
Control and Cybernetics

vol. 26 (1997) No. 2

A new method of fast fault grading1

by

Stanislaw Deniziak and Krzysztof Sapiecha

Cracow University of Technology, Department of Computer Engineering
Warszawska 24, 31-lGG Cracow, Poland

Abstract: The paper presents a new algorithm of fast fault
grading for combinational circuits, based on critical path tracing. In
the algorithm the information coming from the preprocessing of a
circuit structure description is used for static reduction of regions
in the circuit where extra analysis of fault propagation is necessary.
For most of the benchmarks the reduction exceeds 20%. The pscu­
doedges arc inserted into the circuit structure description so that the
multi-stem regions may be processed in the same way as if they were
single-stem ones. The forward pass of a classic critical path tracing
algorithm is supplemented with extra calculations of the reachabil­
ity of nodes belonging to the stem regions. Thanks to that, parallel
fault propagation analysis may be performed.

The algorithm uses code driven simulation technique and it ap­
plies critical path tracing in the whole area of a combinational cir­
cuit. No explicit fault simulation is used, at all. The implementation
of the algorithm has proven its high efficiency with and even without
dynamic reduction of the number of processing steps.

1. Introduction

Fault simulation, Pradhan (HJ8G) , is most often used in ATPG (Automatic Test
Pattern Generation) systems to evaluate the fault coverage for a given sequence
of deterministic or random test patterns. It is also used to build up dictionaries
of faults which arc essential in fault location. Fault simulation can also be used
to analyse the testability of circuits being designed.

T heoretical estimations have showed that the time of fault simulation is
proportional to the number of logic gates of the circuit squared, Hare!, Krish­
namurthy (HJ87). This means that the bigger the circuit , the longer the time
of fault simulation. In the case of VLSI systems it can make fault simulation
impossible.

1This research was supported by KBN under grant No. 8T11C02709.

272 S. DENIZIAK a nd K. SAPIECHA

Because of the importance of fault simulation in circuit design and testing,
much better solutions of the problem are still being looked for. Special equip­
ment used in testing, Ostapko, Barzilai, Silberman (1987), Ozgtner, Daoud
(1988), and elaboration of new methods and algorithms, Melgara (1987), Gai,
Somenzi, Ulrich (1987), Abramovici, Krishnamurthy, Mathews, Rogers, Schultz,
Seth, Waicukauski (1988) are main directions of research. Development of faster
algorithms of fault simulation seems to be more effective and more flexible than
hardware acceleration.

As far as the faster algorithms are concerned we can single out two directions
of research. The modifications of explicit fault simulation methods (parallel,
deductive and concurrent) are the first one. The method of implicit fault simu­
lation is the second one, where the results are reached by analyzing a structure
of the circuit, true value simulation of it, and critical paths tracing instead of
explicit fault simulation.

The interest in fast fault simulation algorithms for combinational circuits
has arisen because of scan path designs, Williams, Parker (1982) . As a result
of the interest, some new fast fault simulation algorithms have been worked
out: Critical Path Tracing- Abramovici, Menon, Miller (1984), PPSFP (Par­
allel Pattern Single Fault Propagation), Waicukauski, Eichelberger, Forlenza,
Lindbloom, McCarthy (1985), CDSFP- Daehn, Geilert (1987), etc.

Most effective a lgorithms of implicit fault simulation are based on criti­
cal path tracing, Abramovici, Menon, Miller (1984). In the first step of this
method, true-value simulation of the circuit is performed and all sensitive lines
are marked. T hen, in the next step, a ll single paths are traced backward from
primary outputs of the circuit to its primary inputs, so as to determine critica­
lity of those paths. A path is critical iff a failure propagates from the begining
of the path to the end of it.

The algorithm gives correct results for combinational circuits having no
nodes with reconvergent fan-out . However, in general, the results may be wrong
(if self masking or multiple path sensitization occurs).

An algorithm taking into consideration criticality of nodes with reconvergent
fan-out is presented in Abramovici, Mcnon, Miller (1984). The weak side of the
algorithm is the propagation of faults of the nodes with reconvergent fan-out to
primary outputs of the circuit to check the criticality of the nodes. This is time
consuming but not necessary. Moreover, the criticality of at least one branch of
the node is the condition to start analysis the criticality of this node. In some
cases (multiple paths propagation), analyzing of some nodes may be neglected
and finally the results of simulation will not include the whole set of faults to
be detected in a real circuit.

The modification of the algorithm is possible when such cases are detected
and handled , Menon, Levendel, Abramovici (1988). Then the results include
the whole set of detected faults. However, no implementation of this algorithm
is known, yet. Moreover, it seems that it would be rather very time consuming.

Criticality of nodes with reconvergent fan-out may also be graded when

A new method of fast fault grading 273

explicit fault simulation is used. It has been observed that for extra cost of
preprocessing, which is done only once, the overhead resulting from explicit
fault simulation may be considerably limited. It appears that this simulation
may be limited to some parts of the circuit (called stem regions) - Maamari,
Rajski (1987). In such a case, output lines of these regions are determined
and then the propagation of faults of these nodes to output lines of their stem
regions is checked using explicit fault simulation. A node is critical if a fault of
the node propagates to at least one output line of the stem region of this node.

The above algorithm has been used in Tulip system, see Maamari, Rajski
(1988). As a result of the fault simulation limited to the stem regions, the
acceleration of up to 10 times has been reached compared with propagation of
stem faults to primary outputs of the circuit.

As we mentioned before, in the above algorithm the additional preprocessing
step is necessary to determine stern regions and their output lines where the fault
propagation for reconvergent fan-out stems to be analyzed. If none of lines that
goes out of the stern region is critical, then the stem is not critical too, and
fault simulation for this stern is not necessary. From that it appears that the
algorithm can be accelerated by analyzing fault propagation of a stern only when
at least one of the output lines of its stem region is critical. Dominator Test
Detect - Underwood, Ferguson (1989) and Tulip2 - Maamari, Rajski (1990)
work according to the above principle.

The weak side of this method lies in that the stern regions may be very
large. This is particularly visible when the number of logic levels of the circuit
is high. FSIM and FSIM_S algorithms, Hyung Ki Lee, Dong Sarn Ha (1991),
are free of this weakness because only these parts of a circuit are simulated
which propagate at least one fault. In FSIM stem faults propagate to so called
dominant nodes. In FSil\ILS, however, stem faults propagate to output lines of
the stern regions.

All algorithms mentioned above use PPSFP to propagate stem faults through
their stern regions.

Critical path tracing is one of the most efficient implicit fault simulation
methods, Abrarnovici, Menon, Miller (1984). Both the time of true value sim­
ulation and the time of critical path tracing depend linearly on the number of
logic gates in the circuit. However, stern regions grow enormously for many
practical circuits and explicit fault simulation, even if limited to stern regions,
is still very time consuming.

In general, the critical path tracing method may be used for sequential cir­
cuits, Menon, Levendel, Abrarnovici (1988). It makes this method very inter­
esting in looking for fast fault simulation methods applicable to all types of
circuits.

The way of determining the criticality of stems with reconvergent fan-outs
decides about the efficiency of an algorithm of implicit fault simulation, Abra­
movici, Menon, Miller (1984), Maamari, Rajski (1987) , Maamari, Rajski (1990),
Unclerwood, Ferguson (1989), Hyung Ki Lee, Dong Sarn Ha (1991). Efficiency

274 S. DENIZIAK a nd I<. SAPIECHA

of fault grading can be increased by making the time of simulation shorter or
decreasing the sizes of regions, where the analysis of fault propagation for stems
with reconvergent fan-outs must be done. The aim of this paper is to address
these goals.

