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Abstract: A class of semilinear clliptic boundary control prob-
lems is considered. Owing to measurable and bounded coutrols we
usc the weak solution approach for the state equation. For the
derivation of solvability results we present two methods. The first
method works with the complete continuity of the state mapping,
whereas in the sccond one theorems about the separation of convex
sets and measurable selection are applied to overcome the complete
continuity of the state mapping.
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1. Introduction

Optimal control problems governed by nonlinear partial differential equations
arc a field of active rescarch. Most of the work is done to derive necessary or
sufficient optimality conditions of first and sccond order. The aim is to justify
numerical algorithms for solving such problems. The question of existence of
optimal controls has not been considered in such detail. Mostly, the assump-
tions on the control problem are chosen in such a way that a more or less known
standard method can be applied to derive the existence of solutions. Meanwhile,
there arc some papers, for instance Papageorgiou (1991) in the case of optimal
control problems for nonlinear elliptic equations, dealing cspecially with the
problem of existence of solutions for optimal control problems. In Li and Yong
(1995) a short overview of the history in this special field with some other ref-
crences is given. They also show existence results for optimal control problems
governed by evolution cquations and clliptic variational inequalitics. Papageor-
giou as well as Li and Yong consider problems with distributed controls in the
elliptic case.
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In this paper we consider a boundary control problem for semilinear elliptic
differential equations. We want to prove only the existence of a solution. For
first order necessary optimality conditions we refer for instance to Casas (1993)
and Bonnans and Casas (1991). Morcover, a new development in second order
optimality conditions occurs (consult, for instance, Casas, Troltzsch and Unger,
1996). The questions concerning optimality conditions requiring assumptions
on differentiability will not be considered here.

As mentioned above, a standard method for the proof of existence is known.
This method was applied, for instance, in Lions (1968), Zeidler (1990), and in
Casas (1993). The main disadvantage of this method consists in the assump-
tion of linearity of the partial differential equation with respect to the control.
Nevertheless, we will recall it for convenience. Another method in this field is to
assume compactness of the set of admissible controls (see, e.g., Zeidler, 1990).
But this restriction is rather strong and is not satisfied in our concrete setting.
Therefore, we will use a method based on measurable selection theory, which is
known for control problems governed by ordinary differential equations from, for
instance, Macki and Strauss (1982). In the case of parabolic control problems
the method was applied in Eppler (1993).

Also in Papageorgiou (1991) results of measurable selection theory were used
to derive existence of solutions for nonlinear elliptic control problems. But
we want to consider boundary control problems in contrary to problems with -
distributed control as in Papagcorgiou (1991). On the other hand we will allow
in some sensc more general cost functionals.

2. Preliminaries

In this paper we want to investigate the following control problem:

®(w,u) = G(w) + H(u) = min! (1)
subject to
(Aw)(x) = f(z) in €,
Oy, w(x) = b(w(x),u(z)) onT, (2)
w € U™, (3)

We make the following assumptions:
(A1) 2 C IR™, n > 2 is a simply connccted domain with a boundary I' of class
o,

(A2) U = {u(-) € LOO(F)I u(z) € [a,d] a. c. on I'}, where a < d are fixed
real numbers. U is a convex, bounded and closed subset of Leo(T).
(A3) G(-) is a continuous functional on C(Q) and H(-) : Ly(') = TR is convex

and continuous for a certain fixed ¢ >n — 1.
(A4) The mapping A givcn by

()=~ Y - d )5 o) + ao(a)u(o) (4)

i,j=1
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generates a continuous and coercitive bilinear form a : HY(Q) x HY(Q) —
IR with

