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Abstract: A family {(Oh)} of parametric optimal control prob
lems for uonlinear ODEs is considered. The problems arc subject. to 
pointwise ineq7J.ality type state constraints. It is assumed that the 
reference solution is regular. The original problems (Oh) arc sub-
stituted by problems (Oh) subject to equality type constraints with 
the sets of activity depending on the parameter. Usiug the classi
cal implicit function theorem, conditions are derived uucler which 
stationary points of (Oh) arc Frcchet differentiable functions of the 
parameter. It is shown that , under additional conditions, the sta-
tionary points of (Oh) correspond to the solutions and Lagrange 
multipliers of (Oh)· 
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1. Introduction 

Optimal control problems subject to inequality type constraints on control and/ or 
state are nonsmooth by t heir very nature. Therefore, in general it is not pos
sible to usc the classical implicit function theorem in sensitivity analysis for 
such problems. Instead of it Robinson's implicit function theorem for gener
a li:-;ed cquatious Robinson (1980) is exploited, which allows to prove Lipschitz 
coutinuity of the solutions with respect to the parameters , under reasonable 
assumptions (see, e.g., Dontchcv , Hager, Poore and Yang, 199:3; Dontchcv and 
Hager, 1998; Malanowski, 1992; 1995). Fmther analysis allows to show direc
tional diffcrantiability of the solutions in £ 2 Malanowski (1995). 

To get Frec:het differentiability, additional restrictive assumptions on regu
larity of the reference solution arc needed. Results of this type were recently 

1 Supported by the Polish State Committee for Scientific Research (KBN) under grant No. 
l""'l rT"'1., 4 1"'1 .. ,.. ..... 
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obtained in Malanowski and Maurer (1996) and Malanowski and Maurer (1998), 
where nonlinear problems with mixed control-state and additional pure state 
space constraints of the first order were considered, respectively. 

In these papers the idea based on the so called shooting method was used. 
This method was developed as a numerical procedure of solving nonlinear opti
mal control problems (see, Stoer and Bulirsch, 1980). In the shooting method 
the necessary optimality conditions arc expressed in the form of a multipoint 
boundary value problem for nonlinear ODEs and solved using the Newton 
method in a finite dimensional space. 

It was noticed in Malanowski and Maurer (1998) that the crucial role in the 
shooting method is played by the idea of substitut ing the original problems with 
ineqv.ality type constraints by problems with eqv.ality type constraints, having 
the same str·v.ctv.re of the optimal contTol as the reference solution . 

In the present paper we focused on this basic idea, forgetting about its 
origin connected with the shooting method. In particular, we use the necessary 
optimality conditions in the Karush-Kuhn-Tucker (KKT) form, rather than in 
the form of a multipoint boundary value problem. It seems that this approach is 
simpler and more naturaL The use of the multipoint boundary value problem is 
justified in numerical calculations, since it allows to apply the Newton method in 
a finite dimensional space. However, in the theoretical sensitivity analysis, the 
use of the boundary value formulation introduces some unnecessary technical 
complications that obscure the very essence of the method. 

In the paper, parametric optimal control problems subject to state con
straints are considered. The assumptions arc the same as in Malanowski and 
Maurer (1998) and the obtained results are identicaL The basic difference is 
that we usc optimality conditions in the (KKT) form and apply the implicit 
function theorem in a Banach, rather than in a finite-dimensional space. Ac
cordingly, we will concentrate on that point, whereas the other steps of the used 
method will be only briefly described and rcferccl to Malanowski and Maurer 
(1998)' 

The organization of the paper is the following. In Section 2 the consiclerecl 
parametric optimal control problem (Oh) is defined and the main assumptions 
are introduced. In Section 3 the idea of the used approach is described and 
the auxiliary optimal control problem (O~t) with eqv.ality type constraints is 
introduced . In Section 4 the basic differentiability results for stationary points 
of (Oh) arc obtained using the classical implicit function theorem. In Section 5 
the conditions are briefly discussed under which the stationary points of (Oh) 
correspond to the solutions and Lagrange multipliers of (Oh)· 

We denote by IRn the n-dirncnsional Euclidean space, with the inner product 
( ·, ·) and the norm 1·1. For q E [1 , oo), Lq ( 0, T; IR") denotes the space offunc:tions 
X : [0 , T] f-4 lR11 with l:r(-) lq Lebesgue integrable. U"" (0, T; IR") is the space of 
Lebesgue measurable and essentially bounded functions. W 1·q(O, T; lR 11

) is the 
r n In rn Trln \ rnL _ ~ ·.._ _ ... .J _ • . ~l - · .... . . ......,... ,., 
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in these spaces are denoted by II · llq and II · lh,q, respectively, whereas (·, ·) 
denotes the inner product in £ 2 (0, T; lR11

). For f : X x Y f---+ Z, where X, Y, Z 
are Banach spaces, Dxf(x, y), D11 f(x, y), D~11 f(:r, y), ... denote the respective 
Frechet derivatives in the corresponding arguments. 