Static reduction and simultaneous propagation of faults of all stems with
reconvergent fan-outs in the forward pass of the algorithm is the essence of
a new method of fast fault grading proposed here. To define rules of fault
propagation through a combinational circuit, a graph model of the circuit will
be introduced and a classification of nodes of the graph will be given. On
the basis of this classification the rules of fault propagation through nodes of
specific types belonging to the stem regions which do not overlap will be defined.
Then, these rules will be extended to nodes belonging to any stem regions.
To complete the paper the whole algorithm of fast fault grading will be given
and the computational complexity of this algorithm will be theoretically and
experimentally estimated.

2. The stem regions

A combinational circuit is to be modelled using an acyclic directed graph G =

(N, A), where N is a set of nodes and A is a set of edges. Nodes in the graph
G correspond to the primary inputs of the circuit and to outputs of the gates
in this circuit. Edges in the graph G correspond to connections in t he circuit.

DEFINITION 2.1 If ther·e aTe at least two paths Pk and Pl between nodes n; and n.i
s11,Ch that Pk np1 = {n;, n.i} then n.i is called the node of pr-irnaTy r-econver:qence of
n; and ni is called the node with r-econver:qent fan-o?J.t (the stern with r-econve·r:qent

Jan-ov.t).

Let ni be a node of primary reconvergencc of stem ni.

DEFINITION 2.2 A rninirn11.rn sv.bgmph of the gmph G inclv.ding all paths that
go ov.t of node ni and go in any node of pTirnar-y ·recomJe'r:qence of the stem ni

is called a pr·imar-y stern Tegion of node ni and is denoted as R~, .

Primary stern regions of different nodes may overlap. Stem regions of the
graph G can be obtained by joining overlapping primary stem regions. Such
regions will be called multi-stem regions.

Let the graph G include s nodes with reconvergent fan-out : n1, ... , n s.

D EFINITION 2.3 A set of s11.bgmphs R1 , ... , R1, ... , Rr of the gmph G is called
the set of stern Tegions of G if it satisfies the following conditions:

1. Each of the R1 s11.bgmph includes at least one pr-imar-y stem. r-egion of the
gmph G.

2. If for- any pair- of nodes r4 and n.i it holds: R'f;, n Rf:.; =/= 0 and R:1 i S: R1,

then R;,.; S: R1.

A new method of fast fault grading 275

n;1 ..

~~I

Figure 1. Secondary stem region

DEFINITION 2.4 A node ni is called an inp11.t node of the stern. Tegion Rz if it
satisfies the following conditions:

1. ni E Rz, and
2. none of the paths that; goes in the ni node does not belong to the R 1 Tegion.

From the above definitions, it follows that an input node of a stem region is
the stem with reconvergent fan-out.

DEFINITION 2.5 A node ni is called an otdp?J.t node of the stern. Tegion R 1 if:
1. none of the edges that leaves this node belongs to the Rz stem Tegion, and
2. at least one edge that enter·s T/.i leaves the node that belongs to the Rz

Tegion.

Output nodes that belong to the stem region arc always the reconvergence
nodes of at least one stern. Output nodes that do not belong to the stern region
R1 are characteristic in that there is exactly one edge between the node and the
Rz stem region.

DEFINITION 2.6 A node ni is called a focusing node if theTe aTe at least two
edges enteTing node ni and belonging to the same stern. ·region of the G gmph.

3. Stem regions tracing

Input and output nodes of the primary stem regions arc defined in the same
way as input and output nodes of the stem regions.

DEFINITION 3.1 Let; ni and n.i be nodes with Teconver:qent fan-out and nk and
n 1 be ontp11.t nodes of pr·ima·ry stern. r·egion of the node n; (Fig. 1). The region
R~.; is called a secondar-y stern r-egion of the node ni if:

276 S. DENIZIAK and K. SAPIECHA

x,

Figure 2. An example circuit

1. R~; C£_ R~,, and

2. n.i E R~., and nk, n1 E R;,i .

All nodes of primary reconvergence of node ni that do not belong to region
R~., are called the nodes of secondary reconvergence of node ni.

Proceeding in the same way for the n.i node we can determine third, fourth ,
fifth etc. stern regions and nodes of third, fourth, fifth etc. reconvergence of
node ni· The necessary condition for the existence of the l-th stem region is
that there exists the (l - 1)-th stern region.

Assume that node ni has exactly r stem regions R~,, ... , R~,.

DEFINITION 3.2 Stern r-egion of node ni is defined as:

Rn, = R~, U ... U R~, .

One can easily observe that if ni E Rt, then Rt includes all regions: R~,, ... , R~,.
The circuit in Fig 2 includes two nodes with reconvergent fan-out: x2 and

x 8 . The x 12 node is the node of primary reconvergence of node x 2 and nodes
x 12 and x 13 are nodes of primary rcconvergence of node x 8 .

The primary stem regions arc the following:

There is only one secondary stem region:

A new method of fast fault grading 277

Because R,2 n R,8 # 0 there exists exactly one stem region R 1 including
the nodes: x2, x6, xs, x7, x12, :r.w, X 13, xu. Nodes x12, x13 and x 14 are output
nodes and x2 is the input node of the stem region. The nodes x 12 and x 13 are
the focusing nodes.

4. Node classification

Based on the definitions given above one can dstingUl,lt the following types of
nodes of the graph G:
Ne - a subset of nodes with reconvergent fan-out,
Nne - a subset of nodes with no reconvergent fan-out,
NP - a subset of focusing nodes,
N,P - a subset of non-focusing nodes,
Nen - a subset of input nodes of stem regions,
Nex - a subset of output nodes of stem regions,
N 0 - a subset of nodes that do not belong to any stem region and are not the

output nodes of any stem region,
Ni - a subset of internal nodes of a stem region.

The following equalities hold:

(1)

(2)

From these equalities it appears that each node of the graph G belongs to three
subsets: N e or Nne, Np or Nnp and one of t-lw "nbsets denoted as N ex, Nen, Ni
or N 0 . We can derive sixteen subsets of nooc:; such that each node belongs to
exactly one of these subseLs:

No = Nnp n Nne n No , N1 = Nnp n Nne n Nen
N2 = Nnp n Nne n Nex N3 = Nnp n Nne n Ni
N 4 = Nnp n Ne n N 0 , N 5 = Nnp n Ne n Nen
N6 = Nnp n Ne n N ex N1 = Nnp n Ne n N ,
Ns = Np n Nne n No N g = Np n Nne n N en
Nw = NP n Nne n Nex N n = NP n Nne n N i
N12 = Np n Ne n No N13 = Np n Ne n N en
N14 = NP n Ne n Nex N15 = NP n Ne n Ni.

From the rules of the determination of the stem regions and the Definitions
2.1 to 2.6 it follows that:

• N1 = N4 = N6 = Ns = Ng = N12 = N13 = N14 = 0
• No = No
• N5 = N en

278 S. DENIZIAK and K. SAPIECHA

Hence, No U N2 U N3 U N5 U N1 U N1o U Nu U N15 =Nand N 0 , N 2, N 3, N 5 ,

N 7 , Nw, Nu, N 15 arc pairwisc disjoint. This means that every node belongs
to one and only one subset Ni, where i E {0, 2, 3, 5, 7, 10, 11, 15}.

For the example in Fig 2 we get:

N5 = {x2}

N1 = {xs}

Nu= 0

The objective of the preprocessing of the circuit description is to divide the
set N into snbsets Ni, i E {0, 2, 3, 5, 7, 10, 11, 15} (a sketch of the algorithm of
the preprocessing is described in appendix D). In the following sections we will
show that membership of a node in the particular subset Ni decides about the
way the node is processed when critical paths arc traced.