3 n
w v
a(w,v) = / Z a”(T)%(T) §T1 (z) + ap(z)w(z)v(z) | dz,
Q 1,7=1 ’
where a;; € C%1(Q) and ag € Loo(Q) such that ag(z) > m > 0 a.c. in Q.
W
o () (m),
where n; denotes the jth component of the unit outward normal on T in
(A5) The function b: IR x IR — IR is uniformly Lipschitz-continuous in both
arguments and monotone decreasing with respect to the first variable, i. e.,
for all w;,u; € IR, 7 = 1,2 we have:
[b(wy,u1) — b(wa, ug)|
(b(w1,u) — b(ws,u))(wy —ws)
(A6) f(-) € Lp(Q) with p > n/2.
We use the following notations in the paper:
H*(Q) is the usual Sobolev space. Moreover, we denote by ”—" and ”—” weak
and strong convergence of elements, respectively. The underlying Banach space,
such as " L,”, 7C” or "C*”, is only shortly indicated at the top of ”righthar-
poonup” and "rightarrow”, respectively, because the correct space becomes clear
from the context.
TFurthermore, we introduce
W = Lw(u)| w(:) is the (weak) solution of the boundary value problem (BVP)
(2) for a given u € U}  as the set of admissible states and
B = {b(w(u),u)] v € U, w(u) € W*} as the sct of all ”admissible right-
hand sides” of the boundary condition in (2).
Besides, the notion of complete continuity is used as follows:
We call a mapping P : X — Y, (X,Y Banach spaces) completely continuous, if
the weak convergence of a sequence {z,, } C X implies the strong convergence of
the images with respect to Y, 1. e 2, —x 29 € X = P(z,) -y P(zo) €Y.
Note that this notion may be used in a different way in other papers.
In the next section we will discuss some properties of the boundary value
problem (2), which is called the state equation.

Oyaw(z) = ai;(z)

C(I’U)1 = w2| + lul - '“'2'7 (5)
0. (6)

IA A

”»

3. The weak solution of the state equation

In view of our assumptions on the control and the right hand side of the bound-
ary value problem, we use the weak solution approach for the state equation.
The weak formulation of the boundary value problem (2) is given by

a(w,v) = / b(w(z),u(z))v(z)dS, + / f(z)v(z)dx
r Q

= B(w,u,v) + F(v) (7)
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for all v € HY(Q).
The assumed properties of the bilinear form a ensure the estimates

la(w,v)| < Mllwl| g @)llvll a9
and
a(w,w) > m|lw|} q-

For every u € U the assumptions (A5) and (A6) on b and f, respectively,
together with these estimates imply the existence of a unique solution w €
H'(Q). See for instance Kinderlehrer and Stampacchia (1983) or Zeidler (1990).
Note that in our setting we can not expect coercitivity or monotonicity of a
with respect to norms of Sobolev-Slobodetskii spaces W, (Q) with p > 2. On

the other hand, we have supposed that G is a functional on C(2). Therefore,
existence theory for weak solutions of elliptic boundary value problems is not
sufficient. We need additional statements from regularity theory. The results
presented here are going back to Kinderlehrer and Stampacchia (1983) and are
summarized in Li and Yong (1995).

Before we start the consideration of the nonlinear problem, a statement with
respect to linear boundary value problems should be in order. This statement
will allow some useful estimations in relation to the nonlinear problem. Let the
linear problem be given by

(Aw)(z) = f(z) inQ, (8)
Oy, w(z) + fr(z)w(z) = Po(xz) onl.

Then it holds:

LEMMA 3.1 Let the assumptions on 2, A and [ be fulfilled. Suppose that 3, €
Loo(T") with f1(x) > 0 almost everywhere on I' and By € Ly(I'). Then there
is a constant a € (0,1) such that the unique weak solution w of (8) belongs to
HY(Q) N C*(Q). Moreover, we find a constant C > 0 not depending on f and
Po with

lwllm@) + [wllgag@y < CU L@ + 182llz,@))- (9)

We return to the nonlinear problem. As mentioned above we need a regular-
ity result which ensures that the weak solution of the boundary value problem

(2) belongs to the space C(§2). The last and the following statement are taken
from Li and Yong (1995):

THEOREM 3.1 Let the assumptions (A1)-(A6) be fulfilled. Then there exists a
constant « € (0,1) such that for every control u. € k{“d the corresponding weak
solution of the problem (2) belongs to H*(£2) N C*(Q).

