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Abstract: A class of semilincar elliptic boundary control prob
lems is considered. Owing to measurable and bounded controls we 
use the weak solution approach for the state equation. For the 
derivation of solvability results we present two methods. The first 
method works with the complete continuity of the state mapping, 
whereas in the second one theorems about the separation of convex 
sets and measurable selection arc applied to overcome the complete 
continuity of the state mapping. 
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1. Introduction 

Optimal control problems governed by nonlinear partial differential equations 
arc a field of active research. Most of the work is done to derive necessary or 
sufficient optimality conditions of first and second order. The aim is to justify 
numerical algorithms for solving such problems. The question of existence of 
optimal controls has not been considered in such detail. Mostly, the assump
tions on the control problem arc chosen in such a way that a more or less known 
standard method can be applied to derive the existence of solutions. J\!Ieanwhile, 
there arc some papers, for instance Papagcorgiou (1001) in the case of optimal 
control problems for nonlinear elliptic equations, dealing especially with the 
problem of existence of solutions for optimal control problems. In Li and Yong 
(1990) a short overview of the history in this special field with some other ref
erences is given. They also show existence results for optimal control problems 
governed by evolution equations and ellipt ic variational inequalities. Papageor
giou as well as Li and Yong consider problems with distributed controls in the 
elliptic case. 
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In this paper we consider a boundary control problem for semilinear elliptic 
differential equations. We want to prove only the existence of a solution. For 
first order necessary optimality conditions we refer for instance to Casas (1993) 
and Bonnans and Casas (1991) . Moreover , a new development in second order 
optimality conditions occurs (consult, for instance, Casas, Trolt,-;sch and Unger, 
1996) . The questions concerning optimality conditions requiring assumptions 
on differentiability will not be considered here. 

As mentioned above, a standard method for the proof of existence is known. 
This method was applied, for instance, in Lions (1968), Zeidler (1990), and in 
Casas (1993). The main disadvantage of this method consists in the assump
tion of linearity of the partial differential equation with respect to the eontrol. 
Nevertheless, we will reeall it for eonvenience. Another method in this field is to 
assume eompaetness of the set of admissible eontrols (see, e.g., Zeidler, 1990). 
But this restrietion is rather strong and is not satisfied in our eonerete setting. 
Therefore, we will use a method based on measurable seleetion theory, whieh is 
known for control problems governed by ordinary differential equations from, for 
instance, Macki and Strauss (1982). In the case of parabolic control problems 
the method was applied in Eppler (1993). 

Also in Papageorgiou (1991) results of measurable selection theory were used 
to derive existence of solutions for nonlinear elliptic eontrol problems. But 
we want to consider boundary control problems in contrary to problems with · 
distributed control as in Papagcorgiou (1991). On the other hand we will allow 
in some sense more general cost functionals. 

2. Preliminaries 

In this paper we want to investigate the following control problem: 

<!>(w,v.) = G(w) +H(u) = min! 

subject to 

(Aw)(x) 
aliA w(:r;) 

E 

f(x) 
b(w(.r), u(x)) 

uad. 

We make the following assumptions: 

inn, 
on r, 

(1) 

(2) 

(3) 

(Al) n c IRn, n:::: 2 is a simply connected domain with a boundary r of class 
cl . 

(A2) uad := {u(·) E Loo(f) I u(.r) E [a, d] a. c. on r}, where a < d are fixed 
real numbers. uad is a convex, bounded and closed subset of L 00 (f). 

(A3) GC) is a continuous functional on C(IT) and H(-) : Lq(f) f---7 IR is convex 
and continuous for a certain fixed q > n - 1. 

(A4) The mapping A given by 
n a aw 

(Aw)(x) =- i~l a.r.i ai.i(x) axi (x) + ao(x)w(x) (4) 
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generates a continuous and coercitive bilinear form a : H 1 (D) x H 1 (D) -> 

lR wit~'(v• ,v) ~ ./ ( t ai_i(x ) :.~ (x) :.:i (x) + ao(x)w(x)v(x)) d.r., 
!1 t ,J =l . 

where ai.i E C 0 •1 (IT) and a0 E Loo (D) such that a0 (x) 2 m > 0 a .e. in D. 
aw 

ai/AW(X) = a,i_j(X) axi (x)nj(X), 

where n.i denotes the j th component of the unit outward normal on r in 
X. 

