger version of strict positive
realness of the interval transfer function family.

1. Introduction

The concept of strict positive realness of a transfer function plays an important
role in absolute stability and adaptive control. The strict positive realness of a
family of transfer functions, i.e. cach transfer function in this family is strictly
positive real, is very useful in robustness analysis of uncertain systems. This
problem was first treated in Dasgupta (1987), and in Dasgupta and Bhagwat
(1987), where it was shown that the strict positive realness of an interval trans-
fer function family can be guaranteed by checking only sizteen prescribed vertex
transfer functions. Chapellat et al. improved this result and proved that the
strict positive realness of an interval transfer function family can be ascertained
by the same property of only eight prescribed vertex transfer functions in this
family, Chapellat (1991). This result is remarkable since it reduces the ver-
ification of the strict positive realness condition over infinitely many transfer
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functions in the interval family to the verification of the same property over
only eight transfer functions, irrespective of the order of the transfer function
family. In what follows, we first present some intrinsic pointwise property for
the real part of the interval family evaluated along the imaginary axis, and then
give a simple direct proof of the eight-vertex result. One distinguishing feature
of this approach is that all the results are obtained directly from Kharitonov’s
Theorem on the robust stability of interval polynomials, Kharitonov (1978).

2. Main results

A polynomial p(s) is said to be stable, which is denoted by p(s) € H, if all its
roots lie within the open left half of the complex plane.
A proper transfer function % is said to be strictly positive real, which is

denoted by ZJ(% € SPR, if

1) q(s) e H

2) RZUL > 0, vw € R (1)

Consider the n-th order real interval polynomial family

I'= {])(9) |[)(5) = Zqisi » @i € [(]7_ ) Q1+] y 1=10,1,... )n} (2)
i=0

and define the four real Kharitonov polynomials as

Ki(s)=qp + G s+a s> +qs® +a7s* +g55° + - (3)
Ka(s) = g3 +ais+a3s" +a5s° +afs" +a37s° + - (4)
Ks(s)=qf +ars+a s +af s +af " +q55° +- - (5)
Kay(s) = qg +afs+a3s> +a55° + a5 5" +a575° + - (6)

LEMMA 2.1 (Kharitonov’s Theorem for the Real Interval Polynomials)
p(s) € H, Vp(s) €T < Ki(s), Kas), Ka(s), Ka(s) e H (7
Now consider the first order complex interval polynomial family

Fc = {p(s) | p(s) = (TO + ]to) + (Tl +.71’1)S ) (8)
i€y, il ety 1], i=0,13
and define the eight complex Kharitonov polynomials as
Kif (s) = (rg +jtg) + (r +4t)s (9)

KF(s) = (rd + 1) + (rf +5t7)s (10)
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K (s) = (rg +jtg) + (ry +3jt7)s (11)
Kf(s) = (rg +jtd) + (v +4t)s (12)
Ky (s) = (rg +3tg) + (r{ +4t7)s (13)
K3 (s) = (r§ +3t3) + (r7 +5t)s (14)
K (s) = (rg +jtg) + (r{ + 5t )s (15)
Kq(s) = (rg +jtg) + (r{ +jt7)s (16)

LEMMA 2.2 (Kharitonov’s Theorem for the First Order Complex Interval Poly-
nomials)

p(s) € H, Vp(s) €T = K (s), K (s) e H,i=1,2,3,4. (17)

LEMMA 2.3 Consider the transfer function Zl(z—g For any fized w € R, suppose
a(jw) # 0, then

R2UY) < o s g(jw)s + pljw) € H (18)
q(jw)

Proof: For any fixed w € R, since q(jw) # 0, the polynomial ¢(jw)s+ p(jw) has
a fixed order. Namely, q(jw)s + p(jw) is a first-order polynomial with complex
p(iw)
q(jw)”

cocfficients. Its unique root is — Hence

q(jw)s + p(jw) € H =N (—pgwg) <0

19)
pliw) (
= §Rq(7w) >0

This completes the proof. ||

Note that Lemma 2.3 is important in its own right. It provides a connection
between the strict positive realness condition and Hurwitz stability of a first-
order complex polynomial. A similar result holds for Ho,-norm of the strictly

proper, stable transfer function fl’l(z—;, i.c., the small gain condition HZJ(:—)H <1
is satisfied if and only if, for any fixed w € R, the first-order complex polynomial
q(jw)z + p(jw) is Schur stable.