5. Reachability

Let us make the following ass umptions:
Al: The reconvcrgcnt fan-out sterns arc the only sources of faults analy:<~ecl

here.
A2: Fault propagation is analy:~;cd only in stem regions .
To describe fault propagation rules in a circuit the concept of rcachability of
node n.i for a fault appearing in node ni will be introduced.

DEFINITION 5.1 Let V be an input patteTn. Reachab1:lity of node n.i joT a ja?J.lt
appeaTing in node ni is defined as follows:

. . { 1 rlJ (V)= 0
when the f anlt Teaches node ni,
o Lh enJJis e.

Faul ts coming from the sterns may appear in the nodes that correspond to
inputs of the gates i11 the circuit. The following cases can be distinguished:

1. tlwrc arc no faults on the inputs (Fig. 3a),
2. there is a single fault on one input (Fig. 3b),

A new method of fast fault grading

a)

c)

c)

::::=:c>­
:~
b)

"'~­
c~
c~
..,~

"'~­
..,~
d)

c~-
c~
c~
..,~

"'~--­
c~

c~-•o
c~

Figure 3. Different case!; of fault propagation
where:
o,• - denote faults coming from different stems,
c - is a controlling value of the gate c - is its complement,
:1: - is an arbitrary value of an input.

279

3. there arc multiple faults propagated from different sterns on different in­
puts (Fig. 3c),

4. there arc multiple faults propagated from the same stem on different inputs
(Fig. 3d),

G. there arc multiple faults propagated from different stems on one input
(Fig. 3e),

G. there arc multiple faults propagated from different stem!; on both inputs
(Fig. 3f) .

It is easy to show that the other cases (for gates of greater number of inputs
and for greater number of faults) can be reduced to the above listed. Moreover ,
similar analysis can be clone for all the remaining types of logic: gates, that is
for NOT, OR, NAND, NOR and XOTI. gates.

For each of the above cases the reachability of the output node for faults
appearing on input nodes can be determined according to Table 1.

When l - 1 sterns with rec:onvergent fan-out drive an output of the gate then
l-th pair (logic state , rcachability) describes the state of the output of thi!; gate.

TI.ea.cha.bility rli indicates if the fault that it is released from node n i. propa­
gates to node n 1. Later on we prove that if node n.i is the output of the gate

280 S. DENIZIAK and K. SAPIECHA

Case a bl b2 cl c2 c3 c4 ell d2 d3 cl e2 f1 f2 f3 f4 f5 f6 f7

d~ 0 0 0 0 0 1 1 0 0 0 0 1 0 1 0 1 1 0 1

d! 0 0 1 0 1 0 1 1 0 1 0 1 1 0 0 1 1 0 1

Table 1. Reachability for AND gate

and nodes n 1 , ... , nk, . .. , nm are inputs of the gate then:

(v7,dj) = R((111,d}), ... , (vk,d7), .. . , (vm,d7'))

where vk is a logic state of node nk and R is a function defined by so-called
reachability table of this gate.

Reachability dj should be calculated along with the calculation of logic states
of the nodes. According to the assumptions A1 and A2, initial values of d~ are
as follows:
d~ = 1 , if ni E N 5 , N7 or N 15 (fault sources),
d~ = 0 , otherwise.

Logic states and reachability are calculated node by node using the reacha­
bility tables.

In the next sections, the way reachability tables are defined will be given.

6. Pseudoedges

If the stem regions in a circuit do not overlap, then all faults in a stem region
come from the same stem. As concerns logic gates this corresponds to the
cases from figures 3a, 3b and 3d. Association of calculated reachability with
appropriate stern in the circuit is unique then.

Now, let us assume that the stern regions in a circuit may overlap. As
concerns logic gates this corresponds to all cases in Fig. 3. In the cases in Fig.
3a, 3b and 3d (faults of the same stem only) the reachability may be determined
as previously. In the case of Fig. 3e we may use the following observation:

OBSERVATION 6.1 If each path between nodes ni and nk goes th:mngh node nj
then:

In the last two cases of Fig. 3c and 3f, to determine propagation of individual
faults, it is necessary to calculate the rcachabilitics separately for each stern. To
aim this, the transformation of cases in Fig. 3c and 3f to the case in either Fig.
3b or 3d will be done. We will do it by appending the G graph with extra edges
(so called pseudoedgcs) which will carry the information that allows us to deal
with the multi-stem regions a...c; if all stem regions were disjoint. For example,

A new method of fast fault grading 281

c~
c -

-~-c -

eo ----o

Figure 4. Pseudoedges propagating different faults

for the gate of Fig. 3c two pseudoedges that leave the node corresponding to
the output of the gate will be inserted into the G graph. The 'upper' one for
the fault coming from the black stem and the 'lower' one for the fault coming
from the white one (Fig. 4).

The cases of Fig. 3c,f can only occur for nodes belonging to the sets N 7 , Nn
and N15 , and pseudoedges should be inserted into the G graph only for these
nodes. The rules of inserting pseudoedges into the graph follow:
Rl: when n.i E N 7 or n.i E N 15 : for each stem with reconvergent fan-out

ni, for which there is at least one path going through node n.i to any
reconvergence node, the pseudoedge si, is added.

R2: when ni E Nn and node ni is on paths going through some nodes n 1 , ... , nk

(k > 1) to their reconvergencc nodes: pseudoedges s{, .. . , s{ that go out
node ni are added.

A pseudoedge s{ goes out of node n.i and it is assigned reachability rl{, provided
that node ni belongs to the sets N 5 , N 7 or N1s. Pseudoedges that go out of
node n.i arc directed to the nearest nodes from sets N2, N 7 , N10, Nn or N 15

which are on the paths going out of the n.i node. Reachability associated with
pscudoedge s{ will be denoted ds{.

In the graph of the circuit in Fig. 2 one triple pseudoedge s~~ should be
added. It leaves node xs and enters nodes X12, Xr3, Xr4·

7. The R-algebra

The R-algcbra (Rcachability algebra) is introduced to calculate the reachability
in a circuit. The R-algebra is defined as follows:

R = (W,P,R),

where W = {0, 1} x {0, 1}, P: W -t W, and R: W -t W.
The rcachability function R of a logic gate is defined in Table 2.
Table 2 is determined on the basis of the following lemma:

LEMMA 7.1 The Teachability fnnction of any logic gate having rn inpnt nodes
n 1 , ... , nk, ... , nm and ontpv.t node n.i is as follows:

1. logic state vi of the 011,tp11,t is deter·mined by the logic fnnction of the gate,

282 S. DENIZIAK and K. SAPIECHA

v 1 , df. 00 00 00 00 01 01 01 01 10 10 10 10 11 11 11 11
v2 ,d;: 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11
AND 00 00 00 00 00 01 01 00 00 01 10 10 00 00 11 11

NAND 10 10 10 10 10 11 11 10 10 11 00 00 10 10 01 01
OR 00 01 10 11 01 01 10 10 10 10 10 10 11 10 10 11

NOR 10 11 00 01 11 11 00 00 00 00 00 00 01 00 00 01
XOR 00 01 10 11 01 01 11 10 10 11 10 01 11 10 01 01

Table 2. Reachability function

2. d{ equals 1 ifl:

• ni E Rn; , and

• for at least one inpv.t nk: rlT = 1, and

• logic states of all inputs nk for· which dT = 1 are the same and

• logic states of all inputs nk joT which d~ = 0 are not contTOlling ones.

Let P denote the rcachability function of a pseudoedge. It is defined on the
basis of Theorem 7.1.

Let nk be the node that corresponds to the output of a gate, the nm. node
be the node that corresponds to an input of this gate and a si pseudoedge goes
into the nk node. The s{ pscudoedgc is said to be connected with the nm. node
if there is at least one path from n.i to nk that goes t hrough the nm. node.