Now we arc able to introduce an operator describing the state mapping:
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DEFINITION 3.1 We define the operator K : U — H(Q) N C*(Q) (the state
mapping) by w = K (u), where w is the solution of equation (7) corresponding
to the control u. A pair (up,wo) € U x HY(Q) NC*(Q) is called an admissible
pair, iff uo € U and wo = K (up).

It would be useful to have some continuity properties of the mapping K.
The assertion of the next theorem appears to be natural:

THEOREM 3.2 Let the assumptions of Theorem 8.1 be satisfied. Then there is
a constant C' > 0 such that for all admissible pairs (wi,u1) and (wq,us) the
estimate

llwr — wall 1) + llwr — wallga@y < Cllur — vzl () (10)
holds.

Proof: In view of Lemma 3.1 the statement seems to be obvious. Never-

theless, the proof using only this lemma is lengthy and technical. We will give

here only the main ideas.
The difference wy; — wsq satisfies the equation

a(wy — wa,v) = B(wi,u1,v) — B(wa, ug,v)

for all v € H(£2). Looking upon the right hand side as given, we sec that this
is a linear problem. The properties of a and b and Lemma 3.1 in connection
with the Sobolev embedding theorem imply the estimates

lwr —wallp,ry < cllur — uallL,my
lwy —wallL,ry < c(llur —u2llLyry + lwr — w2l Ly )
lwi —wallp oy < elllur —uzllp, @y + llwr — w2l L, @y)

with generic constant ¢ and ¢ depending on boundary embedding of H'((2).
The interpolation property of Ls spaces (see, ¢.g., Triebel, 1983) ensures

w1 —wallz, vy < e(llur — ualln, @) + w1 — wallL.x))s

where s,t' € [2,00) with t/ —s > &' > 0.

Now starting with the estimate from Lemma 3.1 the assertion can be proved
by a bootstrapping argument. a
Remark 1: As a consequence of estimate (10), the set W of all admissible
states is uniformly bounded: There exists a C, > 0 with

sup sup |w(u; z)| < Co, (11)
uelfed zeQ

which implies the uniform a.e. boundedness of the set B¢, too. In addition we
have the estimate

[lwy — 1112[[()“(5) < ef|b(wy, w1) — b(wa, uz) ||, (r)- (12)
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Thercfore, for all sequences {b, ()}, € B*® with b, —r, b € Lg(T') there
is w, —ce w, where wy,, W arc the associated solutions of (7) to b, and b,
respectively. Furthermore, due to the linearity of the mapping, the same is true
with respect to weak convergence, i. ¢., by —p, b implies w,, —ce .

4. Existence of optimal solutions

Although the continuity of the state mapping K is not sufficient to guarantee
existence of optimal solutions, the underlying investigations are very useful for
showing the closedness of W in C'(Q). Moreover, with an additional assump-
tion, we get the complete continuity of the state mapping from L, (T) to C(Q).
The next result will be proved by means of separation techniques for convex
sets and measurable sclection theorems. This method was at first developed for
control problems governed by ordinary differential equations (see, for instance,
Macki and Strauss, 1982). Later, similar techniques were used by Eppler (1993)
for parabolic boundary control problems. This works well even in the case of
clliptic control problems.

LEMMA 4.1 The assumptions (A1)-(A6) ensure the compactness of W@ in
C@).

Proof: At first we remark that W is a relatively compact subset of C'(Q).
This follows from the estimate (10), the boundedness of ¢ and the compact
embedding of C*(Q) in C(Q).

Now we take a sequence {wp}oo, C w  (w, = w(uy,) for some u, € U
and assume without loss of generality

Wy, —¢ 0. (13)

TFor w we have

0| oy < Co (cf. (11)). Morcover, for the associated "right hand
sides” by, = b(wy,uy) of the boundary condition (2) the relation b, —p, b is
fulfilled, where w is the solution of equation (7) associated to the right hand
side b in the boundary condition. This can be shown as follows:

Every subsequence {b,} C {b,} contains a sub-subsequence {by»} C {bn}
with bp» —p, b”, because B¢ is bounded in Ly(T). This implies w,» —¢ w”
(w” is the solution of (7) associated to b”) and from (13) we have w” = w =
b = 0.

