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Abstract: A family {(0;)} of parametric optimal control prob-
lems for nonlincar ODEs is considered. The problems are subject to
pointwise inequality type state constraints. It is assumed that the
reference solution is regular. The original problems (Oy) are sub-
stituted by problems (O) subject to equality type constraints with
the sets of activity depending on the parameter. Using the classi-
cal implicit function theoremn, conditions are derived under which
stationary points of (Oy) are Fréchet differentiable functions of the
parameter. It is shown that, under additional conditions, the sta-
tionary points of (Op) correspond to the solutions and Lagrange
multipliers of (Op).
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1. Introduction

Optimal control problems subject to inequality type constraints on control and/or
state are nonsmooth by their very nature. Therefore, in general it is not pos-
sible to use the classical implicit function theorem in sensitivity analysis for
such problems. Instead of it Robinson’s implicit function theorem for gener-
alized equations Robinson (1980) is exploited, which allows to prove Lipschitz
continuity of the solutions with respect to the parameters, under reasonable
assumptions (see, e.g., Dontchev, Hager, Poore and Yang, 1995; Dontchev and
Hager, 1998; Malanowski, 1992; 1995). Further analysis allows to show dirce-
tional differantiability of the solutions in L? Malanowski (1995).

To get Fréchet differentiability, additional restrictive assumptions on regu-
larity of the reference solution arc needed. Results of this type were recently
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336 K. MALANOWSKI

obtained in Malanowski and Maurer (1996) and Malanowski and Maurer (1998),
where nonlinear problems with mixed control-state and additional pure state
space constraints of the first order were considered, respectively.

In these papers the idea based on the so called shooting method was used.
This method was developed as a numerical procedure of solving nonlinear opti-
mal control problems (see, Stoer and Bulirsch, 1980). In the shooting method
the necessary optimality conditions are expressed in the form of a multipoint
boundary value problem for nonlinear ODEs and solved using the Newton
method in a finite dimensional space.

It was noticed in Malanowski and Maurer (1998) that the crucial role in the
shooting method is played by the idea of substituting the original problems with
inequality type constraints by problems with equality type constraints, having
the same structure of the optimal control as the reference solution.

In the present paper we focused on this basic idea, forgetting about its
origin connected with the shooting method. In particular, we use the necessary
optimality conditions in the Karush-Kuhn-Tucker (KKT) form, rather than in
the form of a multipoint boundary value problem. It seems that this approach is
simpler and more natural. The use of the multipoint boundary value problem is
justified in numerical calculations, since it allows to apply the Newton method in
a finite dimensional space. However, in the theoretical sensitivity analysis, the
use of the boundary value formulation introduces some unnecessary technical
complications that obscure the very essence of the method.

In the paper, parametric optimal control problems subject to state con-
straints are considered. The assumptions are the same as in Malanowski and
Maurer (1998) and the obtained results are identical. The basic difference is
that we use optimality conditions in the (KKT) form and apply the implicit
function theorem in a Banacl, rather than in a finite-dimensional space. Ac-
cordingly, we will concentrate on that point, whereas the other steps of the used
method will be only briefly described and refered to Malanowski and Maurer
(1998).

The organization of the paper is the following. In Section 2 the considered
parametric optimal control problem (Op) is defined and the main assumptions
are introduced. In Section 3 the idea of the used approach is described and
the auxiliary optimal control problem (Op) with equality type constraints is
introduced. In Section 4 the basic differentiability results for stationary points
of (Op) are obtained using the classical implicit function theorem. In Section 5
the conditions are briefly discussed under which the stationary points of (O)
correspond to the solutions and Lagrange multipliers of (Oy).

We denote by IR™ the n-dimensional Euclidean space, with the inner product
(-, -y and the norm |-|. For q € [1,00), L7(0,T; IR™) denotes the space of functions

: [0,7] — IR™ with |z(-)]9 Lebesgue integrable. L*°(0,T;IR™) is the space of
che&.guc m(‘a.burablt‘ and (;ssmtlally bomulcd functions. W]'q({] T IR™) is the
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Application of the classical implicit function theorem 337

in these spaces are denoted by | - ||, and || - ||, respectively, whereas (-,-)
denotes the inner product in L*(0,T; IR™). For f: X x Y ~— Z, where X,Y, Z
are Banach spaces, D, f(z,y), D, f(x,y), D2, f(z,y),... denote the respective
Fréchet derivatives in the corresponding arguments.

2. Preliminaries

In this section the considered problem is formulated and the basic assumptions
are introduced.