(A5) The func:tion b : IR x IR f-> IRis uniformly Lipsc:hitz-c:ontinuous in both 
arguments and monotone decreasing with respec:t to the first variable, i. e., 
for all Wi, v.i E IR, i = 1, 2 we have: 

lb(wi,71·I) - b(w2, 'll·2)1 < 
(b(w1 , v.) - b(w2, u) )(w1- w2) < 

(A6) f( ·) E Lr(D) with TJ > n/2. 
We use the following notations in the paper: 

C( lw1- w2l + lv·l- 11.2 !, 
0. 

(5) 

(6) 

.fJ1 (D) is the usual Sobolcv space. Moreover , we denote by " ~" and "->" weak 
and strong c:onvergenc:e of elements, respectively. The underlying Banach space, 
such as " Lr", "C" or "ea", is only shortly indicated at the top of "righthar
poonup" and " rightarrow", respectively, bcc:ause the correct space becomes clear 
from the context. 
Furthermore, we introduce 
w ad = { w( v.) I w( ·) is the (weak) solution of the boundary value problem (BVP) 
(2) for a given 11. E Uad} as the set of admissible states and 
Bad= {b(w(u ), u )i n E uad , w(v.) E W ad} as the set of a ll "admissible right
hand sides" of the boundary condition in (2). 
Besides, the notion of complete continuity is used as follows: 
We c:all a mapping P : X f-> Y , (X, Y Banach spaces) completely continuous, if 
the weak convergence of a sequence {.r.n} C X implies the strong convergence of 
the images with respect toY, i. c.: Xn ~x xo E X =? P(xn) ->y P(xo) E Y. 
Note that this notion may be used in a different way in other papers. 

In the next section we will discuss some properties of the boundary value 
problem (2), which is called the state equation. 

3. The weak solution of the state equation 

In view of our assumptions on the eontrol and the right hand side of t he bound
ary value problem, we use the weak solution approach for the state equation. 
The weak formulation of the boundary value problem (2) is given by 

a(w, v) ./ b(w(x), n(.r.))v(x)dSx + ./ f(x) v(x )d.r, 
r n 
B(w, 'll. , v) + F(v) (7) 
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for all v E H 1 (D). 
The assumed properties of the bilinear form a ensure the estimates 

and 

a(w,w) ~ mllwll~r'(!l)· 

For every v, E uad the assumptions (A5) and (A6) on b and f, respectively, 
together with these estimates imply the existence of a unique solution w E 

H 1 (D). See for instance Kinderlehrer and Stam pacchia ( 1983) or Zeidler ( 1990). 
Note that in our setting we can not expect coercitivity or monotonicity of a 
with respect to norms of Sobolev-Slobodetskii spaces W~ (D) with p > 2. On 

the other hand, we have supposed that G is a functional on C(IT). Therefore, 
existence theory for weak solutions of elliptic boundary value problems is not 
sufficient. We need additional statements from regularity theory. The results 
presented here are going back to Kinderlehrer and Stampacchia (1983) and are 
summarized in Li and Yong (1995). 

Before we start the consideration of the nonlinear problem, a statement with 
respect to linear boundary value problems should be in order. This statement 
will allow some useful estimations in relation to the nonlinear problem. Let the 
linear problem be given by 

(Aw)(x) = f(.'r;) 
aVA 111(x) + .81 (x)w(x) = .Bz(X) 

Then it holds: 

in D, 
on r. (8) 

LEMMA 3.1 Let the assv.mptions on D, A and f be fulfilled. Sv.ppose that ,81 E 

L oo (r) with ,81 (:r;) ~ 0 almost ever-ywher-e on r and ,82 E Lq (f). Then ther·e 
is a constant a E (0, 1) S11.ch that the 11.niqne weak solv.tion 111 of (8) belongs to 
H 1 (D) n ca(IT). Mor-eover-, we .find a constant C > 0 not depending on f and 
,82 with 

(9) 

We return to the nonlinear problem. As mentioned above we need a regular
ity result which ensures that the weak solution of the boundary value problem 
(2) belongs to the space C(IT) . The last and the following statement are taken 
from Li and Yong (1995): 

THEOREM 3.1 Let the assv.mptions (A 1 ) - (A 6) be fnlfilled. Then ther-e exists a 
constant a E (0, 1) such that for· ever·y contr-ol v. E uad the corresponding weak 
sol7i.tion of the pmblem (2) belongs to H 1 (D) n ca(IT). 

Now we are able to introduce an operator describing the state mapping: 
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DEFINITION 3.1 We define the opemtor- K: Uad ~---> H 1 (D) n ca(f!) (the state 
mapping) by w = K(v,), wher-e w is the solution of equation (7) corTesponding 
to the contml v .. A pair ( v.o, wo) E uad X H 1 (D) n c n(TI) is called an admissible 
pair-, ~ff v.o E uad and wo = K( v.o). 