THEOREM 7 .1 Let n.i be the node corTesponding to the o71.tput of a gate and
nodes n 1 , ... , nk, . .. , nm. coTTespond to its inputs. Let theTe be at least one
path between the node ni E N 5 U N 7 U N 1s and each of the inpv.ts n 1 , .. . , n.,.,
(1 :S r :S m.) (which means that nk E Rn; joT k = 1, ... , r and nk tf. R n; joT
k = r + 1, .. . , m.) and let l nodes (inputs) n1, . . . , n1, (l :S r) be connected with
pse11.doedge.s s~ 1 , ... , sY (Fig. 5).

If the R f7J.nction is the Teachability fv:n.ction of this gate, then the Teachability
of the pseudoedge si is calc7i.lated as follows:

[v.i , rls{] =

In Appendixes A and B proofs of the lemma and the theorem arc given.

A ne w method of fast fault grading 283

Figure 5.

8. Fast fault grading

The algorithm of fast fault grading consists of three steps:

1. preprocessing of the circuit structure and generation of the code of the
fast fault grader,

2. calculating logic states and reachabilities for nodes and pseudoedges of
the graph G,

3. critical path tracing.

The first step of the algorithm is executed only once for a given circuit. The
second and the third steps arc executed for every input pattern.

In the first step of the algorithm the stem regions, the characteristic subsets
of nodes and the psemloeclgcs arc dctcrminccl. This information is used to
generate the code of the fast fault grading program. This program consists of
two parts that implement the second and third step of the algorithm. In the
first part of the program, expressions that allow us to calculate the W = [vrl]
vectors, for nodes that correspond to outputs of logic gates belonging to the stern
region[:; and for the pseudoedges, arc generated. In the second part, expressions
arc generated that a llow us to calculate the criticality of inputs of t he gates and
criticality of sterns with rcconvcrgcnt fan-out.

From the rules for calculating reachability it appears that the reachability
of the nodes that do not belong to any stern regions arc always equal 0 (fault
propagation analyf:;iH iH bounded to stern regions) and the reachabilities arc
not calculated for output nodes of stem regionH (this sequence of calculations
is executed in the Hccond step of the algorithm only if the output nodcH arc
critical). T his way the number of calculations is decreased .

Criticality of sterns with reconvcrgcnt fan-out is calculated on the basis of
criticality and reachability of output nodes of appropriate stern regions. For
other nodes criticality is calculated according to the classic CPT algorithm.

Ill Appendix C, result:-; of execution of the algorithm for the example of Fig.
2 are gi vcn.

284 S. DENIZIAK and K. SAPIECI-IA

9. Dynamic fault dropping

To minimize superflous calculations, a method of processing of fanout- free rc­
gions(FFRs) and stem regions(SRs) in the forward levelized order has been used
Hyung Ki Lee, Dong Sam Ha (HlGl). Only those regions which are affected by
the faults arc processed this way.

Simulation consists of two steps:
• calculating fault propagation to stems (calculating local propagation inside

FFRs) and calculating stem faults propagation to exit lines of stem regions;
• calculating fault propagation to primary outputs by processing FFRs in

t he backward order.
For every active FFR (to which faults arc propagated), propagation of the

faults to a stem (by critical path tracing) is calculated in the first step of the
algorithm. If at least one fault is propagated to a stem s, then stem fault
propagation is determined by calculating rcachability d~' (where li are exit lines
of the stem region SR(s)). A stem t (such that li E F F R(t)) is marked active
when a fault of the stern s is propagated to an exit line li. Fanout branches are
exit lines for sterns without reconvergent fan-out. In the second step criticality
of a line is calculated as a product of local criticality of this line and criticality
of a stem being an FFR output the line belongs to.

The PCPT (Parallel Critical Path Tracing) algorithm follows:

procedure PCPT;
{ Where c(l) and c1(l) arc criticality and local criticality of the line l
respectively. }
begin
Mark all stems as active;
for each test pattern do

begin
Perform fault free simulation;
for each stem s in forward levelized order do

if s is active then
begin
Simulate FFR(s) using the critical path tracing;
if any fault propagates to s then

for each exit line I of SR(s) do
begin

end

Computed~.
if d~ = 1 then

Mark stem t (where lE FFR(t)) as active.
end

for each active stem s in backward order do
begin
if s is a primary output then

A new method of fast fault grading

Mark 8 as critical;
if C(8) =1- 0 then Mark detected faults of stem 8;
for each line l in FFR(s) do

begin
C(l) = C1(l) and C(8);
if C(l) =1- 0 then Mark detected faults of line l;
end

for each exit line l of the stem region SR(t) in FFR(s) do
C(t) = C(t)orC1(l);

if there are no more undetected faults in FFR(s) then
Mark 8 as non active;

end
end

10. Computational complexity of the algorithm

285

Let the circuit include n nodes with reconvergent fan-out n 1 , ... , nn and let
Nk (R,J denote the number of nodes from the set of Nk that belong to the
region Rn,. Then the number of pseudoedges can be calculated as follows:

n

S = 2:)N7(RnJ + Nu(RnJ + Nls(RnJ).
i=l

To calculate the criticality of the stem with reconvergent fan-out ni , it is neces­
sary to calculate the reachability r11 for each node n.i which is the output node
of the Rn, region. Let t be an average time needed to calculate the state (W
vector) of a single node or pseudoedge. To calculate reachability for output
nodes, the extra calculations of the state of the pseudoedges that propagate a
fault of the ni node should be performed. This time can be estimated as follows:

where S(ni) is the number of pseudoedges that propagate a fault of the ni node.
Finally, for all the nodes:

n

T = L.> · (N7(RnJ + Nu(RnJ + Nls(RnJ) .
i = l

The above relationship can be expressed in the following way:

T = n · t · t ~ · (N1(RnJ + Nu(RnJ + Nls(RnJ) = n · t · (N1 +Nu+ N1s)
n

i = l

where N7, Nu , N 15 arc average numbers of nodes from subsets N7, Nn and
N 15 included in a stem region of one node.

286 S. DENIZIAK and K. SAPIECI-IA

circuits LANE PC ASI PC LANE PC Apollo I-IP9000
386SX 25MI-Iz 486DX 33MHz 486DX 50MHz 224 102400

C432 0.38 0.17 0.063 0.021 9.58
C499 0.24 0.095 0.039 0.007 3.37
C880 0.32 0.12 0.051 0.010 4.3'1

C1355 0.43 0.18 0.074 0.020 9.24
C1908 2.021) 1.041) 1.071) 0.073 33.85
C2670 1.09 0.45 0.39 0.063 28.74
C3540 0.239 109.17
C5315 2.371 ! 1.101) 1.071) 0.091 41.71
C6288 2.2 1005
C7552 7.601) 4.781) 4.591) 0.147 67.09

1) EMS (1MB)

Table 3. Experimental results

From the fact; that

n n

i=l i = l

where Rn, is the number of nodes in the Rn, region, the following conclusion
can be drawn:

CONCLUSlON 10.1 Checking the pmpagation of nodes with TeconveT:qent fan-ov.t
to the o?;.tp7lt nodes of stern Tegions 7lsing psendoedges is more efficient than the
single fav. lt pr-opagation method joT these nodes.

11. Experimental results

Table 3 presents experimental results obtained for well-known benchmark cir­
cuits, Brgle~, Fujiwara (1085) (time in seconds, no preprocessing t ime included) .
T he experiments have been performed on LANE PC/386SX-25 MHz, ASI PC/
486DX-33 MH~ (64kB cache) and LANE PC/486DX-50 MHz (256kB cache)
running under MS DOS, and on Apollo HPD000/720 workstation working un­
der HP-UX 8.05 for 224 and 102400 input vectors. In one pass, 16 (PCs) or
32 (Apollo) test vectors have been simulated, no fault dropping technique has
been applied.