Let H denotes a space of parameters. It may be a Banach space, but for
the sake of simplicity we assume that it is finite-dimensional. G C H denotes
an open set of feasible parameters. For each feasible value of the parameter
consider the following optimal control problem:

(On) Find (zp,up) € Z*%° such that

F(xp,up, h) = min{F(x,u, h) = /: FO(x(t), ult), h)dt)}

subject to

a(t) — f(xz(t),u(t),h) =0, for a.a. t € [0,T], (1)
2(0) - £(h) = 0, )
I(x(t),h) <0, for all £ € [0,T7, (3)

where Z2 := W19(0,T; IR™) x L9(0,T; IR™), while 9 : IR™ x G — IR.
Assume:
(L.1) All involved functions are of class C® in some open sets.
(I.2) For a given reference value hg € G of the parameter there exists a possibly
local solution (2g,ug) of (Op,) and ug € C(0,T; IR™).

Our purpose is to find conditions under which a neighborhood Gy C G of hg
exists, such that for cach h € Gg there exists a locally unique solution (zp, 1)
of (Op), which is a Fréchet differentiable function of h.

REMARK 2.1 To avoid technicalities problem (Oy) is formulated as simple as
possible. However, there is no difficulty to use the same approach for more
complicated problems, e.g., with mized boundary value conditions, vector-valued
state constraints and additional mized control-state constraints (see, Malanowski
and Maurer, 1998). <&

In our analysis a crucial role is played by regularity of the reference solution.
To get appropriate regularity we will need several other assumptions.
We introduce the set of active constraints

Qo := {ﬂ € [U, T] | 9(zo(t), ho) = [}}
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338 K. MALANOWSKI

(I.3) The set Qu consists of J disjoint subintervals
U [w W (0
1<5<d
The isolated touch points are excluded.
The points w; and wj are called entry and ezit points, respectively, whereas all
these points are called junction points. For the sake of simplicity, it is assumed
that T ¢ Q.
Note that along a solution of the state cquation we have

L0(a(t),h) = Deb(a(0), )it) = Dad(e(t), (e (0) u(®) ). (4
Define the function
Y(x,u,h) = D9 (x, h) f(x,u, h). (5)

To simplify notation, the argument of functions evaluated at the reference point
(zo(t),uo(t), ho) will be denoted by [t], e.e., ¥[t] := ¥ (zo(t), uo(t), ho). We nced
the following constraint qualifications:
(I.4) (Linear independence condition) There exists 4 > 0 such that

|Duap[t]] > 8 for all t € Q.
(L.5) 9[0] < 0.

In the same way as in Malanowski (1995) we introduce the following Lagrangian:
£ WD T IR™) » L=2(0,T; B™) x Wh5S{0. T: R*)%
xIR™ x W1(0,T;IR) x G — R,

L(z,u,p, p, i, h) = F(z,u,h) - (p,& — f(x,u,h))+
+(p,z(0) — &(h)) + n(0)9(=(0), h) + (j1, ¥ (2, u, h)),

as well as the Hamiltonian and augmented Hamiltonian

H:IR™ x R™ x IR* X G — IR,
H:R*x R™ x R* x Rx G — IR, (7)
H{-’E,?L,p, h} = fo(ma u, h) ik ('Pq f(-’ﬂ,’ﬂ-, h)):

H(z,u,p, i, h) = H(z,u,p, h) + jup(z,u, h).

Note that the Lagrangian is in the so-called Pontryagin form with absolutely
continuous function p (see, Section 7 in Hartl, Sethi and Vickson, 1995). The
state constraints are considered in WH*(0,7; IR), where the general form of
a linear functional is given by u(0)y(0) + (i2,%). Accordingly the terms in La-
grangian (6) corresponding to the state constraints are obtained as follows:

1(0)9((0), h) + (1, L0(a, b)) =

= 1(0)9(z(0), h) + (j1, DaB(z, h)i) =
= 1(0)9(2(0), ) + (ju, DxO(z, h) f (z, 4, h)).

(6)

By (L.4) and (L.5) there exist (sce, Malanowski, 1995) unique Lagrange multi-
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are more reqular) such that the following first order optimality conditions in the
[Karush-IKuln-Tucker (KIKT) form hold at (29, ua, po, po, 110, ho):

po + DaH(xo, 0, po, jio, ho) = 0,  po(T) =0, (8)
Po(0) + po + 110(0) D, (20(0), ho) = 0, (9)
Dy H(x0, 0, o, fio, ho) = 0, (10)
fio(1) > 0 is nonincreasing a.c. on (0,77, (11)
110(0) = fio(0). (12)

Conditions (11)-(12) follow from the form of the positive polar to the cone
of nonuegative functions in WH*°(0, T; IR), which is given (see, Outrata and
Schindler, 1981) by the closure in (W°2(0,T; IR))* of the set

{;n € WE=(0,T; IR) | 11(0) > fu(0), ji(-) is nonnmegative and nonincreasing}.

