
Control and Cybernetics

vol. 26 (1997) No. 2

Architectural support Issues for fuzzy databases

by

Frederick E. Petry

Center for Intelligent and Knowledge-Based Systems,
Department of Electrical Engineering and Computer Science,

Tulane University, New Orleans, LA 70118, USA

Abstract: In this paper, approaches to support general purpose
fuzzy databases arc considered . First, issues relative to the need
for fuzzy da tabases are reviewed. This gives t he perspective t hat
hardware support is necessary to provide the performance needed
for commercial systems. In particular, the concepts of database
machines and the Bellcore Datacycle system is discussed. Then,
preliminary steps to design of a backend processor for a similarity
based fuzzy database is described.

1. Introduction

To begin the discussion of issues of architectural support for fuzzy databases,
we must address the scope of acceptance and requirements for commercial fuzzy
databases. The aspects of commercialization relevant to market issues that will
dictate the future potential for fuzzy databases must be considered as these will
determine the future directions of fuzzy databases and development of special
ized architectures.

T he database field is currently extending its paradigm from a mostly rela
tional approach towards an object-oriented direction. It is not clear yet what
forms these object-oriented extensions will take. Indeed there is little agree
ment upon which features are needed since this approach did not spring from
a single source as the relational model did from Codd's research. Likewise, the
scope of database capabilities is expanding to encompass multimedia, text, pic
tures, etc., and this is of significance in supporting complex applications such as
CAD/CAM design systems and geographical information systems (GIS). Such
a range of database approaches represents a part of a broad spectrum of in
formation systems encompassing additionally the processing of large text-type
files conventionally construed as the realm of information storage and retrieval
systems. Various heuristic techniques, such as arc possible with fuzzy logic
and artificial intelligence, arc needed to help with the analysis, visualization

262 F.E. PETRY

and high level interpretations for data of the enormous scales found in large
scientific databascs.

The determining factors for commercialization arc demand, need and fea
sibility. First we need to consider if there has been an expressed demand for
uncertainty representation and management that is currently not being provided
so that a strong potential use of fuzzy logic: in information systems could be an
ticipated in the near term. Fuzzy logic: has been used in many expert systems as
a mechanism for uncertainty management. However, in the database commu
nity there does not appear to be a similar demand. The simplest approach to
imprecision is the use of null values in the relational model Codd (197!)) and the
conclusion is that there does not appear at present to be an expressed demand
for uncertainty management past the simple approach of null values.

The majority of efforts in the use of fuzzy logic in databascs have focused
in most cases on the underlying data model of Buckles and Pctry (1982), Pradc
and Tcstcmalc (Hl84), Umano (1!)82), Zcmankova, Kandcl (1985). Is this where
there is the greatest current need for uncertainty management? There arc three
fundamentally independent aspects of databases that could utilize fuzzy logic:
schema design, data modcling, and querying systems.

Relative to schema design , it is well accepted that there is a great deal of
difficulty in eapturing and modeling many real-world enterprises and a fuzzy
linguistic schema specification would be mapped into an underlying crisp data
model Buckles and Pctry (19!)5).

A number of researchers have proposed approaches to fuzzy querying of crisp
data bases. Again, this does not require the underlying data model to be fuzzy,
just the representation of the user's understanding or spccifieation of imprecision
in t heir query, sec Bosc:, Gailbourg and Harnlin (1!)88).

The need for fuzzincss in data modcling can be viewed as providing the
capability to directly represent imprecision and also to support some aspects of
fuzzy schcmas and fuzzy queries more efficiently, however, there arc significant
feasibility problems for general purpose fuzzy data models because of database
management systems' pcrforrnanc:c requirements.

The feasibility issues relative to AI and by extension to fuzzy logic compared
with databascs arc apparent. In the former areas, a major issue has been the
eapabili ty to enhance and extend the domain of representation . In databases,
the issue is dominantly performance.