In Table 4 selected parameters of the benchmark::; and result::; of the prepro­
ccs::;ing (performed on LANE PC/486DX-50MI-h) arc shown .

For benchmarks having similar ratio::; of the stem region overlapping (R), the
time of simulation grow::; almost linearly with the si~e of t he circuit::;. T his holds
for C4!)!), C1355, C5315 and C7SS2 benchmarks, for example. For benchmarks

A n ew m ethod o f fast fa ult g r ading 287

Circuit Gates Stems Pis POs R Pseudoedges Prepr. [s]
C432 160 82 36 7 29.5 5212 0.44
C499 202 49 41 32 11.5 1115 0.77
C880 383 82 60 26 8.3 2330 0.82
C1355 546 249 41 32 7.4 2995 3.13
C1908 880 362 33 25 19.7 12054 3.68
C2670 1193 395 233 140 10.3 12905 4.23
C3540 1669 528 50 22 44.2 63293 10.93
C5315 2307 638 178 123 7.2 14656 15.65
C6288 2416 1427 32 32 184.9 493019 75.82
C7552 3512 1090 207 108 10.9 26802 28.18

Table 4. Benchmark characteristics

Circuit No N2 N3 Ns N1 N10 Nn N 1s Red . [%] S peed 106 / s

C432 7 3 23 36 14 4 84 32 26 1.8
C499 40 0 48 33 0 32 106 16 67 1.3
C880 139 7 89 34 3 24 128 45 52 1.9
C1355 72 0 40 33 8 32 226 208 21 1.2
C1908 25 0 232 33 207 25 2911 122 23 1.2
C2670 244 20 230 43 235 13 512 117 18 1.6
C3540 32 2 456 46 258 28 695 224 23 1.9
C5315 351 19 492 73 332 74 10311 233 26 1.3
C6288 32 0 17 32 15 32 972 1380 0.6 1.6
C7552 378 4 870 65 553 47 1436 472 25 1.5

Table ::3. Reduction ratio

of similar si~c(G), the t ime of simulation grows faster t han linearly with the
growth of the R ra tio. This holds for C432 and C49!), for C2670 and C3540,
and for Cl3::J::J , C l D08, C3540 and C6288 benchmarks. A slight dispersion of
t he values comes from different speeds of simulation for different types of logic
gates. Two-input gates arc simulated fas ter than n-input gates, for n > 2. This
is why the C880 benchmark is simulated faster t han predicted by the t heoretical
estimat ion.

No fault dropping techniques were used in the algorithm . Hence, the time
of simulation grows linearly with the number of input vectors applied.

For most benchmarks, t he static reduction of calculations, due to the de­
crease of the areas in which rcconvergcnt fan-out stem faults arc analy~ed, is
greater t han 20% (Table ::3). High value of the R ratio for C6288 results in
relatively low ·reduction for this benchmark.

Tables 6 and 7 show published results of experiments for eight systems which

288 S. DENIZIAK and K. SAPIECHA

Name SOCRATES Tulip PPSFP CDSFP
200 20000 224 102400 30000 224 30016

C432 2.0 21.7 0.9 31.0 21.1 1 2
C499 2.9 30.7 0.8 44.2 40.5 1 8
C880 4.4 27.8 1.5 59.6 45.7 1 3

C1355 7.5 79.4 2.0 124.9 72.3 3 14
C1908 16.8 120.1 3.3 138.5 118.7 5 18
C2670 12.7 431.1 4.7 338.5 410.5 11 487
C3540 38.0 295.8 9.6 810.3 209.7 19 241
C5315 21.5 292.8 8.1 473.4 538.5 37 285
C6288 154.1 387.7 - 2182.6 220.0 36 210
C7552 45.5 673.8 13 1076.2 653.7 75 1539

Table 6.

use different fault simulation algorithms.

Remarks:

1. The algorithm used in SOCRATES, Schulz, Trischler, Sarfert (1987) is
a combination of critical path tracing (for nodes having no reconvergent
fan-out) and PPSFP (for nodes having reconvergent fan-out). The prop­
agation of faults for nodes with reconvergent fan-out is limited to dom­
inators. The SOFE (Stop On First Error) technique is partly used in
the algorithm. The results have been obtained on rnicroVAX for 200 and
20000 random test patterns.

2. In Tulip system, Maamari, Rajski (1988), PPSFP algorithm is used only
for sterns in their stem regions, and the SOFE technique is partly used,
too. The results have been obtained on SUN 3/260 for 224 and 102400
random test patterns.

3. PPSFP algorithm was used for all nodes of the circuit , Briers, Totton
(1986). The number of simulated faults was decreased by removing equiv­
alent faults. The results have been obtained on VAX 11/785 computer for
30000 random test patterns.

4. CDSFP algorithm, Daehn, Geilert (1987), reduces the number of calcula­
tions for individual faults by simulating just a part of the circuit starting
from the faulty node through outputs. All faults detected in each pass
of simulation are dismissed (SOFE). The results have been obtained on
APOLLO DN330 for 224 and 30016 random test patterns.

5. In FSIM and FSil\!LS algorithms, critical path tracing for fan-out free
regions (FFRs) and PPSFP for stem regions (SRs) is used. In FSIM
algorithm, stem faults propagate to so called dominant nodes. In FSIM_S,
however, stem faults propagate to output lines of stem regions. The results
have been obtained on Sun 386i for 224 and 102400 random patterns.

A new method of fast fault grading 289

Name FSIM FSIM_8 DTD PCPT
224 102400 224 102400 224 102400 224 102400

C432 0.38 7.45 0.37 7.32 0.55 5.83 0.01 1.06
C499 0.20 10.60 0.22 11.25 0.81 14.76 0.01 1.19
C880 0.48 3.341) 0.38 3.301) 1.30 13.53 0.02 0.32~

C1355 0.55 23.50 0.52 24.69 1.98 31.70 0.03 2.55
C1908 1.38 25.49 1.28 24.91 3.03 27.84 0.07 4.21
C2670 1.53 146.57 1.37 156.36 3.62 168.49 0.06 12.62
C3540 4.28 98.75 4.10 99.99 7.68 210.99 0.24 20.49
C5315 2.48 94.55 2.15 94.16 7.42 123.26 0.13 13.18
C6288 13.1 101.25 13.48 101.17 55 .45 4114.32 2.34 18.79
C7552 4.37 227.02 4.98 228.77 11. 61 315.32 0.21 30.58

1) for 28.832 patterns
2) for 18.240 patterns

Table 7.

6. Dominator Test-Detect (DTD) is similar to the algorithm applied in Tulip.
However, a stem fault is simulated only when at least one output line of
its stem region is critical. The results have been obtained on Sun 3/260
for 224 and 102400 random patterns.

7. In PCPT algorithm, Deni:.:-;iak, Sapiecha (1983), an improved critical path
tracing is applied to the entire circuit. Fault dropping technique is used.
Results have been obtained on HP Apollo 720 MDL for 224 and 102400
random patterns.

12. Conclusions

In the paper, a new algorithm of fast fault grading has been presented and
evaluated. In this algorithm, the information coming from the preprocessing of
a circuit structure is used for static reduction of regions where extra analysis of
fault propagation is necessary. As a result for most of the benchmarks examined
the reduction of computations exceeds 20%. Pscudoedges are inserted into the
circuit structure so that the multi-stern regions may be processed in the same
way as if they were single-stern ones. T he forward pass of the a lgorithm is
supplemented with extra calculations of the reachability of nodes belonging to
the stem regions. Thanks to that parallel fault propagation analysis may be
performed.