Condition (1.5) implics equality in (12).
In addition to (I.1)-(L.5) we assuine

(LC) Legendre-Clebsch condition A constant v > () exists such that

(v, Dﬁuﬁ[i}w) > qlvf?

for all

- { nm if t € 0,77\ o,

IR™ such that (D,[t],v) =0 ift € §.

Using similar argument as in the proof of Lemma 7.2 in Malanowski and Manrer
(1998) we obtain the following regularity result

LeMMA 2.2 If (L1)-(L.5) and (LC) hold, then uy and jip are continuous and
piecewise differentiable functions, with possible jumps of g and jig al the junc-
Lion points,

O

3. The used approach
Using (4) and (5) we can write

a4

I(wo(t), ho) = I(xo(w}(0)), ho) + / " P(zo(s), ug(s), ho)ds.

Henee, for the reference solution, the inequality constraints (3) can be inter-
preted as the lollowing equality type constraints

P(a(t), u(t), ho) =0, for t € Qo = U, << s[w;(0),w] (0)], 13
W(x(wj(0)),he) =0 forl<4 <.J. 18]

This interpretation suggests to introduce modifications of the problems (Oy,), in

which comatrainte (2 arn enhatitntod v (12) Tar fhic vewr nenhlome  danatad
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(6.&), the structure of the solutions is imposed to be the same as for the reference
one, i.c., the number of subintervals of active constraints remains constant and
equal to J, but the locations of the junction points can be changed. The vector of
these locations is treated as an additional argument of minimization. The main
idea is that the sensitivity analysis for problems with equality type constraints
is much easier than for those with inequality type constraints. It will be shown
in Section 4. that the classical implicit function theorem can be used in this
analysis. Subsequently, conditions will be derived under which the stationary
points of (Oy) correspond to the solutions and Lagrange multipliers of (Oy).

To formulate problems (O) we have to choose the appropriate spaces of
arguments and constraints. Regularity of the clements of these spaces is mo-
tivated by the regularity of the reference solutions and Lagrange multipliers.
To this end, let us denote by w = (wy,ws, .. .,way), a 2J-dimensional vector of
junction points such that

0<wi, wj<wjpy, w<T, (14)

and put wo =0, wayyy) =T.

Introduce functions v that are uniformly coutinuously differentiable on each
subinterval (wj, w;4+1), continuous, together with their derivatives, on each bound-
ary subinterval [w},wj], 1 < j < J. Locally, the functions u will be identified
with elements of a Banach space. To do that, let us introduce the space

PCY(0,T; R) = C*(0,T; R) x R* x IR* (15)
of clements € = (a, 4,v). Endowed with the norm

lallet, 81, 171}

PCY(0,T; IR) is a Banach space. For a fixed w satisfying (14), to any picce-wise
differentiable function u we can assign an clement ¢ € PC(0,T; IR) putting

€]l pcr = max{

B = A, v = A,
a(t) = u(t) — 3L, AdI19(t), (16)
oft) = u(t) - T2, (Aw 19 (t) + AR/ (t))
where
Au? = limyou, 4 w(t) = limyo, - u(t),
A = limy g, 4 w(t) — lime, - u(t),

{0 for t € [0,w;), Ri=l0 for t € [0,wj),
1 fortew;,T], ’ (t—w;)  forte [w;,T)

Reciprocally, using (16), to any pair (§,w), with w satisfying (14), we can assign

10T 2v.1



Application of the elassical implicit function theorem 341

As in (15), we introduce the Banach space
PC*(0,T;IR) = C*(0,T; IR) x IR* x IR*’, (17)

of elements n = (o, #,7) endowed with the norm

Inllpe2 = max{|lallc2, |6, 7]},

Let 2 be a continuous function defined on [0, 7], with # being differentiable
on (wj,w;+1). In the way analogous to (16), we can assign fo x the clement
n € PC*(0,T; IR) putting

(= Aid, ¥ = A,

&(t) = #(t) — £, A5714 (), (18)

a(t) = @(t) — 2L, (Ad91,(t) + AZTRI(1)).
Finally, define the Banach space

X = PC*(0,T; R™) x PC*(0,T; IR™) x IR*’ (19)

of elements y = (1,€,w) endowed with the norm

Ixllx = max{linll pcz; €l per, |wl}-

In view of (16) and (18), for any w satisfying (14), we can identify the cle-
ments x = (n,&,w) with the pairs (2, u) of functions picce-wise differentiable on
(wj, wj41)- -