Because the direct inclusion of fuzzy data would usually entail the need for
approaches such as non-first normal forms in the relational database model ,
it is likely that performance degradation would prohibit this a t the present
time. This makes it seem likely that front-end fuzzy querying systems have the
greatest potential in the near-term based on performance criteria, sec Kacprzyk
and Zadro~ny (1!)!)5), Nakajirna, Sogoh and Arao (1!)!)3) . One system ltas been
developed hy OMRON as an interface to the Oracle DBMS and the second,
created at the Systems Research Institute in Poland, is intended for \\Se on
personal computers with systems such as Iviicrosoft Access. Doth use similar

Architectural sup port issues for fuzzy databases 263

approaches with a fuzzy SQL, although in different system scales. In both
fuzzy front-end systems, fuzzy SQL is pre-processed into SQL acceptable to
the specific DBMS and then the query results t hat are retrieved must be post
processed to re-introduce the fuz:~~y structuring into the results.

Another way in which fuzzy set approaches have been used are in special
purpose databases such as that at Bellcore Mansfield and F leischman (1993).
The situation in special purpose databases is that the approach can be tailored
to enhance performance of the fuzzy data component since t he system is not
intended as a general purpose database system.

In this paper we want to consider approaches to support general purpose
fu:~~:~~y databases. In particular, we will overview concepts of database machines
and the Bellcore Datacyclc system. Then we will describe preliminary steps to
design of a backend processor for a similarity-based fuzzy database.

2. Database machines

T here have been a number of attempts at classifying database machines. One
includes backend systems, storage hierarchy, intelligent controllers and database
computers, Champine (Hl78). Another uses the categories, cellular logic sys
tems, backend computers, integrated database machines and high speed asso
ciative memory systems, Su et al. (1980). One common feature of t he above
is the use of special purpose systems to support database retrieval. This serves
to remove a large percentage of database functions from the host machine and
thus to provide t he critical performance requirements needed for commercial
systems. The overlap of processing with the host and speciali:~~ed design to sup
port specific retrieval functions arc the aspects we shall describe in our design
in the next section.

The Datacycle architecture which has been developed at Bcllcorc, was de
signed to permit a database processing system that uses filtering technology
to perform an efficient, exhaustive search of an entire database. It has been
observed that fu:~~zy queries place severe stress on the indexing and I/0 subsys
tems of conventional database systems since they frequently involve the search of
large numbers of records. The use of the Datacycle architecture elimina ted t he
need for complex index structures, provided high-performance query through
put , permitted the use of ad hoc fu:~~zy membership functions and provided
deterministic response time largely independent of query complexity and load
as described by Flcischmann and Mansfield (HJ93) .

A possible implementation technique for a fuzzy query is to utili:~~c spccial
i:~~cd database index structures that associate records to fuzzy sets, Bosc and
Galibourg (198!J) . T he database index structures avoid the complexity of evalu
ating the membership function against every tuple in the database during query
processing. This would allow high-speed access for a number of predetermined
fu:~~:~~y predicates. However, arbitrary queries involving derived data cannot ef
ficiently make use of these index structures and force t he run-time execution

264 F.E. PETRY

of membership functions. The performance penalty due to run-time member
ship function execution is further adversely affected by the need to perform set
intersection and union operations involving large sets.

The Datacycle architecture, see Bowen et al. (1992) was developed to provide
high-performance transaction processing, powerful query language capabilities,
and high levels of concurrent access by multiple applications, all in a single
architecture. The heart of this approach is a high speed, on-the-fly, data filtering
operation, which in Datacycle supports enhanced query processing capabilities
including their technique for fuzzy query processing. The approach permits the
ad hoc definition of membership functions in the query grammar, arbitrary use
of numeric attributes in the database, and high performance.

