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Abstract: In this paper, approaches to support general purpose 
fuzzy databases arc considered . First, issues relative to the need 
for fuzzy da tabases are reviewed. This gives t he perspective t hat 
hardware support is necessary to provide the performance needed 
for commercial systems. In particular, the concepts of database 
machines and the Bellcore Datacycle system is discussed. Then, 
preliminary steps to design of a backend processor for a similarity 
based fuzzy database is described. 

1. Introduction 

To begin the discussion of issues of architectural support for fuzzy databases, 
we must address the scope of acceptance and requirements for commercial fuzzy 
databases. The aspects of commercialization relevant to market issues that will 
dictate the future potential for fuzzy databases must be considered as these will 
determine the future directions of fuzzy databases and development of special
ized architectures. 

T he database field is currently extending its paradigm from a mostly rela
tional approach towards an object-oriented direction. It is not clear yet what 
forms these object-oriented extensions will take. Indeed there is little agree
ment upon which features are needed since this approach did not spring from 
a single source as the relational model did from Codd's research. Likewise, the 
scope of database capabilities is expanding to encompass multimedia, text, pic
tures, etc., and this is of significance in supporting complex applications such as 
CAD/CAM design systems and geographical information systems (GIS). Such 
a range of database approaches represents a part of a broad spectrum of in
formation systems encompassing additionally the processing of large text-type 
files conventionally construed as the realm of information storage and retrieval 
systems. Various heuristic techniques, such as arc possible with fuzzy logic 
and artificial intelligence, arc needed to help with the analysis, visualization 
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and high level interpretations for data of the enormous scales found in large 
scientific databascs. 

The determining factors for commercialization arc demand, need and fea
sibility. First we need to consider if there has been an expressed demand for 
uncertainty representation and management that is currently not being provided 
so that a strong potential use of fuzzy logic: in information systems could be an
ticipated in the near term. Fuzzy logic: has been used in many expert systems as 
a mechanism for uncertainty management. However, in the database commu
nity there does not appear to be a similar demand. The simplest approach to 
imprecision is the use of null values in the relational model Codd (197!)) and the 
conclusion is that there does not appear at present to be an expressed demand 
for uncertainty management past the simple approach of null values. 

The majority of efforts in the use of fuzzy logic in databascs have focused 
in most cases on the underlying data model of Buckles and Pctry (1982), Pradc 
and Tcstcmalc (Hl84), Umano (1!)82), Zcmankova, Kandcl (1985). Is this where 
there is the greatest current need for uncertainty management? There arc three 
fundamentally independent aspects of databases that could utilize fuzzy logic: 
schema design, data modcling, and querying systems. 

Relative to schema design , it is well accepted that there is a great deal of 
difficulty in eapturing and modeling many real-world enterprises and a fuzzy 
linguistic schema specification would be mapped into an underlying crisp data 
model Buckles and Pctry (19!)5). 

A number of researchers have proposed approaches to fuzzy querying of crisp 
data bases. Again, this does not require the underlying data model to be fuzzy, 
just the representation of the user's understanding or spccifieation of imprecision 
in t heir query, sec Bosc:, Gailbourg and Harnlin (1!)88). 

The need for fuzzincss in data modcling can be viewed as providing the 
capability to directly represent imprecision and also to support some aspects of 
fuzzy schcmas and fuzzy queries more efficiently, however, there arc significant 
feasibility problems for general purpose fuzzy data models because of database 
management systems' pcrforrnanc:c requirements. 

The feasibility issues relative to AI and by extension to fuzzy logic compared 
with databascs arc apparent. In the former areas, a major issue has been the 
eapabili ty to enhance and extend the domain of representation . In databases, 
the issue is dominantly performance. 