If we were able to _Show the existence of a control ug € U such that b =
b(,up) (in detail: b(z) = b(w(x),up(x)) a.c. on I'), then, altogether we have
w = w(ug) and the theorem will be proved.
To this aim we introduce the sets

M(w(x)) = {b(w(z),y)|y € [a,d]} CIR,
and the functions m(-) and m(-), defined by

m(x) = min{z| z € M(w(x))} = min{b(w(z),y)| y € [a,d]},




(¥
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m(x) = max{z| z € M(w(z))} = max{b(w(z),y)| y € [a,d]},

for all z € T. The continuity of w(:) on I' and the uniform continuity of b(-, -)
on the compact set [—C,, C,] X [a,d] guarantee the continuity, hence Lebesgue
measurability of m(-) and m(-). Moreover, we have

M(io(x)) = [m(x), ()],

i. e., all sets M(w(z)) are convex subsets of R. The measurability of the set
M, defined by

My = {zeT| b=)¢ M)},

is an immediate consequence.
In the next step we prove that mes(M;) > 0 is a contradiction to b, —r, 0. In
doing so we rewrite My as My = M, U M, with

M, = {2 b(x) <m()}, T = {a| b(x) > M)},

and assume without loss of generality mes(M;) > 0. ;jFrom this we get the

. S —5
existence of a constant § > 0 and of a subsct M; C M with mes(M,) > 0,
such that

O(z) > 6 +m(x) > 6§ + sup b(w(z), un(x)), Vo € _Mf
n>1

(the last inequality follows by the definition of 77). The uniform continuity of b
and  w(u,) —¢ W ensure

[b(wy (), un () — blw(x),un ()] < 6/2,

for all x € T, n > Ny(6), and thercfore

b(x)>6/2+ sup blwp(z),un(z)), Vo € M‘i
71.2N[)(6)

. —5
Integration over M yiclds

/_ b(x) dS, > mes(M3)6/2 + / bn(z) dSy, Vn > No.
JI, S
This is a contradiction to b, —r, b, because Xms € Ly (T) for the characteristic
function x(-) of the set -]\7[15 (1/q+1/q" =1). Conscquently, we get

b(z) € {b(w(x),y)| y € [a,b]} a.c. onT.

That means that there exists at least one selection @(z) € [a, d] with

b(x) = b(w(z),u(r)) ac. onT.
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The application of the Fillipov lemma (Macki and Strauss, 1982) guarantees a
measurable selection ug(+), by setting

up(x) = = &, #EM a

O min{y € [a,d]b(z) = b(w(x),y), = ¢ M.

Remark 2: Obviously, the set W44 is also weakly closed in C*({2) and the set
B4 is weakly closed in Ly(T), too (but both sets are not necessarily convex).

In order to prove the complete continuity of the state mapping, we need an
additional structural assumption on the function b. This well known idea was
realized, for instance, by Sperber (1983) for optimal control problems governed
by semilinear parabolic equations, and was further developed and applied by
Eppler (1988), (1993).

LEMMA 4.2 In addition to (A1) - (A6) we suppose that
b(w,u) = bi(w) - u + ba(w), (14)

with Lipschitz-continuous functions by (-) and ba(-) (i. e., the function b is affine-
linear with respect to ).

Then, the state mapping K is completely continuous on U*® from Ly(T) to
C(Q). More precisely: The condition w, —L, U0, Un € U, n=0,1,...
implies w(u,) —c w(ug) for the associated states.

Proof: We take a sequence {un,}or, C U with  un, —L, U € ues,
Similar to the discussion at the beginning of the proof of Theorem 4.1 we get
for every subsequence {u, } C {u,} a sub-subsequence {u,»} C {u, } with
by = b(w(tun»), up») —r, V" and w(uy) —¢ w” (w” is the solution of (7)
associated to 0”).

If we have in addition the ”strong-weak” continuity of the Nemytskii-Operator
defined by the function b(+, ), more precisely, if we have:

the conditions wun, —r, uo and w(un) —¢ W imply the weak convergence
b(w(tn),un) —1, b(W,uo), then b” = b(w”,up) and thercfore w” = w(uo),
which concludes the proof.