The algorithm uses code driven simulation technique and it applies critical
path tracing for the entire combinational circuit. No explicit fault simulation
is used, at all. Parallel pattern simulation technique is also applied here, as in
most fast fault simulators.

290 S. DENIZIAK and K. SAPIECHA

The experimental results confirm the theoretical estimation of the computa­
tional complexity of the algorithm. Computational complexity of both forward
and backward passes of the algorithm is 0(G + p), where G is the number of
logic gates that are in the circuit and p is the number of the pseudoedges.

From Table 3 it appears that some of the benchmarks are more difficult
than other for simulation using the algorithm discussed (C6288, C432, C3540,
C1908 vs. C880, C499, C7552, C1355, C5315). Generally, the higher the R
ratio, the lower the speed-up of the simulation. Moreover, comparing with
CDSFP algorithm, the larger the circuit, the higher the ratio of speeding up the
simulation. Hence, the computational complexity of the algorithm seems to be
lower than the complexity of the CDSFP algorithm.

No dynamic fault dropping used in the algorithm results in much lower values
of the ratio of speeding up the simulation for longer test vector sequences. This
is particularly visible when CDSFP algorithm is taken as the basis of comparison
(as SOFE is most effective for this algorithm). The influence of SOFE on the
speed of the simulation is stronger for C6288 than for C2670 because the first
benchmark contains much fewer faults difficult to detect than the second one
(fault coverages: 99.43% in the case of C6288 and 82.26% in the case of C2670,
both for 224 random tests).

However , it should be noticed that fault dropping is not always acceptable.
For example, if fault simulation is used to create the so called fault dictionaries,
Breuer, Friedman (1976), or if fault coverage for individual tests is nedeed,
then dynamic fault dropping must not be used. Moreover, as far as efficiency is
concerned, first experiments with a new version of the algorithm, where dynamic
fault dropping is included, seem to be very encouraging.

The contents of Table 5 delivers the information about the efficiency of the
static reduction of calculations in the algorithm. The last column of Table 5
shows an average speed of calculations of the W vectors for logic gates and
pseudoedges. It can be observed that at the expense of extra calculations in the
forward pass of the algorithm (true value simulation) the backward pass of the
algorithm (critical path tracing) is executed very fast. Finally, the algorithm is
very efficient even without dynamic fault dropping. If one assumes that:

where:
t - time of fault simulation,
G - siz;e of the circuit (number of gates),
A, n - constant coefficients for the given algorithm,
then the algorithm shows what follows:
n = 1.3 - for interpolation of individual pairs of results with equation (4),

(4)

n E (0.5 ... 2.3) - the partitions, that include values of ns, most obtained using
the interpolation;

n = 1.39 - for approximation of the results with equation (4) (details are dis­
cussed in Deniz;iak, Sapiecha, 1983c).

A ne w method of fast fault grad ing 291

Strong dependence of the speed of algorithm upon the circuit structure re­
sults in a high dispersion of the values of coefficient n (0.5 - 2.3). However, it
should be mentioned that n does not depend upon the length of a test sequence.
Such a dependence is typical for the algorithms that employ fault dropping tech­
nique (for example SOFE). When fault dropping is applied, then the actual value
of G in equation (4) for the simulated circuit is becoming smaller and smaller.
The first 224 input vectors usually detect about 90% of faults. Therefore, the
longer the test sequence, t he less significant influence of fault dropping on the
value of n .

The implementation of the algorithm has proven highly efficient though no
dynamic reduction of processing steps was used.

Acknowledgements:

The authors are indebted to anonymous referee for his very helpful suggestions
improving the final version of this paper .

References

ABRAMOVICI, M ., MENON, P.R. , MILLER, D .T . (1984) Critical path t rac­
ing: an alternative to fault simulation. IEEE Design 8 Test; of Cornpv.teTs,
1, 83-93, February.

ABRAMOVICI, M ., KRISHNAMURTHY, B., MATHEWS, R., ROGERS, B.,
SCHULTZ, M . , SETH, S ., WAICUKAUSKI (1988) W hat is the path to fast
fault simulation? (A panel discussion). Proc. of the IEEE Intenwtional
Test Conference, 183-Hl2.

BREUER, M .A. , FRIEDMAN, A .D. (1976) Diagnosis f3 Reliable Design of Dig­
ital Systems. Computer Science Press, Inc.

BRIERS, A.J . , TOTTON, K.A .E . (1986) Random pattern testability by fast
fault simulation. PTDc. of the IEEE Intenwtional Test Conference, 274-
281.

BRGLEZ, F ., FU.TIWARA, H. (1985) A Neutral Netlist of 10 Combinational
Benchmark Circuits and a Target Translator in Fortran. Pmc. of the
IEEE Int. Syrnp. on Circv.its and Systems, 663-698.

DAEI-IN, W., GEILERT, M . (1987) Fast fault simulation for combinational cir­
euits by compiler driven single fault propagation. PTDc. of the IEEE
Irdenwf;ional Test Conference, 286-202, September.

DENIZIAK, S ., SAPIECHA, K. (1993A) A Method of Fast Fav.lt Gmding, Tech­
nical Report No. 3/93, Department of Computer Science, Kielc:e Univer­
sity of Technology.

DENIZIAK, S. , SAPIECI-IA, K. (1 993B) Stem Region Analysis. Technical Re­
port No. 4/93, Department of Computer Science, Kielc:e University of
Technology.

292 S. DENIZIAK and K. SAPIECI-IA

DENIZIAK, S., SAPIECHA, J., SAPIECHA, K. (1993) Is There Hope for Per­
fect Fa11.lt Sim11.lation Algorithm .. Technical Report No. 5/93 , Department
of Computer Science, Kielce University of Technology.

GAI, S., SOMENZI, F., ULRICH , E. (1987) Advances in concurrent multilevel
simulation. IEEE Tmns. CAD, CAD-6, 6, 1006-1012, November.

HAREL, D., KRISHNAMURTHY, B. (1987) Is there hope for linear time fault
simulation? Pmc. of the 17th Fa11.lt Camp. Symp., 28-33.

KE, W., SETI-I, S ., BHATTACHARYA, B.B. (1988) A fast fault simulation al­
gorithm for combinational circuits. Pmc. of the IEEE International Con­
ference on CAD, 166-169, November.

HYUNG Kr LEE , DONG SAM HA (1991) An Efficient, Forward Fault Simula­
tion Algorithm Based on the Parallel Pattern Single Fault Propagation.
Pmc. of the IEEE InteTnational Test Confer-ence, 946-955.

MAAMARI, F., RA.JSKI, J. (1987) Reconver:qentfano11.t analysis andfav.lt sim­
v.lation complexity of combinational ciTcv.its. McGill University, VLSI De­
sign Laboratory, Tech. Rep. 87-3R, August.

MAAMARI , F., R.A.JSKI, J. (1988) A fault simulation method based on stern
regions. Proc. of the IEEE InteTnational Conference on CAD, 170-173,
November.

MAAMARI , F., R.A.JSKI, J. (1990) A Method of Fault Simulation Based on
Stem Regions. IEEE Tmns . on CAD, 9, 2, February, 212-220.

MELGARA, M. (1987) Fault simulators at functional level in hardware descrip­
tion languages, ed. Hartenstein, R.W. 337-372, Elsevier Science Publishers
B.V. (North Holland).

MENON, P.R., LEVENDEL, Y., ABRAMOVICI, M . (1988) Critical path tracing
in sequential circuits. Pmc. of the IEEE InteTnational Confer·ence on
CAD, 162-165, November.

0STAPKO, D.L., BARZILAI, Z., SILBERMAN, G.M . (1987) Fast fault simula­
tion in a parallel processing environment. Proc. of the IEEE International
Test ConfeTence, 293-298.