Because the direct inclusion of fuzzy data would usually entail the need for 
approaches such as non-first normal forms in the relational database model , 
it is likely that performance degradation would prohibit this a t the present 
time. This makes it seem likely that front-end fuzzy querying systems have the 
greatest potential in the near-term based on performance criteria, sec Kacprzyk 
and Zadro~ny (1!)!)5), Nakajirna, Sogoh and Arao (1!)!)3) . One system ltas been 
developed hy OMRON as an interface to the Oracle DBMS and the second, 
created at the Systems Research Institute in Poland, is intended for \\Se on 
personal computers with systems such as Iviicrosoft Access. Doth use similar 
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approaches with a fuzzy SQL, although in different system scales. In both 
fuzzy front-end systems, fuzzy SQL is pre-processed into SQL acceptable to 
the specific DBMS and then the query results t hat are retrieved must be post
processed to re-introduce the fuz:~~y structuring into the results. 

Another way in which fuzzy set approaches have been used are in special 
purpose databases such as that at Bellcore Mansfield and F leischman (1993). 
The situation in special purpose databases is that the approach can be tailored 
to enhance performance of the fuzzy data component since t he system is not 
intended as a general purpose database system. 

In this paper we want to consider approaches to support general purpose 
fu:~~:~~y databases. In particular, we will overview concepts of database machines 
and the Bellcore Datacyclc system. Then we will describe preliminary steps to 
design of a backend processor for a similarity-based fuzzy database. 

2. Database machines 

T here have been a number of attempts at classifying database machines. One 
includes backend systems, storage hierarchy, intelligent controllers and database 
computers, Champine (Hl78). Another uses the categories, cellular logic sys
tems, backend computers, integrated database machines and high speed asso
ciative memory systems, Su et al. (1980). One common feature of t he above 
is the use of special purpose systems to support database retrieval. This serves 
to remove a large percentage of database functions from the host machine and 
thus to provide t he critical performance requirements needed for commercial 
systems. The overlap of processing with the host and speciali:~~ed design to sup
port specific retrieval functions arc the aspects we shall describe in our design 
in the next section. 

The Datacycle architecture which has been developed at Bcllcorc, was de
signed to permit a database processing system that uses filtering technology 
to perform an efficient, exhaustive search of an entire database. It has been 
observed that fu:~~zy queries place severe stress on the indexing and I/0 subsys
tems of conventional database systems since they frequently involve the search of 
large numbers of records. The use of the Datacycle architecture elimina ted t he 
need for complex index structures, provided high-performance query through
put , permitted the use of ad hoc fu:~~zy membership functions and provided 
deterministic response time largely independent of query complexity and load 
as described by Flcischmann and Mansfield (HJ93) . 

A possible implementation technique for a fuzzy query is to utili:~~c spccial
i:~~cd database index structures that associate records to fuzzy sets, Bosc and 
Galibourg (198!J) . T he database index structures avoid the complexity of evalu
ating the membership function against every tuple in the database during query 
processing. This would allow high-speed access for a number of predetermined 
fu:~~:~~y predicates. However, arbitrary queries involving derived data cannot ef
ficiently make use of these index structures and force t he run-time execution 
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of membership functions. The performance penalty due to run-time member
ship function execution is further adversely affected by the need to perform set 
intersection and union operations involving large sets. 

The Datacycle architecture, see Bowen et al. (1992) was developed to provide 
high-performance transaction processing, powerful query language capabilities, 
and high levels of concurrent access by multiple applications, all in a single 
architecture. The heart of this approach is a high speed, on-the-fly, data filtering 
operation, which in Datacycle supports enhanced query processing capabilities 
including their technique for fuzzy query processing. The approach permits the 
ad hoc definition of membership functions in the query grammar, arbitrary use 
of numeric attributes in the database, and high performance. 

In this architecture, entire databases are broadcast over high bandwith com
munications facilities to specialized filtering hardware, see Lee, Matoba, Mak 
(1991), in order to perform complex data selection and aggregation operations 
needed for query evaluation. Their membership functions are represented in 
libraries as trapezoids with a common set of breakpoints (A, B, C, D) to define 
the range (support) of the membership function. During query parsing, break
points are substituted for the linguistic membership functions specified in the 
query. Due to the characteristics of the datafilter, membership functions are 
limited to piecewise linear functions because of the lack of multiply instruction 
in the VLSI datafilter. 