It would be useful to have some continuity properties of the mapping K. 
The assertion of the next theorem appears to be natural: 

THEOREM 3.2 Let the assv.mptions of TheoTem 8.1 be satisfied. Then theTe is 
a constant C > 0 such that joT all admissible paiTs (w1 ,v.1 ) and (w2 ,v.2 ) the 
estimate 

(10) 

holds. 

Proof: In view of Lemma 3.1 the statement seems to be obvious. Never
theless, the proof using only this lemma is lengthy and technical. We will give 
here only the main ideas. 

The difference w1 - w2 satisfies the equation 

a(wl- w2,v) = B(wl,v·l,v) - B(w2,v.2,v) 

for a ll v E H 1(D) . Looking upon the right hand side as given, we see that this 
is a linear problem. The properties of a and b and Lemma 3.1 in connection 
with the Sobolev embedding theorem imply the estimates 

llw1 - w2IIL,(r) 

llw1 - w2IIL,(r) 

llw1- w2IIL00 (r) 

< cll·u.l- u2IIL2(r) 

< c(llv.1- v.2IIL2(rl + llw1- w2 IIL2CrJ) 

< c( llv.l - u2 11 L.(r) + llw1 - w211L.(r)) 

with generic constant c and t depending on boundary embedding of H 1(D). 
The interpolation property of Ls spaces (sec, e.g., Triebel, 1983) ensures 

llw1- w2 II L,,(r) :S: c(llv·l- v.211Ls(r) + llw1- 'W2IIL.(r)), 

where s, t' E [2, oo) with t' - s;::: s' > 0. 
Now starting with the estimate from Lemma 3.1 the assertion can be proved 

by a bootstrapping argument. 0 
Remark 1: As a consequence of estimate (10), the set w ad of a ll admissible 
states is uniformly bounded: There exists a Co > 0 with 

sup suplw(u;x)l :S: Go, (11) 
n EU ad xES1 

which implies the uniform a .e. boundedness of the set Bad, too. In addition we 
have the estimate 

(12) 
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Therefore, for all sequences {bn(-)}~=l C Bad with bn ---?Lq b E Lq(f) there 
is w,. -?ea w, where Wn, w arc the associated solutions of (7) to bn and b, 
respectively. Furthermore, due to the linearity of the mapping, the same is true 
with respect to weak convergence, i. c., b,. ~Lq b implies Wn ~ea w. 

4. Existence of optimal solutions 

Although the continuity of the state mapping ]( is not sufficient to guarantee 
existence of optimal solutions, the underlying investigations arc very useful for 
showing the closcdncss of wad in C(TI). Moreover, with an additional assump
tion, we get the complete continuity of the state mapping from Lq(f) to C(TI). 
The next result will be proved by means of separation techniques for convex 
sets and measurable selection theorems. This method was at first developed for 
control problems governed by ordinary differential equations (see, for instance, 
Macki and Strauss, 1982). Later, similar techniques were used by Eppler (1993) 
for parabolic boundary control problems. This works well even in the case of 
elliptic control problems. 

LEMMA 4.1 The assumptions (A1)-(A6) ensur-e the compactness of wad in 
C(TI). 

Proof: At first we remark that wad is a relatively compact subset of C(TI). 
This follows from the estimate (10), the boundcdness of uad and the compact 
embedding of C"'(D) in C(TI). 
Now WC take a sequence {wn}~=l c wad (wn = w(v.n ) for some V.n E uad) 

and assume without loss of generality 

w,. ---?e fv. (13) 

For w we have [[wlle(i'i) :S: Co (cf. (11)) . 1\!Ioreover, for the associated " right hand 

sides" bn = b( V ln , v.,.,) of the boundary condition (2) the relation bn ~ Lo b is 
fulfilled , where w is the solution of equation (7) associated to the right hand 
side b in the boundary condition. T his can be shown as follows: 
Every subsequence {bn'} C {b,.} contains a sub-subsequence {IJ,., } C {bn'} 
with bn" ~ L" IJ'', because Bad is bounded in Lq(f). This implies Wn" ---?e w" 
( w" is the solution of (7) associated to IJ'') and from (13) we have w" = w ~ 
b" = b. 
If we were able to show the existence of a control v.o E uad such that b = 

b(fv, u0 ) (in detail : b(:r) = b(w(x), v.0 (x)) a .e. on r), then, altogether we have 
fi) = w(u0 ) and the theorem will be proved. 
To this aim we introduce the sets 