OZGTNER, F., DAOUD, R. (1988) Vectorized fault simulation in the CRAY
X-MP supercomputer. Pmc. of the IEEE Intenwtional Confer-ence on
CAD, 198-201.

PRADHAN, D.K. (1986) Fa11.lt toler-ant comp11.ting: theory and techniqv.es. ed.
Pradhan, D.K. 1, 184-264, Prcntice-Hall, Englewood Cliffs, NJ.

SCHULZ, M.H. (1987) Automatic test pattern generation and fault grading in
combinational circuits. Pmc. of CompE11.m 1987, 382-385, May.

SCHULZ, M. H., BRGLEZ, F. (1987) Accelerated transition fault simulation.
Proc. of the 24th AGM/IEEE Design Antomation ConfeTence, 237-243,
June.

ScHULZ, M. H. , TRISCHLER, E., SARFERT, T.M. (1987) SOCRATES: a high­
ly efficient automatic test pattern generation system. Pmc. of the IEEE
Inter-rwtional Test Confer-ence, 1016-1026.

A new method of fast fault grading 293

UNDERWOOD, B., FERGUSON, J. (1989) The Parallel-Test Detect Fault Sim­
ulation Algorithm. Proc. of the International Test Conference, 801-808.

WAICUKAUSKI, LA., EICHELBERGER, E.B., FORLENZA, D.O., LINDBLOOM,
E., McCARTHY, T. (1985) Fault simulation for structured VLSI. VLSI
Systems Design, 6, 12, 20-32, December.

WILLIAMS, T .W., PARKER, K.P. (1982) Design for testability - a survey.
IEEE TC, C-31, 1, 2-15, January.

Appendix A

Proof of Lemma 7.1 (by contradiction):

Let us assume that d{ = 0 but still a fault of node ni propagates to node
n1. We are concerned only with the stem regions (assumption A2). Hence,
n1 E Rn;. If d{ = 0, then according to the assumption:

• d} = ... = d',[' = 0, or
• there exist nodes nt and nr (l, r E (1 ... m)), such that di = d'; = 1 and

Vt -=/= Vr, or
• there exists a node nt (l E (1 ... m)), such that di = 0 and the state of v 1

is the controlling one.

On the other hand, by the same assumption, the fault of the ni node propagates
to the n1 node. This occurs iff:

Cl there is the nt (l E (1 ... m)) node such that di = 0 and the fault of the
node ni propagates to the nt node, or

C2 there is the nt (l E (1 ... m)) node such that di = 1 and the fault of node
ni does not propagate to node nt·

The same requirements should be met if it is assumed that d{ = 1 and that the
fault of the n.i node does not propagate to the nj node. This means that proofs
of the necessary condition and the sufficient condition are the same.

Let us analyse the requirements for the assumption to be true. The following
cases can be distinguished:

1. n 1 = n.i: then di = 1, which means that Cl is not satisfied; moreover the
fault of the ni node propagates to the n 1 node which means that C2 is not
satisfied, neither.

2. n 1 tf. Rn;: then a directed path from the n.i node to the nt node does not
exist and therefore the fault of the ni node cannot propagate to the nt

node, which means the Cl is not satisfied. Moreover, d.i = 0 which means
the C2 is not satisfied, neither.

3. n 1 E Rn; and nt-=/= ni: after the reasoning for nodes nt and nj are done in
the same way, this case can be finally reduced to the above cases. •

294 S. DENIZIAK and K. SAPIECHA

Appendix B

Proof of Theorem 7.1 (inductive for the number of logic levels between nodes
ni and n_7):

"==>"

Let assume that the fault associated with the ni node reaches the nodes
n 1, ... ,nn andnt+1, ... ,nl+k1 (ll ::=; l,ll+kl::=;r).

1 o Let the n 1 node be the first node on the path or paths tha t go out of the
ni node and let the fault of ni propagate to the ni node. From the assumptions
it follows that:
(1) n 1 , ... , n,. and ni arc the same node
(2) l1 + k1 = r
(3) V1 = · · · = Vn = Vt+1 = · · · = Vt+k1

(4) 'l!ll+l = · · · = VL -1 = Vt+k1+1 = · · · = Vm = C
(5) l1 = l
From the rules of reachability calculation (Lemma 7.1) and from (3), (4) and
(5), it follows that rl.sJ = 1 iff:
Cl: d11 = ... = rl':1 = rlsi 1 = ... = di1 = ri+1 = .. . = rll+k1 = 1 and

1. 1.1. 1 1. 1. 1.£+1 7·L+kl '

C2: r1;1+1 = . .. = r1,1:-1 = r1,1+kl+1 = . .. = rlT = 0 or rl.s,11+1 = ... = ds,1- 1 =
<-ll+l ·l - 1 ·L+kl+l · 1· • •

rl':+kl+1 = ... = rl'" = 0.
'·L+k l +l 'l.r

From (1) and (2) it results that rl}r = 1, ... , r1~~1 = 1, rls),i = 1, .. . , r1s;,1 = 1 and

r1,1+ 1 = 1, .. . , r11,+ k 1 = 1 (because ni has rcconvergcnt fan-out) which means the
·1+ 1 ·1+ "1

first condition is satisfied.
From (2) it results that there arc no nodes that need the second condition

to be satisfied. Hence, rl.sj = 1.
2° Let a fault of the ni node reach the n_1 node and let:

Al. r11 = ... = rli,1 = r1;+1 = ... = r1;+k1 = 1 and
A2 rlh+l = = rll - 1 = rll.+k1+l = = riT = 0

• 11,'1. • • • 1L7, 1.L7, • • • 1-' 7, '

From the assumpt ions it follows that:
(1) r 1k c·i"' - dk - 1 for· k - 1 k1 tl,ik . •.Ji - i - ' - ' ...)

(2)' rlt · . .,;,k = r17, = 0 for k = kl + 1, ... , l
(3) V1 = ... = Vn = VL+1 = · · · = VL+k1

(4) 11ll+1 = . . . = VL-1 = Vt +k1+1 = · · · = Vm = C
From the rules of rcachability calculation (Lemma 7.1) and from (3) and (4)

it follows that rlsj = 1 iff:
Cl: r1{1 = = r1;1 = d.s~ 1 = . . . = ds; 1 = r1;,+1 = .. . = r1;,+k1 ±

1
1, and

·l1 · L+l L+ld

C2: rP+I = ... = r11- 1 = rl':+kl+1 = ... = r1r = 0 or rl.'P+1 = ... = rls1- 1 =
7.£1 -1- 1 1·! - 1 7·L+J.:l+ l 1.r 1, 1.

rll+kl+1 = ... = rl" = 0.
7·L+ kl+l tr

From (1) and (Al) it appears that condition Cl is satisfied. From (2) and
(A2) it results t hat condition C2 is satisfied . Hence, rl.s:i, = 1.

" <== ,

A new method of fast fault grading 295

Let rl~ = 1 fork= 1, ... , l1 and k = l + 1, ... , l + k1 (ll::::; l, l1 + kl::::; r).
1 o Let the n.i node be the first node on the path that goes out of the ni node

and let rlsj = 1. From the assumptions and the rules of rcachability calculation
it follows that:
(1) n 1 , ... , nr, ni arc the same node
(2) l1 + k1 = r
(3) 111 = ... = Vll = Vl+l = · · · = Vl+kl

(4) Vll+l = · · · = Vl-l = Vl+kl+l = · · · = Vm. = C
(5) l1 = l

From (1) it follows that the fault of the ni node propagates to the nodes
n 1 , ... , nn, nl+1 , ... , nl+ kl· From (2) it results that the nodes nl+kl+l, . .. , nm.

do not belong to the Rn; stem region and therefore the fault of the ni node
cannot propagate to these nodes. From the rules of fault propagation and from
(3) and (4) it results that the fault of the ni node propagates to the ni node.