2. Preliminaries 

In this section the considered problem is formulated and the basic assumptions 
arc introduced. 

Let H denotes a space of parameters. It may be a Banach space, but for 
the sake of simplicity we assume that it is finite-dimensional. G C H denotes 
an open set of feasible parameters. For each feasible value of the parameter 
consider the following optimal control problem: 

(0,) Find (.1:,, u,) E zoo such that 

i
·T 

F(:r,, u,, h)= min{F(x, u, h) := f 0 (.T(t), v.(t), h)dt)} 

subject to 

:i:(t)- f(.T(t), v.(t), h)= 0, 

x(O)- ~(h)= 0, 

.o 

for a.a. t E [0, T], 

19(x(t), h) ::; 0, for all t E [0, T], 

where zq := W 1·q(O,T;.m") X Lq(O,T;.mm), while 19: lR11 X G f---+ .m. 
Assume: 
(I.l) All involved functions are of c:lass C 3 in some open sets. 

(1) 

(2) 

(3) 

(1.2) For a given reference value h0 E G of the parameter there exists a possibly 
local solution (.To, v.o) of (0,0 ) and u0 E C(O, T; .mm). 

Our purpose is to find conditions under which a neighborhood Go C G of h0 

exists, such that for each hE Go there exists a locally unique solution (:rh, u,) 
of (0,), which is a Pr·echet diffeTentiable function of h. 

REMARK 2.1 To avoid technicalities pmblem (0,) is formulated as simple as 
possible. However, theTe is no difficulty to use the same appmach joT moTe 
complicated problem.s, e.g., with mixed bo11.ndary value conditions, vectoT-val11.ed 
state constraints and additional mixed contml-state constraints (see, Malanowski 
and Ma11:reT, 1998). 0 

In our analysis a crucial role is played by regularity of the reference solution. 
To get appropriate regularity we will need several other assumptions. 

We introduce the set of active constraints 

Do := {t E [0, T] l19(xo(t), ho) = 0} 



338 I<. MALANOWSKI 

(1.3) T he set Do consists of J disjoint subintervals 

Do= U [w.j(O), wj'(O)] . 
l<!:_j<!:_J 

T he isolated touch points are excluded. 
The points w.j and wj' are called entTy and exit points, respectively, whereas all 
these points arc called j'IJ,nction points. For the sake of simplicity, it is assumed 
that T (j. Do. 

Note that along a solution of the state equation we have 

d 
dt 1'J(.x(t), h)= Dx19(x(t) , h)x(t) = Dx19(x(t) , h)f(.r-(t) , v.(t), h). (4) 

Define the function 

~(x,u,h) := Dx19(x,h)f(x,u,h). (5) 

To simplify notation, the argument of functions evaluated at the reference point 
(xo(t), uo(t), ho) will be denoted by [t], e.g., 7f;[t] := ?j;(xo(t), uo(t;), ho). We need 
the following constraint qualifications: 
(1.4) (Linea'f' independence condition) There exists f3 > 0 such that 

1Dv.7f; [t]1 ~ /3 for all t E Do. 
(1.5) 19 [0] < 0. 
In the same way as in l\!Ialanowski (1995) we introduce the following Lagra11gian: 

.c: W 1•00 (0,T;.IR11
) X L00 (0,T;IRm) X W 1•

00 (0,T;IR11
) X 

x.IR11 X W1•00 (0, T; IR) X G 1----> IR, 

.C(.x, v., p, p, p., h) = F(x, v., h) - (p,;i: - f(x, u, h))+ 
+ (p, x(O) - ~(h)) + J.L(0)1'J(x(O), h) + (i.t, ?j;(x, v., h)), 

as well as the Hamilto11ian and augmented Hamiltonian 

'}-{ : JRn X JRm X fR11 X G 1----> JR, 
it. : IRn X mm X lR11 X IR X G 1----> JR, 
'H(x, u,p, h)= f 0(x, u, h)+ (p, f(x, '11,, h)), 
H(.x, v.,p, f.t., h)= 'H( x, v.,p, h)+ f;.?j;(x, v., h). 