Using the above identification, we can formulate the modified problems (Oy)
as follows:

(On) Find (Z4,7in, w(h)) € X such that
F(Zy, %, h) = min F(z,u,h)

subject to

a(t) — f(z(t),u(t),h) =0 fort € [0.7], (20)

2(0) — &(h) =0, (21)

I(x(w;),h) =0 for1<j<J, (22)

P(a(t),u(t),h) =0 forteQ:= [J [wf,uf). (23)
1<5<J

In general, an clement feasible for (Oy) is not feasible for (0y). In order

to ensure such f('aslblhty of (1 ,-,,'u,ul, w(h)) the additional nontangential junction
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First, we are going to show that (zg,ug,w(0)) is a stationary poiut of (6;,0).
To this end, let us introduce the following Lagrangian for (Oy):

L: PC*(0,T; R™) x PC}(0,T; R™) x IR?’ x
xPC*(0,T; R*) x R™ x IR' x PC*(0,T;IR) x G — IR,
E(m! w2, Q.‘), A: h’) = F(i’.‘.‘, U, h) - (IJ': & — f(-'?:.,'ﬁ.: h))+ (24)
+(p, 2(0) — £(h)) + Bj_, ¢’ I (2(wj), h)+
+E, ]:3’ At)(x(t), u(t), h)dt,
where ¢ and A represent multipliers corresponding to (22) and (23), respec-
tively. ~
We will rearrange (24) to get Lagrangian £ in the form analogous to (6).
Let us extend A to [0, T] putting

A(t) =0 for t € Q. (25)

Moreover, note that, in view of (4) and (5),

t;’rf19{3:(w;), h) = ¢"9(2(0), h) + / ' @ p(a(t), u(t), h)dt.
’ Jo
Denote
= E;’:l(ﬁj (26)
and define the functions
; ¢! for t € [0,w7),
i) = i
S8 { 0 fortelw,T), (27)
o(t) =S/_107(t),  v(t) =o(t)+ A).
Note that (25)-(27) establish a one-to-one correspondence between (A, ¢) and
(v, ), where

¢ = v(wh) —veff+), 1<5< T,

N (t) = v(t) —v(wy)  for t € [w),wi], (28)
' 0 for ¢ ¢ [w},w]].
Using (26)-(28) we can rewrite Lagrangian (24) in the form
f(z,(,h,) = ,E(.T.,u,w,p, pyo, v h) = Flz,uh) — (p,a — f(z,u,h))+ (29)

+{p,2(0) — &£(h)) + @0(x(0), h) + _]'OT v(t)(x(t), ult), h)dt,
where, for the sake of simplicity, we put z := (z,u,w), ¢ := (p,p,,v). La-
grangians (6) and (29) coincide, with ¢ = p(0) and v = fi. Denote

wo = ﬂvo(o), Vo = flo, 20 = (f?iu,‘lf-osw({])L Co = (Posﬂo,%, VO)- (30)

- . . any . - Py P
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LEMMA 3.1 The element zp 1s a stationary point of f(z,(.;., ho). <

Proof Using (7) we obtain the following stationarity conditions of £ with respect
to @, u, w, respectively

p+ DaH(a,u,pyv,h) =0 p(T) =0, (31)
p(0) + p + @D,9(x(0),h) = 0, (32)
D,Lﬁ(n:, u,p,v,h) =0, (33)
FOa(r), u(r4), h) + v(r+)p(a(r), u(t4), h) =

= fO>x(7),u(r=), h) + v(7=)(z(1), u(T=), h) (34)

for 7= wj,wi, 1S5 < T
In view of (8)-(10) aud (30), conditions (31)-(33) hold at the reference point.

On the other hand, by continuity of ug and of jig = vy, condition (34) is also
satisficd. ]

4. Differentiability of stationary points

In this section we are going to investigate differentiability with respect to the
parameter of the stationary points for (Oy,). To this end, we need the optimality
system for (O5,), which consists of the stationary conditions (31)-(34) and the
constrains (20)-(23).