In this architecture, entire databases are broadcast over high bandwith com
munications facilities to specialized filtering hardware, see Lee, Matoba, Mak
(1991), in order to perform complex data selection and aggregation operations
needed for query evaluation. Their membership functions are represented in
libraries as trapezoids with a common set of breakpoints (A, B, C, D) to define
the range (support) of the membership function. During query parsing, break
points are substituted for the linguistic membership functions specified in the
query. Due to the characteristics of the datafilter, membership functions are
limited to piecewise linear functions because of the lack of multiply instruction
in the VLSI datafilter.

This ability to dynamically scale the membership function from the statis
tical domain to the domain of an arbitrary subset of the data is a significant
departure from approaches that depend on the static definition of the mem
bership function and its index structures. It enables meaningful fuzzy query
processing for a much larger set of applications, and reduces the amount of
database specific knowledge required of a user.

3. Similarity query architecture

3.1. Similarity database concepts

The use of similarity relationships in a relational model attempts to generalize
the concept of null and multiple-valued domains for implementation within an
operational environment consistent with the relational algebra. The nonfuzzy
relational database is a special case of this fuzzy relational database approach.

For each domain, j , in a relational database, a domain base set, D1, is
understood. Domains for fuzzy relational databases are either discrete scalars
or discrete numbers drawn from either a finite or infinite set. An example of
a finite scalar domain is a set of linguistic terms. For example consider a set
of terms that can be used for subjective evaluation of the contamination of the
sites in the environmental database: critical, sever-e, poor, so-so, avemge, good,
excellent. The fuzzy model makes use of a similarity relationship to allow the
comparison of these linguistic terms.

Architectural support issues for fuzzy databases 265

A similarity relation , s(:r, y), for given domain, D, is a mapping of every
pair of elements in the domain onto the unit interval [0, 1], which is, x, y, zED,
Zadeh (1971):

1. Reflexive: sn(x,x) = 1
2. Symmetric: sn(x, y) = sn(y, x)
3. Transitive: sn(x, z) 2 max(min[sn(x, y), sn(Y, z)]): (T1)
This particular max-min form of transitivity is known as T1 transitivity.

Another useful form is T2, also known as max-product:
3'. Transitive: sn(x, z) = max([sn(x, y) · sn (y, z)]) : (T2)
where · is arithmetic multiplication.
An example of a similarity relation satisfying T2 transitivity is:

sn(x, y) = e-b·ly-xl

where b > 0 is an arbitrary constant and x, y E D.
The identity relation used in nonfuzzy relational databases induces equiva

lence classes (most frequently singleton sets) over a domain, D, which affect the
results of certain operations and the removal of redundant tuples. The identity
relation is replaced in this fuzzy relational database by an explicitly declared
similarity relation of which the identity relation is a special case.

Next the basic concepts of fuzzy tuples and interpretations must be de
scribed. A key aspect of most fuzzy relational databases is that domain values
need not be atomic. A domain value, di, where i is the index of the attribute
in the tuple, is defined to be a subset of its domain base set, Di. That is, any
member of the power set may be a domain value except the null set. Let P(Di)
denote the power set of Di - 0.

A fuzzy r-elation R is a subset of the set cross product P(DI) x P(D2) x ... x
P(Dm)· Membership in a specific relation, r, is determined by the underlying
semantics of the relation. For instance, if D 1 is the set of major cities and D 2

is the set of countries, then (Paris, Belgium) E P(D1) x P(D2) - but is not a
member of the relation A (capital-city, country).

A fv.zzy tv.ple, t, is any member of both rand P(DI) x P(D2) x ... x P(Dm)·
An arbitrary tuple is of the form ti = [dil, di2, ... , dim] where D.i ~ di.i.

An interpr-etation a = [a1 , a2, ... , am] of a tuple ti = [dil, di2, . . . , dim] is any
value assignment such that ai E di.i for all j.

In summary, the space of interpretations is the set cross product D 1 x D 2 x
... x Dm. However, for any particular relation, the space is limited by the set
of valid tuples·. Valid tuples are determined by an underlying semantics of the
relation. Note that in an ordinary relational database, a tuple is equivalent to
its interpretation.