(G) 

(7) 

Note that the Lagrangian is in the so-called PontTyagin fo ·rm. with absolutely 
continuous function p (see, Section 7 in Hartl, Sethi and Vickson, 1995). The 
state constraints are considered in W 1•00 (0, T; IR), where the general form of 
a linear funct ional is given by J.t(O)y(O) + (f.t., iJ). Accordingly the terms in La
grangian (G) corresponding to the state constraints arc obtained as follows: 

.. 
fJ.(0)19(x(O), h)+ (f.t., 1't19(.r- , h)) = 

= f.t(0 )19(x(O), h)+ (/.t , Dx19(~:, h)±)= 
= J.t(0)1'J(x(O),h) + (f.t. , Dx19(~:,h)f(x,v. ,h)). 

By (1.4) and (1.5) there exist (see, Malanowski, 1995) unique Lagrange multi-
~· r \ - TTr~ rrrl ,..........., In rn Tnn \ Trrl r'Y"'/1"\ rn lT)\ / : _ .Ll. _ _ _ 
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a rc ·mo·1·e ·regv.lm') such t hat the following first order optiumlity condi t ious in the 
Kamsh-Knlm-Tnckcr (KKT) form hold at (:ro, v.o,]Jo , f!o , f!.o, ho): 

Jio + D,H(.?;o, vo,[Jo, /J.o, ho) = 0, Po(T) = 0, 

J!o(O) + (!o + f'·o(O)Dx19(:ro(O), ho) = 0, 

DnH (.To, v.o, Po, /J.o, ho) = 0, 

/l.o(t.) ;::: 0 is nonill(:rcasing a .e. 011 [0 , T ], 

/'·o(O) = /l.o(O). 

(8) 

(0) 

(10) 

(11) 

(12) 

Conditions (11)-(12) follow from the form of the positive polar to the couc 
of nomwgat ive fnm:tions in W 1

•
00 (0, T; JR), which is givcu (sec, Outmta and 

Schincllcr , 1081) by the closure in (W 1
•
00 (0, T; JR ))* of t he set 

{!'· E W 1
'
00 (0, T; JR ) l fl.(O) ;::: /1.(0), /1(·) is l!Ollllllcgativc a!l(lnonillcrcasillg} . 

Co11dition (I. S) implies equality ill (12) . 
In add ition to (I.1 )-(I. 5) w<~ assnntc 

(LC) Le.r;endre-Clebsch condition A constant 1 > 0 exists such t hat 

(v, D~nH [t] v);::: 'Yiv l2 

for all 

vE { 
Jflm if t E [0 , T] \ no , 
lflm snch t lmt (D111/J[t], v) = 0 if t E no. 

Using sintilm mgnment as in t he proof of Lemma 7.2 in :tvialanowski awl Tvinm cr 
(1008) we ol>tain the fo llowing regttlarity result 

LEMlvfA 2 .2 If (!.1)-(!.5) and (LC) hold, then v.0 and /1 0 a·re contin.1wus and 
piecewise diff'e·rentiable fun ctions, with JJOssible .fumps of 1.1 0 and jj,o at the j11:ru:

tion points. 
() 

3. The used approach 

Using ( 4) ami ( 5) we cau write 

t 19(:r:o(t), ho) = 7?(.To(w.j(O)), ho) + /, ?j;(.To(s), v.o(s), ho)rls . 
. w;(o) 

Hence, for the reference solu tion , t he inequality constraints (::! ) can be inter
preted as the following equality type constraints 

?j;( :r:(t; ), u(t ), ho ) = 0, 
1? (:r:(wj(O)), ho) = 0 

fortE no = U1:S79 [wj(O),wj'(O)], 
for 1 ::; .i ::; J. 

( 1::! ) 

This iutcrprctation snggcsts to in trod ucc modifications of the prol>lcms ( 0 h) , iu 
\.V llll'll t ·nn"t n -l lld·" (~.{\ ~ l'f\ ~ld,~..:tlhd· r~rl hv ( 1 ~-{\ Vnr f-1 1l '-! llt"l"\H n r·n l , l r'l n~ r l n11n l·nrl hu 
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( 6 h) , the st ructure of the solutions is imposed to be the same as for the reference 
one, i.e., the nv:rnber· of s7J.binteTvals of active constmint8 'l'emain8 con8tant and 
eqv.al to .J, but the locations of the jv:n.ction points can be changed. The vector of 
these locations is treated as an additional argument of minimizatiou. The main 
idea is tha t the sensitivity analysis for problems with equality type constraints 
is much easier than for those with inequality type coustraints. It will be shown 
in Section 4. that the cl a..<;sical implicit fnnction theorem call be used in this 
analysis . Subsequently, condit ions will be derived under which the stationary 
points of (Oh) correspond to the solut ions and Lagrange multipliers of (0,.). 