2° Let rlsj = 1 and let the fault of the ni node propagate only to the nodes
n 1 , ... , nn, nl+l, . .. , nl+kl· From the assumptions it appears that:
(1) 7JI = ... = vn = vl+l = ... = vl+kl,

(2) 1ill+l = · · · = Vl-1 = 1il+kl+l = ... = Vm. = C
From (1) and (2) and rules of fault propagation it results that the fault of the
ni node propagates to the n.i node. •

Appendix C

Results of the execution of the algorithm for the example in Fig. 2 are as follows:
1. During the preprocessing, the stern regions of nodes x 2 and x 8 arc deter­

mined:
Ro: 2 = {x2,x6,xs,x7,x10,xn,xl2,·Tl3}

Rx8 = {xs,x7,xw,xn ,x12,xl3}·
The output nodes for both regions arc nodes x12 ,x13 and x 14 .
The following characteristic subsets of nodes are determined:

No= {xl, :r3,.T4,x5,x9,xls,xl6 ,xl7}

N2 = {:r14}

N3 = {x6,.T7,x10,xn}

Ns = {x2}

N7 = {xs}

Nw = {x12,x13}

Nn = 0
N1s = 0

and the pseudoedgc .s~~ connected with nodes x 7 , x 10 and x 11 , is added.
Next, an appropriate code of the fast fault grading program is generated.

2. Let the input pattern of the circuit be equal:
(xl,x2,x3,x4,xs,xg,xl5,xl6) = (0,1,1,1,1,1,1,0).

296 S. DENIZIAK and K. SAPIECHA

The execution of the program that was generated in step 1 will determine
logic values and the reachability evaluated for nodes and pseudoedges (fig.
5.1). The reachability of pseudoedge s~~ is ds~~ = 1 (the fault of the x2

node propagates to the x 8 node).
3. Calculating of criticality is done as follows:

(a) It is to be assumed that nodes :r12, x13 and x 14 are critical (primary
outputs of the circuit) .

(b) Because x12 is the output node of the stem region for x 8 , criticality
of the x 8 node should be checked. To obtain this, the reachability
d~~2 is calculated:

[vxl2,d~~2] = DAND[[vx6,0], Vr-7, V1010] = [0,0]

Because d~§2 = 0, the fault of the xs node does not propagate to the
x12 node.

(c) The :1:12 node is also the output node of stem region of the :r: 2 node.
Criticality of the x2 node should be checked. To this goal the reach­
ability d~~2 is calculated:

[dxl2] D [V [dsx8 d"'7] [.1 x8 dxlO]] [0 0] Vxl2 , x2 = AND x6 , Vx7, 'x2 · 'x8 ' Vx!O , u.Sx2 · x8 = '
Because d~§2 = 0 then the x2 fault does not propagate to the x 12
node.

(d) Analogical calculations should be done for the nodes x13 and x14 . As
the result of these calculations follows:

[vxl3,d~~3] = DAND[Vr.!O, Vr.n] = [1, 1]

[vxl3 , d~~3] = D AND [[vxw, ds~~ · d~~0], [vxn, ds~~ · d~~ 1]] = [1, 1]

[vxl4,d~~4] = DAND[Vr.n, [vxl7,0]] = [0,0]

[vxl4, d~~4] = D AND [[vxn, ds~~ · d~~l], [vxl7, 0]] = [0, 0]

Because the faults of the x2 and xs nodes propagate to the x 13 output,
nodes x2 and x 8 are critical.

(e) Sensitive inputs of the x12 gate arc determined. The only sensitive
input of the x 12 gate is the x 6 node and so it is critical.

(f) Sensitive inputs of the X1 3 gate arc determined. The x13 gate has
both inputs sensitive. Nodes xw and x 11 arc critical.

(g) Sensitive inputs of the x 14 gate arc determined. The only sensitive
input of the x14 gate is the ::r17 node. This node is critical.

(h) Sensitive inputs of the x 6 gate arc determined. The only sensitive
input of the x 6 gate is the x1 node. This node is critical.

A new method of fast fault grading 297

Vj,dJ. 00 0 1 1 0 1 1
Vk,df
00 00 00 0 0 00
0 1 00 0 1 0 1 00
1 0 00 0 1 1 0 1 1
1 1 00 00 1 1 1 1

Table 8. Reachability function for AND gate

(i) Because an output of the x7 gate is not critical so inputs of this gate
arc not analyzed.

(.i) Sensitive inputs of the x 10 gate are determined. This gate has both
inputs sensitive but the xs node has reconvcrgent fan-out so only the
x 4 node is marked as critical.

(k) Sensitive inputs of the xn gate are determined. This gate has both
inputs sensitive but the x 8 node has reconvergent fan-out. The only
critical node is the X5 one.

(l) Sensitive inputs of the :r8 gate are determined. This gate has both
inputs sensitive but the x 2 node has reconvergent fan-out. The only
node marked as critical is the x 9 node.

(m) Sensitive inputs of the X17 gate are determined. The .1: 15 node is the
sensitive input of the .1:17 gate. This node is critical.

Finally, the following list of critical nodes is determined: x 1 , x 2 , x 4 , x5 , x 6 ,

Xs, Xg, X1Q, Xn, X12, X13, X14, X16, X17·
From this it appears that the test detects the following faults: x!/1, x 2 /0,

x 4 /0, x 5 /0, x6/1, xs/0, :tg/0, x10/0, xu/0, x12/1, x13/0, x14j1, xl6/1, x 17/l.
In the example mentioned above the table D AND is used to determine the

reachability of AND gate output. It is defined as in Table 8.

Appendix D

Algorithm of the preprocessing. A draft of the preprocessing is as follows:
'

procedure Preprocessing;
begin
N 0 := N;
Nnc := N;
Nnr := N;
Ni := 0;

298 S. DENIZIAK a nd K. SAPIECHA

Nex := 0;
Nen := 0;
Ne:= 0;
Nr := 0;
Creation of a Go gmph joT the given G gmph and deteTrn.ination spanning t'f'ee
and v,niqne cycles of this gmph.
for each node ni E G 0 do

begin
if a n i node is not an input node of any 11,nique cycle then

a ni node has no r·econver:gent fan-out
else

begin
Reducing the Go(n;) gmph to the G(n;) gmph rn.odyfing adeq11.ate uniq11.e
cycles;
Detennination a set of 11.niq71,e cycles cTeating a stem Tegion of the ni node
(accoTding to the Theor-ern 7.1);
Ne := Ne U {ni};
Nne := Nne- {ni};
if ni E Ni then

begin Nen := Nen U {n;}; N 0 := No- {ni} end;
for each node n.i belonging to R,, do

begin
N 0 :=No - {n7};
if oTigin nodes of at least two edges going into ni belong eithe·r to N i OT
Nen then

begin
Np := Np U {n?}; Nnp := Nnp- {n?}
end;

if a n.i node is an 011.tput node of the Rn, gmph then
Nex := Nex U {nJ

else
begin Ni := Ni U { ni}; Nex := Nex - { ni} end;

if ni E Nen then Nen := N en - {ni}
end

end
end;
for each node n.i E No do

if a oTigin node of at least one edge going into n.i belongs either- to Ni
OT Nen then

begin Nex := Nex U {n7}; N 0 := No - {n.i} end;
D etennining sets No, N2, N3, Ns, N7, Nw , Nu, Nl5·
Creating psendoedges joT nodes belonging to sets N7, Nu and N15·

end;

----~·--

	Bez nazwy