Now consider the interval transfer function family

{28 ) e, puts) e ) (20)
Pu(s)
where T',, , I’y arc n,-th, n,-th order real interval polynomial families respec-
tively.

Dcnote their Kharitonov polynomials as K(*(s), i = 1,2,3,4 and K7 (s),
1=1,2,3,4 respectively. We have
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THEOREM 2.1 For any fized w € R, suppose p,(jw) # 0, Vp,(s) € Ty, . Then

Pu(jw)
REELZL S 0, Vpu(s) € Tw , Voo r,
oG 'pu(5) pu(s) €

KiGw) ) pK3Gw)

=R
KiGo) 0 VR Gw)
K3 (jw) K (jw)
0, RN

" RiGe) () -0

Kp(e) _, pK3Ge)

VA ? v

K3 (jw) K4 (Jw)

K3 (jw) Gw)
R_2: <%0, 21

K3 (jw) K1 Go) ~ (21)

Proof: First note that, for any fixed w > 0 and p,(s) € T, we have

RK} (jw) = RKY (jw) < Rp,(jw) < RKZ (jw) = NRKF (jw) (22)
SK} (jw) = SK§ (jw) < Spu(jw) < SK3 (jw) = SKE (jw) (23)

Thus, the set {p.(jw) | pu(s) € Ty} is an interval complex number (level rect-
anglc) on the complex plane. Similarly, the set {p,(jw) | pu(s) € Ty} is also an
interval complex number (level rectangle) on the complex plane.

Now by Lemma 2.3, we have

%['_),,‘(jw) >0, Vpu(s) €Ty, Vpu(s) €T

Po(jw)
= pu(jw) + pu(jw)s € H , Vpu(s) €T, Vpu(s) €T (24)
Let
ro = RKY (jw) = RE (jw) (25)
g = RIG (jw) = REKG (jw) (26)
to = SKy'(jw) = SK (jw) (27)
ty = SK3(jw) = SKj (jw) (28)
r1 = RKY (jw) = REY (jw) (29)
i = RKG (jw) = REKG (jw) (30)
17 = SKY (jw) = SK3 (jw) (31)

i = SKY(jw) = SK3 (juw) (32)
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Then by Lemma 2.2, we have

Pu(Jw) + py(Jw)s € H , Vpyu(s) €T, Vpu(s) €
= Ki'(jw) + K{(jw)s , K3 (jw) + K3 (jw)s ,
(3 (jw) + K7 (jw)s , K§(jw) + K3 (jw)s ,
Ki‘(Jw) + K3 (jw)s , K3 (jw) + K{(jw)s
K¥(jw) + K3 (jw)s , Ki(jw) + K} (jw)s € H (33)

Again by Lemma 2.3, we get the desired result.

When w < 0, note that p,(s) , py(s) are real polynomials, thus p,(jw) (or
py(jw)) and p,(—jw) (or py(—jw)) arc mirror images with respect to the real
axis. By similar arguments we can reach the same conclusion. |
EXAMPLE 1 Supposec a € [a=,at],be [b~,bF],c € [c, ¢t],d € [d, d],
and (0,0) & [¢=, ¢T] x [d™, dF]. For all possible a,b, ¢, d, how can we guarantee
the following inequality

ac+bd >0 (34)

(which can be regarded as onc of the conditions in the corresponding Hermite-
Bichler root-interlacing theorem for stability of complex polynomials.) TFrom
the theory of interval analysis, we know that we nced to check all the sixteen
vertices {a=, at} x {07, b} x {c¢™, ¢t} x{d™, d*}. In order to use the result
of Theorem 2.1, we first notice the following cquivalence

a+ b

¢ +bd >0 B
ac+ 0d > (0 < ctjd

>0 (35)

Hence, by Theorem 2.1, we only need to check the following eight inequalitics

~4bmdt >0, atet £0Td >0 (36)

e +b7d” >0, act+0TdT >0 (37)
T 4+07d” >0, ate +0MdT >0 (38)
atet +07dT >0, a7 ¢ +bTd” >0 (39)

THEOREM 2.2 (Chapcllat ct al.)