3.2. Similarity query formulation

To illustrate the process of query evaluation in the similarity database, we ex
amine a generalized form of Boolean queries that may also be used to retrieve

266 F.E. PETRY

information, Petry (1996). The details of query evaluation can be seen more
easily in this sort of queries.

A query Q(ai, ah, ... , ak) is an expression of one or more factors combined by
disjunctive or conjunctive Boolean operators: Vi op Vi, op ... op Vk. In order
to be well formed with respect to a relation T having domain sets D 1 , D2 .. , Dm,
each factor Vj must be

1. a domain clement a, a E Dj, where Dj is a domain set for T, or
2. a domain clement modified by one or more linguistic modifiers, e.g. NOT,

VERY, MORE-OR-LESS.
The relation T may be one of the original database relations or one obtained

as a resnlt of a series of fuzzy relational algebra operations. Fuzzy semantics
apply to both operators and modifiers. An example query is

MORE-OR-LESS big and NOT VERY VERY heavy

where "big" is an abbreviation of the term (SIZE = big) in a relation having do
main called SIZE. The value "heavy" is likewise an abbreviation. The linguistic
hedge VERY can be interpreted as CON(F), concentration , and MORE-OR
LESS as DIL(F), dilation.

A membership value of a tuplc in a response relation T is assigned according
to the possibility of its matching the query specifications. Let a E Dj, be an
arbitrary clement . The membership value m.a(b), bE Dj, is defined based on
the similarity relation, sj(a,b), over the domain. The query Q(<)) induces a
membership value Tnq(t;) for a tuplc to in t he response T as follows:

1. Each interpretation I = [a~, a~, ... , a~.] of t determines a value TTI.aj (a'j)
for each domain element aj, of Q (ai, ah, ... , ak).

2. Evaluation of the modifiers and operators in Q(<)) over the membership
values Tnaj(aj) yields m.q(I), the membership value of the interpretation
with respect to the query.

3. Finally, rn.q(t) = maxi of t{m.q(I)}.
In short, the membership value of a tuplc represents the best matching

interpretation. The response relation is then the set of tuples having nonzero
membership values. In practice, it may be more realistic to consider only the
tuplc with the highest value.

4. Similarity database architecture design

The major aspect we address here is the use of the basis of the similarity
database ~ the similarity relation. The key will be the use of an associative
memory to map the domain elements to a matrix to generate the similarity.
This follows approaches to the use of associative processors for implementing
maybe logic in the relational algebra, Hurson and Miller (1987), Miller and
Hurson (Hl87).

Fig. 1 shows the high level description of the query evaluation steps discussed
above. These steps arc done in parallel across the interpretations of the matching

Architectural support issues for fuzzy databases

Interpretation I 1
... J ~

Similarity I .
Modifiers/operators Evaluation • MAX

Interpretation In
.

.. J 1 ..
Similarity

Figure 1. Query interpretation architecture design

a

b

~

__. ..

Associative Memory

' . . .

Similarity Crossbar
Matrix

Figure 2. Similarity module for Fig. 1

~

267

~ flQ (t)

Sa (b)

tuples generated during the evaluation of the query relative to the similarity
based fu:.~:.~y database.

F ig. 2 shows t he design of the similarity module. This is used to obtain the
required similarity values to generate membership values for the interpretations.
The linguistic terms corresponding to an attribute domain being evaluated arc
stored in the associative memory arTays. T his facilitates direct indexing of the
hardware similarity matrix from which the specif-ic similarity values arc then
read.

5. Conclusions

If we desire to actually move the laboratory developments of fu:.~:.~y databases to
full scale cornrnercial systems, serious consideration of performance requirements

268 F.E. PETRY

must be made. Although many approaches using various indexing schemes and
advances in processor and 1/0 speed and main memory capacity can make
inroads into the performance problems, the overhead of general purpose fuzzy
database still remains. The overhead of fuzzy processing has been successfully
addressed in other applications by the development of fuzzy chips. Thus we
have been led to begin the considerations of special purpose database hardware
to enhance performance. The issues raised and preliminary design sketched in
this paper are being further elaborated and a more complete design that can be
simulated for testing and performance estimation is in development.