This ability to dynamically scale the membership function from the statis
tical domain to the domain of an arbitrary subset of the data is a significant 
departure from approaches that depend on the static definition of the mem
bership function and its index structures. It enables meaningful fuzzy query 
processing for a much larger set of applications, and reduces the amount of 
database specific knowledge required of a user. 

3. Similarity query architecture 

3.1. Similarity database concepts 

The use of similarity relationships in a relational model attempts to generalize 
the concept of null and multiple-valued domains for implementation within an 
operational environment consistent with the relational algebra. The nonfuzzy 
relational database is a special case of this fuzzy relational database approach. 

For each domain, j , in a relational database, a domain base set, D1, is 
understood. Domains for fuzzy relational databases are either discrete scalars 
or discrete numbers drawn from either a finite or infinite set. An example of 
a finite scalar domain is a set of linguistic terms. For example consider a set 
of terms that can be used for subjective evaluation of the contamination of the 
sites in the environmental database: critical, sever-e, poor, so-so, avemge, good, 
excellent. The fuzzy model makes use of a similarity relationship to allow the 
comparison of these linguistic terms. 
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A similarity relation , s(:r, y), for given domain, D, is a mapping of every 
pair of elements in the domain onto the unit interval [0, 1], which is, x, y, zED, 
Zadeh (1971): 

1. Reflexive: sn(x,x) = 1 
2. Symmetric: sn(x, y) = sn(y, x) 
3. Transitive: sn(x, z) 2 max(min[sn(x, y), sn(Y, z)]): (T1) 
This particular max-min form of transitivity is known as T1 transitivity. 

Another useful form is T2, also known as max-product: 
3'. Transitive: sn(x, z) = max([sn(x, y) · sn (y, z)]) : (T2) 
where · is arithmetic multiplication. 
An example of a similarity relation satisfying T2 transitivity is: 

sn(x, y) = e-b·ly-xl 

where b > 0 is an arbitrary constant and x, y E D. 
The identity relation used in nonfuzzy relational databases induces equiva

lence classes (most frequently singleton sets) over a domain, D, which affect the 
results of certain operations and the removal of redundant tuples. The identity 
relation is replaced in this fuzzy relational database by an explicitly declared 
similarity relation of which the identity relation is a special case. 

Next the basic concepts of fuzzy tuples and interpretations must be de
scribed. A key aspect of most fuzzy relational databases is that domain values 
need not be atomic. A domain value, di, where i is the index of the attribute 
in the tuple, is defined to be a subset of its domain base set, Di. That is, any 
member of the power set may be a domain value except the null set. Let P(Di) 
denote the power set of Di - 0. 

A fuzzy r-elation R is a subset of the set cross product P(DI) x P(D2 ) x ... x 
P(Dm)· Membership in a specific relation, r, is determined by the underlying 
semantics of the relation. For instance, if D 1 is the set of major cities and D 2 

is the set of countries, then (Paris, Belgium) E P(D1 ) x P(D2) - but is not a 
member of the relation A (capital-city, country). 

A fv.zzy tv.ple, t, is any member of both rand P(DI) x P(D2) x ... x P(Dm)· 
An arbitrary tuple is of the form ti = [dil, di2, ... , dim] where D.i ~ di.i. 

An interpr-etation a = [a1 , a2, ... , am] of a tuple ti = [dil, di2, . . . , dim] is any 
value assignment such that ai E di.i for all j. 

In summary, the space of interpretations is the set cross product D 1 x D 2 x 
... x Dm. However, for any particular relation, the space is limited by the set 
of valid tuples·. Valid tuples are determined by an underlying semantics of the 
relation. Note that in an ordinary relational database, a tuple is equivalent to 
its interpretation. 