In order to show this, we use the special structure of the function b and the
concrete duality product of Lg. Although this is well known, we want to outline
the proof once more:

We fix an arbitrary f(-) € Lg/(T') (1/q+ 1/¢' = 1), and estimate as follows:

/. F(@) - [b1(w(tn; ), Yun () + ba(w(tn; 2)) — by (w0(x))uo(z) — ba(w(2))]dSs|
P

<L+ 2] + |13,
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with

B / Fl)tn () P (a0t ) — B (5(2))|dSs,

12 = [ 1)1 (0() un(2) — wo(w)ds:,

and

1= [ 1(@)la(w(un; =) ~ ba(w(@)]dSz.
P

Because of w(u,) —¢ w and the continuity of by(-) we have by(w(un;-)) —¢
ba(1(+)), and therefore I3 — 0 for n — co. Analogously, we deduce from the
uniform boundedness of all u,, the relation I} — 0. Finally, we get I2 — 0 from
the weak convergence of the controls u, (f(-)b1(10(:)) € Lq(T') is a consequence
of by(w(-)) € C(I') C Le(T")). Hence, we have the announced ”strong-weak”
continuity of the Nemytskii-Operator and the lemma is proved. O
Remark 3: In fact we have weak continuity for K from L,(T') to C*(Q, i. e.,
Un —p, o implies w(un) —ca w(up)). Moreover, compactness of W (in
C(Q)) and weak closedness of B¢ (in L,(I")) now follow immediately from the
properties of the underlying mappings.

A well known difficulty for the existence of optimal controls is the noncompact-
ness of the set of admissible controls, if it is defined as above. However, Uy, is
closed, bounded and convex in Lg(I'), hence weakly compact. Therefore, one
way to overcome this difficulty consists in using the complete continuity of the
state mapping.

THEOREM 4.1 Under the assumptions stated in Lemma 4.2 the optimal control
problem (1) - (8) is solvable.

Proof: With the help of our investigations of Section 3 and Lemma 4.2
this is a simple conclusion from the Weierstrass Theorem, applied to the weak
topology on Ly(T). Note that continuity and convexity of H(-) are sufficient for
the weak lower semicontinuity. O
Remark 4: Obviously, every weak accumulation point % € U%¢ of a minimizing
sequence {uy } is an optimal control of the control problem.

Although this is a standard result, the assumption (14) seems to be rather
strong. Therefore, we present another result, based on Lemma 4.1.

THEOREM 4.2 If the assumptions (A1)-(A6) are satisfied and if the objective
of the control problem does not explicitly depend on the control u (i. e., if the
functional H(-) is vanishing), then problem (1) - (8) has at least one solution.
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Proof: Because the part H(-) is not present, the optimal control problem
can be formally reformulated as

G(w) = min! subject to w € W,

Now Lemma 4.1 and assumption (A3) ensure that the application of the Weier-
strass-Theorem is also possible in this casc. 0
Remark 5: In contrary to the theorem above, on the one hand a weak accu-
mulation point of the sequence {un} is generally not an optimal control. On
the other hand the optimal control ug need not to be a weak accumulation
point of the sequence {u,}, whereas the state w(up) is an accumulation point

of {w(un)}.

5. Concluding remarks

Similarly to Papageorgiou (1991) an existence result is possible for an objective
of integral type explicitly depending on the control. To this aim some appropri-
ate convexity hypotheses with respect to sets, concerning the integrand of the
objective together with the right hand side of the boundary condition, have to
be satisfied. In our situation this reduces to the convexity of the sets M (w(+))
(compare the proof of Lemma 4.1), which is obvious and therefore no additional
assumption is required. Morcover, the resulting closedness of W is of interest
in its own right.

The use of classical results on C%(Q)-regularity for the state may be sub-
stituted by W{IH(Q)-rcgularity, because some compact embedding in C(Q) is
essential for our investigations of Section 4. However, the assumption known
to the authors, guaranteeing such a property, describes some relations between
the cllipticity of the operator A and the domain 2. This is rather technical and
should be avoided. A more useful condition seems to be an open problem.
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