p“’(b‘) (= SPR, Vpu( ) € P" ? V[)v(
pv(.s‘)
Kil) Kie) i) Ki
Kj(s) " K3(s) " Ki(s) " K3
Ki(s) Ki(s) Ki(s) K ”< >
K3(s) " Ky(s) ' K3(s) ' Ky (s)

e,

(s)

3 (s)

€ SPR (40)
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Proof: Necessity: Obvious.
Sufficiency: Since K7 (s) € H , i =1,2,3,4, by Lemma 2.1, we have p,(s) €
H , Vpy(s) € I'y. This also guarantees that p,(jw) # 0, Yw € R, Vpy(s) € Ty,
Since the eight vertex transfer functions are strictly positive real, for any fixed
w € R, the real parts of these transfer functions evaluated at jw are greater
than zero. Thus, by Theorem 2.1, for any fixed w € R, we have
Pu(jw)

mm >0, Vpu(s) €Ty, Vpy(s) €Ty (41)
Therefore, we have

Ii—'(-ﬁ € SPR, Vp,u(s) €T, Vpu(s) €Ty (42)

Pu(s)
This completes the proof. |

REMARK 2.1 From the proof of Theorems 2.1 and 2.2, we see that the eight
critical vertices in Chapellat’s theorem come from the eight first order complex
Kharitonov polynomials.

REMARK 2.2 Theorem 2.1 reveals a pointwise property for the interval trans-
fer functions evaluated along the wmaginary axis (the quotlient of two complex
interval numbers).

REMARK 2.3 In the proof of Theorem 2.1, a very special case of Kharitonov’s
Theorem, i.e. the case of the first order complex interval polynomials, has been
resorted to. If Kharitonov’s Theorem can be improved for low-order complex
polynomials (in the real coefficients case, Kharitonov’s Theorem can be simplified
for low-order polynomials, see Anderson, 1987), then Theorems 2.1 and 2.2 can
further be improved.

ExXAMPLE 2 Consider the interval transfer function family

[3,5)5 + [~7,9]
[5,8]5 + [1,2]

Suppose w = 1. It is easy to verify that all the eight critical vertices have

positive real parts at this frequency. Hence, by Theorem 2.1, we know that

every transfer function in this family cvaluated at w = 1 has a positive real

part. Note that Theorem 2.2 does not apply in this case since some transfer
45—6

functions in this family, like 7er3> arc not strictly positive real. Similar results

can be shown for the following transfer function families:

[~2,5]s% + [3,5]s + [-2, 7]
(2,4]s% + [3,4]s + [1, 2]

(43)

(44)

12,3]s° + [1,2]s + [~7,9]
[23,—20s° + 3,505 + [, 2]

(45)
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REMARK 2.4 Motivaled from network theory, a slightly stronger definition for
strictly positive real transfer function is as follows, IToannou and Tao (1987):
A transfer function G(s) of the complex variable s = o + jw is posilive real,
if
1) G(s) is real for real s .
2) RNG(s) > 0 for all R[s] >0 6
Assume that G(s) is not identically zero for all s. Then G(s) is strictly
positive real, if and only if G(s — €) is positive real for some € > 0.
An equivalent characterization of the stronger strictly posiltive real transfer
function is as follows:
Assume that G(s) is not identically zero for all s. Then G(s) is strictly
positive real, if and only if

1) G(s) is analytic in R[s] > 0

2) RNG(jw) > 0, Vw € (—o00,00)
limg,2_00 w?RG (jw) > 0, n*=1 (47)
limg2_, 0o RG(jw) > 0 and limpy|—eo EUw) - 0, p*=-1

Jw

where n* is the relative degree of G(s) .
Assume that G(s) is of the following form

GnS™ + G181 onn + a5+ ag
G(”) = ])n .'n,+;1 Dog™ boveenn , (48)
419 + b, 8™ + + 015+ b

where an # 0, bpi1 # 0. Then, it is easy to verify that condition &) is equivalent
to

a’nbn > a'n,—lb'n,—f-l (49)
Alternatively, assume that G(s) is of the following form

”‘n+1.5"+1 4+ a,st +a1s+ag
Dy 8% by B s e v + b5+ bo

G(s) = (50)

where an11 # 0, by, # 0. Then, it is easy to verify that condition 3) is equivalent
to

an()n > a'n—i—lbn—l and ”/11.—!—11)77, >0 (51)
By similar arguments, we can establish strong Kharitonov-like results for the

stronger version of strict positive realness of interval transfer function family.
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