Note that conditions (34) are satisfied if functions u and v arc continuous at
the junction points. So, in particular they are satisfied at the reference solution.
Siuce, in view of (23),

P(z(w)), uwi+),h) = 0, P(z(w]),u(wi-),h) =0, 1 < j < J, (35)
in case of continuity of « we must have
Pla(w)), u(w;=),h) =0, P(z(w]),w(wi+),h) =0, 1 <j < I (36)

Actually, in our analysis, we will require that (306), rather than (34) holds. Later
on it will be shown that, for stationary points, (36) implies (34).
Let us introduce the following spaces
PC2(0,T; IR™) = {p € PC?(0,T; R™) | p(T) = 0},
U = PC*0,T: IR*) x PC*0,T; IR™) x IR* x
x PC2(0,T; IR™) x R™ x IR x PC*(0,T; IR), (37)
V'= PCMO, 75 R™) % R x PCY0,T; R™) % PCYH0,T; IR*)%
xIR™ x IR’ x PCY(0,T;R) x IRY x IR’,
and define the mapping given by the left-hand sides of (31)-(33), (20)-(23) and
(306):
F:UxGwrV,
2lrem— [ Fladh) (38)
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where
[ p+ D.H(z,u,p,v,h) i
p(0) + p+ 9D, 9(x(0), h)
Dy H(z,u,p,v,h)
F'(2,(,h) == | &~ f(z,u,h) ) (39)
(U) ( )
(; 1<j<J
(z(t ):u(") h), teQ@ |
" . ( ( r) u(w-—),h), 1 SJ S J
FPEOR= | paw)uwh),  1<5<7 “0)

We are going to apply the classical implicit function theorem to the equation
F(z,(,h) =0 (41)
at the reference point (zg, (g, ho). To this end, we have to show that the Jacobian
of F with respect to (z,{) evaluated at the reference point is regular. Using
(38), we find that the Jacobian is regular if and only if, for any
fp= (ﬂ': b) = (als Gg,03,04, 05,06, 07, bl! ")2) € V|

there exists a unique solution (w,n) = (y,v,7,q,0,0,k) € U of the following
linear equation:

D(Z,C)f’(zos.cosho) ] [ w :l _ |: [} }
Dz,¢)F" (20, o, ho) Ty (42)

In view of (39)-(40), this equation takes on the form

g+ Do ft]"q(t) + D2, H[tly(t) + D2, H[thu(t) + Datpt)* s(t) = a (), (43)
q(0) + o 4 wo D2,9[0)y(0) + 0.D,9[0] = as, (44)
D2 H[ty(t) + D2, H[to(t) + Duf[t]* (1) + Dutplt] k(1) = as(t),  (45)

— D f[tly(t) — Duf[tlo(t) = aa(t), (46)
y(0) = as, (47)
D 9[wj(0)ly(wj(0)) =a}, 1<j<J, (48)
Doyltly(t) + Dutp[tlu(t) = az(t), t € Qo, (49)

and
D[ (0)]y(w} (0)) + Duth[w (0)Ju(w}(0)—) + eblw; (0)—]rf = 1],
Dbl (0)]y(w) (0)) + Dutplw (0)J0(wf (0)+) + Eeplw; (0)+)7) = b}, (50)
for1<j <.l

Note that (43)-(49) do not depend on 7. It follows from the fact that, in view

of (40),
d
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Thus, we can solve (42) in two steps. In the first step we find (y,v,q, 0,0, )
that solve (43)-(49) and, in the sccond step, we substitute this solution to (50)
and calculate 7. This fact simplifics substentially the further analysis. Note
that such a situation takes place only for problems with the first order state
constraints. For higher order constraints, the structure of F(z,{,h) is more
complicated and we arc not able to repeat this simple two-step procedure (see,
Malanowski and Maurer, 1997).

An inspection shows that (43)-(49) constitute an optimality system for the
following accessory optimal control problem:

(LOs) Find (ys,vs) € Z°° such that
I(ys,vs,6) = ming, ) I(y,v,6)
subject to

§(t) = Do f(ty(t) — Duf[tu(t) — aa(t) =0,

y(0) — a5 =0,
D 0w} (0)]y(w;(0)) — of =10, 15 d,
Datpltly(t) + Dup[t]o(t) — ar(t) = 0, t € Qo,

where

=

k)

-1 [ ag e

Thus, (43)-(49) have a solution for any § € V if and only if (LOgs) has a unique
stationary point, which is more regular, with the regularity corresponding to U.
We will use conditions that ensure existence and uniquencss of the solutions and
Lagrange multipliers of (LOg). To this end, we will require that the mapping
given by the lincar part of the constraints is surjective and the cost functional
is cocrcive on the kernel of this mapping. To meet these properties we need the
following assumptions (sce, Malanowski and Maurer, 1998):

(1.G) (Controllability condition) For any e € IR’ there exists (z,w) € Z° such

D2,A[1) MHM}{ m}_
D2 Hid H[t] | | v()

‘U’ll

that
(1) — DafH)2(t) — Duflthw(t) = 0,
z(0) = 0 .
D, 9[w;(0)]2(w;(0)) = €7, 1<j<,
D. z/;[f]z t) + Dy[tlw(t) = 0, for a.a. t € Q.