3.2. Similarity query formulation 

To illustrate the process of query evaluation in the similarity database, we ex
amine a generalized form of Boolean queries that may also be used to retrieve 
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information, Petry (1996). The details of query evaluation can be seen more 
easily in this sort of queries. 

A query Q(ai, ah, ... , ak) is an expression of one or more factors combined by 
disjunctive or conjunctive Boolean operators: Vi op Vi, op ... op Vk. In order 
to be well formed with respect to a relation T having domain sets D 1 , D2 .. , Dm, 
each factor Vj must be 

1. a domain clement a, a E Dj, where Dj is a domain set for T, or 
2. a domain clement modified by one or more linguistic modifiers, e.g. NOT, 

VERY, MORE-OR-LESS. 
The relation T may be one of the original database relations or one obtained 

as a resnlt of a series of fuzzy relational algebra operations. Fuzzy semantics 
apply to both operators and modifiers. An example query is 

MORE-OR-LESS big and NOT VERY VERY heavy 

where "big" is an abbreviation of the term (SIZE = big) in a relation having do
main called SIZE. The value "heavy" is likewise an abbreviation. The linguistic 
hedge VERY can be interpreted as CON(F), concentration , and MORE-OR
LESS as DIL(F), dilation. 

A membership value of a tuplc in a response relation T is assigned according 
to the possibility of its matching the query specifications. Let a E Dj, be an 
arbitrary clement . The membership value m.a(b), bE Dj, is defined based on 
the similarity relation, sj(a,b), over the domain. The query Q(<)) induces a 
membership value Tnq(t;) for a tuplc to in t he response T as follows: 

1. Each interpretation I = [a~, a~, ... , a~.] of t determines a value TTI.aj ( a'j) 
for each domain element aj, of Q ( ai, ah, ... , ak). 

2. Evaluation of the modifiers and operators in Q( <)) over the membership 
values Tnaj(aj) yields m.q(I), the membership value of the interpretation 
with respect to the query. 

3. Finally, rn.q(t) = maxi of t{m.q(I)}. 
In short, the membership value of a tuplc represents the best matching 

interpretation. The response relation is then the set of tuples having nonzero 
membership values. In practice, it may be more realistic to consider only the 
tuplc with the highest value. 

4. Similarity database architecture design 

The major aspect we address here is the use of the basis of the similarity 
database ~ the similarity relation. The key will be the use of an associative 
memory to map the domain elements to a matrix to generate the similarity. 
This follows approaches to the use of associative processors for implementing 
maybe logic in the relational algebra, Hurson and Miller (1987), Miller and 
Hurson (Hl87). 

Fig. 1 shows the high level description of the query evaluation steps discussed 
above. These steps arc done in parallel across the interpretations of the matching 
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tuples generated during the evaluation of the query relative to the similarity
based fu:.~:.~y database. 

F ig. 2 shows t he design of the similarity module. This is used to obtain the 
required similarity values to generate membership values for the interpretations. 
The linguistic terms corresponding to an attribute domain being evaluated arc 
stored in the associative memory arTays. T his facilitates direct indexing of the 
hardware similarity matrix from which the specif-ic similarity values arc then 
read. 

5. Conclusions 

If we desire to actually move the laboratory developments of fu:.~:.~y databases to 
full scale cornrnercial systems, serious consideration of performance requirements 
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must be made. Although many approaches using various indexing schemes and 
advances in processor and 1/0 speed and main memory capacity can make 
inroads into the performance problems, the overhead of general purpose fuzzy 
database still remains. The overhead of fuzzy processing has been successfully 
addressed in other applications by the development of fuzzy chips. Thus we 
have been led to begin the considerations of special purpose database hardware 
to enhance performance. The issues raised and preliminary design sketched in 
this paper are being further elaborated and a more complete design that can be 
simulated for testing and performance estimation is in development. 
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