M( fi!(1;)) = {1;(7:u(x), y ) I y E [a, rl]} c IR, 

and the functions m.(·) and ·rn.( ·), defined by 

·m.(:r) = rnin{z[ z E M(tv(1:))} = rnin{b(1v(.T),y) [y E [a.,d]}, 
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m.(:r) = m ax{z l z E M(w(x))} = max{b(w(x) , y)l yE [a., rl]} , 

for all X E r. The continuity of w(-) on r and the uniform continuity of b(-, ·) 
on the compact set [-C0 , C0 ] x [a., rl] guarantee the continuity, hence Lebesgue 
measurability of ·rn.(-) and m.(-). Moreover, we have 

M(1T!(x)) = [m.(x), m.(:r)], 

i. e., all sets M(11J(x)) are convex subsets of R. The measurability of the set 
Nh, defined by 

Nh = {x E fl b(x) f. M(w(x))}, 

is an immediate consequence. 
In the next step we prove that rnes(Ml) > 0 is a contradiction to bn ~ Lq b. In 

doing so we rewrite M 1 as M 1 = NI1 U M 1 with 

M 1 = {x i b(x) < ·m.(x)}, M 1 = {xl b(x) > Tn(:r)}, 

am! assume without loss of generality mes(Nh) > 0. LFrom this we get the 
~ - - 8 

existence of a constant 8 > 0 and of a subset M 1 C M 1 with mcs(M d > 0, 
such that 

b(x) ;::: 8 + m.(x) ;::: 8 +sup IJ(w ( ::~: ), 11.11 (:r;) ), 
n 2: 1 

- 8 
'Vx E M1 

(the last inequality follows by the definition of ·m.). The uniform continuity of b 
and w ( u,J --'> c w ensure 

for all X E r, n ;::: N 0 ( 8), and therefore 

b(x) 2 8/2 + sup IJ(wn(x),un(x)), 
n 2: No(8) 

Integration over NI~ yields 

T his is a cont radiction to bn ~ L b, because XN£6 E Lq' (f) for the characteris tic: 
q 1 

' ~ func:twn x(- ) of the set M 1 (1/q + 1/ q' = 1). Consequently, we get 

b(::~; ) E {h(1T!(x), JJ)I y E [a., b]} a .c. on r. 

That means that t here exists at least one selection iJ.(x) E [a. , rl] with 

b(::~:) = h(w(x),fi. (::~:)) a.c. on r. 
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The application of the Fillipov lemma (Macki and Strauss, 1982) guarantees a 
measur-able selection v.o ( ·), by setting 

( ) { a , .T E M1 0 
v.o x = min{y E [a, dJib(x) = b(w(x), y) , x t/:. M1. 

Remark 2: Obviously, the set wad is also weakly closed in ca(IT) and the set 
Bad is weakly closed in Lq(f), too (but both sets are not necessarily convex) . 

In order to prove the complete continuity of the state mapping, we need an 
additional structural assumption on the function b. This well known idea was 
realized, for instance, by Sperber (1983) for optimal control problems governed 
by semilinear parabolic equations, and was further developed and applied by 
Eppler (1988), (1993). 

LEMMA 4.2 In addition to (A1) - (A6) we sv,ppose that 

b(w,v.) = h(w) · v. + bz(w), (14) 

with Lipschitz-continv.ov.s functions b1 ( ·) and bz ( ·) (i. e., the fv.nction b is a.ffine
lineaT with r·e.spect to v.). 
Then, the .state mapping K is completely contin?J,OV.S on uad fmrn Lq (r) to 
C(D). MoTe pr-ecisely: The condition 1/.n ~Lq v.o, V.n E uad , n = 0,1 , ... 
implies w(un) -?c w(v.o) joT the associated states. 

Proof: We take a sequence {v.n}~=l C Uad with V.n ~Lv v.o E Uad. 

Similar to the discussion at the beginning of the proof of Theorem 4.1 we get 
for every subsequence { V·n'} C { v.n} a sub-subsequence { v.n"} C { V.n'} with 
bn" = b( w( 7l.n"), V.n" ) ~ Lq b" and w( v.n" ) -7C w" ( w" is the solution of (7) 
associated to b"). 

If we have in addition the "strong-weak" continuity of the Nemytskii-Operator 
defined by the function b(-, ·), more precisely, if we have: 
the conditions Un ~Lq v.o and w(v.n) -?c w imply the weak convergence 
b(w(v.n),v.n) ~L,, b(w,v.o), then b" = b(w",v.o) and therefore w" = w(v.o), 
which concludes the proof. 