(I.7) (Coercivity condition) There exists y > 0 such that

') ~ 2 A
(ol | D520 Do )z ) 2 el o + ol 61
mﬁo 2.Lo ’

'll U

for all (z,w) € Z* such that

zg‘)\ - ?.,f[f]z(f) — D, f[tlw(t) =0, (52)
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_ Dayplt]z(t) + Duyp[thw(t) = 0, for a.a. t € Qo, (53)
W}lﬂl’() ﬁﬂ = ‘C(‘q:ﬁi Up, W{U), Po, Po, ¥o, Yo, h‘ﬂ) g

REMARK 4.1 By Lemma 2 in Dontchen, Hager, Poore and Yang (1995), if (I.4)
holds then Coercivity condition (L.7) #mnplies Legendre-Clebsch condition (LC),
so that under assumption (1.7) Lemma 2.2 holds. O

LEMMA 4.2 If (1.1)-(1.7) hold then, for any § € V, problem (LOg) has a unique
solution (ys,vs) € PC?*(0,T;IR™) x PCY0,T; IR™) and unique associated La-
grange multiplier (qs, 0s, X5, #s) € PC*(0,T; IR™) x IR™ x IR7 x PC'(0,T; IR).

<o

Proof If (I.1)-(1.7) arc satisfied then, by Proposition 5.3 in Malanowski and
Maurer (1998) there exists a unique solution and a nnique Lagrange mmltiplier
of (LOs). Hence, to complete the proof of the lemmna, it is enongh to show the
appropriate regularity of the primal and dual variables,
By (45) and (49) we have
DiH[ Dl | [ ve(t) ] _
D] 0 k()
B [ D2 Hltlys(t) + Duflt]*a(t) — as(t) ]
t’g()[f}yg(f) —az(t)

for t € (wj,wy), 1< <.
By (1.4) and (I G) the matrix

- Foa m.-H{f] D"?,l'!’[f‘}' r
Kt) = D] 0 (54)
is nonsingular (sce, e.g., Lemma 3.2 in Hager, 1979). Hence
vg(t) | 2y [ D2 H[tlys(t) + Do f[t]*q(t) — as(t) }
= —|K(t wx ,
[ ks(®) | = O Drltus(t) - ar(t)

and, in view of (I.1) as well as of the regularity of ag and a, we find that wg
and kg are of class C' on (w},w)).
Similarly, by (1.6)

vs(t) = - (D2,AN) " [DAIus(0) + Dl a(t) - as(t)]
ks =10,

for all ¢ € (0,7) \ Qo, i.c., vs and g are of class C' ou any open subinterval of
(0, 7)\ .

Thus, vs € PCY0,T;IR™), ks € PCY(0,T;IR). These regularity results,
together with equations (46) and (43), show that ys,qs € PC?*(0,T; IR"). That
completes the proof of the lemma. 0

To ensure existence and 11111(111(‘11(~s~. of 7 wanafymz,, (u(l) f01 any g,mu
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(1.8) (Nontangential junction)
d d .
a’fﬁ’[w;'(o)_] #0, Ew!w}’(ﬂ)ﬂ #0, 1<j<J

REMARK 4.3 The role played by the nontangential junction condition is two-
folded:

1) by this condition the Jacobian of F is reqular (see, Proposition 4.4, below),
2) it ensures that the stationary points of (6;,} are feasible for (O) (see, com-
ments in Section 5. and Lemma 7.8 in Malanowski and Maurer, 1998). <&

PRroPOSITION 4.4 If (I.1)-(1.8) hold, then there exist neighborhoods gcc
H and U C U of ho and (2o, o), respectively, such that for each h € G there is
a unique in U stationary point (2, E,a,) of (6;,) such that wuy,, vy, are continuous
functions on [0, T).

The perturbed stationary point at h = hg +d € G can be expressed by the
following Taylor expansion

Th =20+ Dpzod + Ol,q(d),

Uy = ug + Dyugd + 04(d),

(:'Jh = wo + Dpwod + O(d)

p,:, = po + Dppod + 0 4(d), (55)
ph = po + Dppod + o(d)

&n = wo + Dyppod + o(d),

Vi = Vo + Duiod + 04(d),

where

lorg(d)ll1g Nlog(d)llg |o(d)|
ldllg ° ldle * lldla
The Fréchet diﬁeﬁ‘entiaiﬁ (Dh.’l‘fgd, Dh‘bﬂod) and (thod, Dhﬂgd, Dhtpgd, D;,Vnd)
are given. as the solution and Lagrange multipliers of the following linear-quadratic
optimal control problem:

(LQu)  Find (yq,va) € PC?(0,T; IR®) x PCY0,T; IR™)  such that
J(Ya, va, d) = ming, ) J(y,v,d)
subject to
(1) = Do f[t]y(t) — Duf[t]o(t) — Daf[t]d = 0,
y(0) — Dré(ho)d = 0,
D 9[w}(0)]y(w}(0)) + Dpd[w}(0)]d = 0, 1L 354,
D,p(tly(t) + Dy[t]e(t) + Dpp[t)d = 0, t € o,

J(yyv,d) = [ {é[ y(t) }

(w7 [

—0 as|d|g—0 forge[lc0). (56)

where

D2,AH[t) D2,H]!) l [ y(t) } B
D2,Hlt DAL || ()

La

=3
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The differentials of the junction points are given by:

Dy (0)d = — {&y[w}(0)-]} " x
X {Dzﬂ)[w;-({})]yd(w_;( )+ Du'w[w (0)]va(w;(0)) + Dhﬂ)[w;(())]d} :
Dyw/(0)d = - { Fplwy (0)+]}
x { Dyy[wf (0)]ya(w] (0)) + Duqb[w;(O)]vd(w;’(U)) + Dpplwf (0))d} .
lod

Proof By Lemma 4.2 and assumption (1.8) the Jacobian D(; ¢)F(zo, o, ho) is
regular, Hence, by the implicit function theorem, there exists a neighborhood
G of hg such that for cach h € G there is a locally unique solution of (41), which
is a differentiable function of A in U and

D, ( y ) e (Do F s o Bl D s, G i)

Using the above formula, together with definitions (39) and (40) of F, and
performing straightforward calculations, we find that Djzod and Dped are
characterized as in the formulation of the proposition.

We will show that (zh,C,:,J are the stationary points of (Oh) i.e., that condi-
tions (34) hold. To this end, it is enough to show that @, and 7y, are continuous
at the junction points wj,wj’. Note that by (33), (35) and (36), at any junction
point w;(h) = wi(h),w;(h), the following cquations hold

G(@n(w;j(h)), tn(w;(h)—), pr(w; (h)), Un(w; (h) =), h) = 0,
G(@n(w;(h), tn(w;(h)+), Pr(w;s(h)), vn(w; (h)+), h) = 0,

where

G(a,u,p,v,h) == ( DuH(? u, p,v, h) ) .

Hence, both pairs (u,(w;(h)—), p(w;(h)—)) and (ip(w;(h)4+), Vs (w;(h)+)) are
solutions of the parametric equation

g(¥fl(w1(h)):vsﬁh{w1(h‘))aps h] =0 (58)

corresponding to the same value (Tp(w;(h)), pr(w;j(h)), h) of the parameter. At
the reference point (20(w;(0)), uo(w;(0)), po(w;(0)), vo(w;(0)), ko), the Jacobian
of (58) is given by nonsingular matrix K(w;(0)) defined in (54). Hence, in a
neighborhood of the reference point, (58) has a locally unique solution. On the
other hand, (E;.,Eh) is a continuous function of h, so for (h — hg) sufficiently
small, (58) must have a locally unique solution, i.c., iin(w;(h)—) = un(w;(h)+)
and vp(w;(h)—) = Un(w;(h)+). Thus, (zh,Ch) is a stationary point of (Op). On
the other hand, lct. us note thal any statlonaw pomt (z;,,(h) of (Oh) such that

e | P " I ERY £ diem e YA
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To complete the proof of the proposition it remains to show that the remain-
der terms in (55) satisfy conditions (56). Let us confine ourselves to . By
(14) and by continuity of @y () we have

un(t) = an(t) + Ele')’hR'i(t):

where a, and y;, as well as the junction points w;(h) are differentiable functions
of h. Hence

(1) = uo(t) = (an(t) — ao(t) + |ZFLMRL(M) — Z2LMRH()| . (59)
In view of differentiability of ay, in C?(0,T; IR™), we have
ay — ag = Dypag(h — hg) + 01,06 (h — hg). (60)

Consider the second term on the right-hand side of (59). Without loss of gen-
erality we can assume that w;(ho) < w;(h). In view of the definition of Rj,

MR (1) - RRY(H) =

0 ) for ¢ (& [U,wf,(h[})], (61)
~ { 3t - wyho) for t € (w3 (ho)y w3 (4),
Mt —wj(h)) = 5 (t — wj(ho))  for t € [w;(h), T).