References

Bosc, P. and GALIBOURG, M. (1989) Indexing principles for a fuzzy database.
InfoTm. Systems, 14, 493-499.

Bosc, P., GAILBOURG, M. and HAMLIN, G. (1988) Fuzzy querying with SQL:
extensions and implementation aspects. Fv.zzy Sets Syst., 28, 333-39.

BowEN, T., GoPAL, G., HERMAN, G. , HICKEY, T., LEE, K. , MANSFIELD,

W., RAITZ, J. and WEINRIB, A . (1992) The Datacycle™ architecture.
Commnnicat·ions of the AGM, 35, 71-81.

BUCKLES, B. and PETRY, F. (1982) A fuzzy representation of data for rela
tional databases. Fuzzy Sets Syst., 7, 213-226.

BUCKLES, B. and PETRY, F. (1995) Fuzzy databases in the new era. Proceed
ings of FUZZ-IEEE/IFES '95 Workshop on Fuzzy Database Systems and
InfoTrnation RetTieval, 85-91.

CHAMPINE, G. (1978) Four approaches to a database computer. Datamation,
101-106, Dee.

CODD, E. (1979) Extending the database relational model to capture more
meaning. A CM Trans . on Database Systems, 4, 156-17 4.

HURSON, A. and MILLER, L . (1987) A database machine arehitecture for sup
porting incomplete information. JonT. Camp. Sys and Science Eng., 2,
231-239.

KAGPRZYK, J. and ZADROZNY, S. (1995) FQUERY for Aecess: fuzzy query
ing for windows-based DBMS. Fv.zziness in Database Management Sys
tems, P. Bose and J. Kacprzyk, eels., Physica-Verlag, Heidelberg, 415-435.

LEE, K., MATOBA, T., MAK, V. (1991) VLSI aceelerators for large database
systems. IEEE Micm, 11, 8-20.

MANSFIELD, W. and FLEISCHMAN, R. (1993) A high-performanee, ad-hoc,
fuzzy query proeessing system. Jam·. Intelligent InfoTm .. Sys., 2, 397-
420.

MILLER, L . and HURSON, A. (1987) Supporting maybe algebra in the asso
ciative seareh language machine. SIGMOD RecoTd, 16, 61-80.

NAKA.JIMA, H., SOGOH, T. and ARAO, M. (1993) Development of an efficient
fuzzy SQL for a large scale fuzzy relational database. Proc . of 5th IFSA
Wor-ld Congress, 517-530, Seoul, Korea.

Arch itectura l support issues for fuzzy databases 269

PRADE, H. and TESTEMALE, C . (1984) Generalizing database relational al
gebra for the t reatment of incomplete or uncertain information and vague
queries. Inf. Sci., 34, 115-43.

PETRY, F . (1996) Fuzzy Databases: Pr-inciples and Applications. Kluwer Aca
demic: Publishers, Norwell, MA, USA, 78-80.

Su, S., CHANG, H., CoPELAND, G ., FISHER, P., LowENTI-IAL, E., ScHus
TER, S. (1980) Database maehines and some issues of DBMS standards.
Pr-oc. NCC, 191-208.

UMANO, M. (1982) FREEDOM-0: A Fuzzy Database System. Fuzzy Infor-
ma-tion and Decision PTocesses, M. Gupta and E. Sanchez, eds., North
Holland, Amsterdam, 339-347.

ZADEH, L. (1971) Similarity relations and fuzzy orderings. Infonnation Sci
ences, 3, 177-206.

ZEMANKOVA, M., KANDEL, A.(1985) Implementing impreeision in informa
tion systems. Inf. Sci., 37, 107-141.

	Bez nazwy