In order to show this, we use the special structure of the function b and the 
concrete duality product of Lq. Although this is well known, we want to outline 
the proof once more: 
We fix an arbit rary f(·) E Lq'(r) (1/rz+ 1/q' = 1) , and estimate as follows: 

/ f(x) . [bl ( w( V.n; :r)' )v.n (x) + bz( w('u.n; X)) - bl ( w(x ) )v.o(x) - bz ( w(x )) ]dS, I 
r 
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with 

I;,=./ f(x)v.n(x)[bl(w(v.n; x))- b1(w(x))]dSx, 

r 

f;, = ./ f(x)bl(w(x))(v.n(x)- v.o(x))rlSx, 

r 

and 

I~=./ f(x)[b2(w(v.n;x))- b2(w(x))]rlSx. 

r 

Because of w(v.n) ---->c w and the continuity of b2(·) we have b2(w(v.n; ·)) ---->c 
b2 (w(-)), and therefore I~ ------> 0 for n------> oo. Analogously, we deduce from the 
uniform boundedness of all V.n the relation I~ ------> 0. Finally, we get I~ ------> 0 from 
the weak convergence of the controls v.n (f(·)b1 (w(·)) E Lq(f) is a consequence 
of b1 ( w(-)) E C(r) C Loo (r)). Hence, we have the announced "strong-weak" 
continuity of the Nemytskii-Operator and the lemma is proved. 0 

Remark 3: In fact we have weak continuity forK from Lq(r) to C<>(D, i. e., 
'U.n _~Lq V.o implies w(v.n) ~cu w(v.o)). Moreover, compactness of wad (in 
C(O)) and weak closedness of Bad (in Lp(f)) now follow immediately from the 
properties of the underlying mappings. 
A well known difficulty for the existence of optimal controls is the noncompact
ness of the set of admissible controls, if it is defined as above. However, Uad is 
closed, bounded and convex i~ Lq(f), hence weakly compact. Therefore, one 
way to overcome this difficulty consists in using the complete continuity of the 
state mapping. 

THEOREM 4.1 Under· the assnmptions stated in Lemma 4.2 the optimal contml 
pmblem (1) - (3) is solvable. 

Proof: With the help of our investigations of Section 3 and Lemma 4.2 
this is a simple conclusion from the Weierstrass Theorem, applied to the weak 
topology on Lq(f) . Note that continuity and convexity of H(·) are sufficient for 
the weak lower semicontinuity. 0 

Remark 4: Obviously, every weak accumulation point fi. E uad of a minimizing 
sequence { v.n} is an optimal control of the control problem. 

Although this is a standard result, the assumption (14) seems to be rather 
strong. Therefore, we present another result, based on Lemma 4.1. 

THEOREM 4 . 2 If the assv.mptions (A 1 )- (A 6) ar-e satisfied and if the ob.fective 
of the contTol pToblem does not e:rplicitly depend on the contml11. (i. e., if the 
fv.nctional H (-) is vanishing), then pmblern ( 1) - (:J) has at least one solution. 
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Proof: Because the part H(-) is not present, the optimal control problem 
can be formally reformulated as 

G(w) = min! subject to wE wad. 

Now Lemma 4.1 and assumption (A3) ensure that the application of the Weier
strass-Theorem is also possible in this case. D 

Remark 5: In contrary to the t heorem above, on the one hand a weak accu
mulation point of the sequence { v.n } is generally not an optimal controL On 
the other hand the optimal control v.0 need not to be a weak accumulation 
point of the sequence {v.n}, whereas the state w(v.o) is an accumulation point 
of {w(un)}. 

5. Concluding remarks 

Similarly to Papageorgiou (1991) an existence result is possible for an objective 
of integral type explicitly depending on the control. To this aim some appropri
ate convexity hypotheses with respect to sets, concerning the integrand of the 
objective together with the right hand side of the boundary condition, have to 
be satisfied. In our situation this reduces to the convexity of the sets M(w(·)) 
(compare the proof of Lemma 4.1), which is obvious and therefore no additional 
assumption is required. Moreover, the resulting closedness of w ad is of interest 
in its own right. 

The use of classical results on C"'(D)-regularity for the state may be sub
stituted by w;+1 (D)-regularity, because some compact embedding in C(D) is 
essential for our investigations of Section 4. However, the assumption known 
to the authors, guaranteeing such a property, describes some relations between 
the ellipticity of the operator A and the domain D. This is rather technical and 
should be avoided. A more useful condition seems to be an open problem. 
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