Since f]rji and w;(h) are differentiable functions of h, we have
Tt = w5(h) = 7Bt = wi(ho)) =
= (t = w;(ho)) (7}, = 1) = 7 (w;(h) = wj(ho)) = (62)
= [(t = w;(h0))Davo = D3 (ho)| (h = ho) + e(t,h — ho),

where %ﬂ — 0 as |h — ho| — 0 uniformly in t € [w;(h),T).

On the other hand
— R(t — wj(ho)) = [¥h(t — w;(h)) = K (t — wj(ho))] — M (t — w;(R)). (63)
We have
wi(h) ¥ . 1 g
/ (ho) Iy (t = w;i(R)|9dt| = |vil(q+ 1) % |w;i(h) — w;(ho)|' "3,

and, in view of uniform boundedness of 'y}l and differentiability of w;(h),

&
w i (e N
[I"“":(("l())) |’Y}71(f = Mi(h))l‘?df] ?
|h = hol

for any q € [1, 00).
Combining (60) through (64) we obtain from (59)

=0 as|h—ho| =0, (64)

Up = g + Dpuo(h — ho) + 04(h — ho) for all g € [1, 00).
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REMARK 4.5 It was incorrectly stated in Malanowski and Maurer (1998) that
convergence in (56) holds for q = cc. <

5. Differentiability of solutions

In this section we are going to show that, under additional strict complementar-
ity conditions and a strengthened version of (1.7), the stationary points of (Oy,)
become the solutions and Lagrange multipliers of (O), so by Proposition 4.4,
they are Fréchet differentiable functions of the parameter. Both, the obtained
results and the used procedure, are virtually the same as those in Sections 7
and 8 of Malanowski and Maurer (1998), so we confine ourselves to a short
recollection of these results,

In Section 7 of Malanowski and Maurer (1998) the conditions are discussed
under which the stationary points of (05) become the (KKT) points of (Op).
In Lemma 7.3 therein, it is proved that

I(Fn(t),h) <0, forte [0,T]\n,

i.e., (T, up) is feasible for (04). In the proof, nontangential junction condition
(1.8) plays the crucial role.
To show that the Lagrange multipliers ¢y, v, correspond to pn(0), f1n an
additional strict complementarity condition is introduced:
(1.9) (Strict complementarity)
f1o(+) = vo(+) is positive and decreasing on cach subinterval (w}(0),w?(0)),
1<j;< 0
It is shown in Lemma 7.5 in Malanowski and Maurer (1998) that, for (h — ho)
sufficiently small, condition (1.9) is also satisfied by vy, so that i, = vy, is a
Lagrange multiplier for (0,). Thus, (34,(,) corresponds to a (KKT)-point of
(On).

To complete sensitivity analysis it remains to show that the (KKT) points
of (Op) are actually the solutions and Lagrange multipliers. To do that we have
to strengthen coercivity conditions. Namely, instead of (1.7) we assume:

(L7) Condition (51) holds for all (z,w) € Z* satisfying (52).
Using (1.7") and Proposition 4.4 we casily find that there exists a neighborhood
Gy of hg such that for all h € Gy we have

D2,Ln D2,Lh i i 2 .
(o ( Prer Dre ) @w) 2 J0ea+ Il ()

for all (z,w) € Z°° such that
z(t) = Do f(zn(t), un(t), h)z(t) — Dy f(an(t), un(t), h)w(t) =0,
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where Ly := L(xy, up, Ph, Py ins ). 16 is well known that by (65) there exist
positive constants p(h) and e(h) such that

F(z,u,h) > F(xp,un, h) + c(h)||(z,un) — (zh, Tf-h)"zzz

for all feasible (z,u) such that ||(z,u) — (zh,un)| 2z < p(h),

Le., (zn,un) is a locally unique local solution of (O4). By (65) and by Propo-
sition 4.4, the constants p(h) = p and ¢(h) = ¢ can be chosen independent of
h € Gp. In view of Proposition 4.4 we can shrink Gy so that, for all h € Gy we
have

p
(xh,up) € Zo:= {(z,u) € Z% | ||(x,u) — (@0, u0) || 200 < -2-}
Thus, we arrive at our principal differentiability result:

THEOREM 5.1 If assumptions (1.1)-(1.6), (L.7°), (1.8) and (1.9) hold, then there
ezist neighborhoods Go C G C H and Zy C Z* of hg and of (zo,uo), respec-
tively, such that, for each h € Gy, there ezxists a unique in Zy solution (x5, up)
of (O) and unique associated Lagrange multipliers (pp, pp, prp) that are Fréchet
differentiable functions of h in Z% and W9, respectively, for any q € [1,00). The
respective differentials are given by the stationary points of the problem (LQ,).

<
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