To formulate problems (Oh) we have to choose the appropriate spaces of 
arguments and constraints . Regulari ty of the clements of these spaces is mo
tivated by the regularity of the reference solutions and Lagrange multipliers. 
To this end, let us denote by w = ( w1, w2, ... , W2J), a 2] -dimensional vector of 
junction points such that 

(14) 

and put wo = 0, w2J+I = T . 
Introduce functions v. that arc uniformly continuously different iable on each 

subinterval (w.i, w.i+l) , continuous, together with their derivatives, on each bound
ary subinterval [w_j , w.f'J, 1 :::; j :::; J. Locally, the functions u will be identified 
with elements of a Banach space. To do that, let us introduce the space 

(15) 

of clements~= (a.,/3, /). Endowed with the norm 

II~ II Pel = max{ ll a. ll ci , I,BI, lrl}, 

PC1(0, T; IR) is a Banach space. For a fixed w satisfying (14), to ally piece-wise 
differentiable function v. we can assign an eleme11t ~ E PC1 (0, T; IR) putting 

where 

fJj = 6.7J,.i' 

• ( ) - . ( ) - "<:' 2J 1\ • . i l ·i (t) a. t - v. t LJ.i=l uv. . ' 

cl' (t) = v.(t)- :L}~ 1 (6.v,.il-i(t) + t::.vJRi(t)) 

6.vJ = limt_,wi+ v.(t) -limt_,wi- v,(t) , 

6.v:i = liillt_,wj+ V.(t)- lil1lt_,Wj- V.(t) , 

. { 0 1.1 = 1 
fortE [O,w.i) , 
fortE [w.i , T], ' 

,.i = t::.vJ, 

(1G) 

fortE [O ,w.i), 
fortE [w.i, T]. 

Reciprocally, using (1G), to any pair (~,w), with w satisfying (14) , we can assign 
J • 1 1 . r 
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As in (15), we introduce the Banach space 

PC2 (o r- IR) = C2 (o r· m) x m2J x mv 
' ' ' ' ' 

(17) 

of elements rJ = (a, (1, 'Y) endowed with the norm 

Let ;~; be a continuous function defined on [0, T], with :i: beillg differentiable 
on (w.1,w.i+d · In the way analogous to (1G), we call assign to :r the clement 
rJ E PC2 (0, T; JR) putting 

j1.i = L::.:i;i' 

""()- ""(f) "2J A · ~jli(t) o: t - X . - LJ.i=lu."l.· · · , (18) 

ci-(t) = i(t)- L:.]: 1 (L::.x·i11(t) + L::.:i)Ri(t)). 

Finally, define the Banach space 

(19) 

of clemellts X = (17,~,w) ellclowecl with the nonn 

In view of (16) and (18), for any w satisfying (14), we can idelltify the cle
ments X = ( rJ, ~, w) with the pairs (.7:, v.) of functions piece-wise differentiable on 
(w1, wi+d· 

Using the above identificatioll, we can formulate the moclified problems (Oh) 
as follows: 

(Oh) Find (xh, ih, w(h)) EX such that 

F(xh, ih, h) = mill F(:~:, v., h) 
x,n,w 

subject to 

:i:(t)- f(:~: (t), v.(t), h)= 0 fortE [O .T], 

:~; (0) -~(h) = 0, 

t?(:r(wj), h)= 0 for 1 ::; j::; .J, 

'ljJ(:~:(t), v.(t), h)= 0 fortE 0 := U [w.j, w1J. 
15..1 5_ J 

(20) 

(21) 

(22) 

(20) 

In general, an clement feasible for (Oh) is not feasible for (Oh)· In order 
to ensure such feasibility of (xh, uh, w(h)) the additional nontangential.fv.nction 
-.~.- -l :c: ~- (T 0 \ ••. : 11 l, ~ : .-."~--~ -1 : - C ~-. •· : ~ •. A 
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First, we arc going to show that (:1;0 ,v.0 ,w(O)) is a stationary point of (Oh0 ). 

To this end, let us introduce the following Lagrangian for (0 11 ): 

l: PC2 (0, T; mn) X PC 1 (0, T; mm) X JR2J X 

X PC2 (0, T; mn) X IRn X IRJ X PC1 (0, T; IR) X G f-+ IR , 

l(:r, v. , w, p, p, ¢,>..,h) = F(.T, v., h) - (p, :i; - J(:c, v., h))+ 

+ (p, :r(O) - ~(h))+ I;f=1 ¢i1?(:1:(wj), h)+ 

+ 'l;f=l .c'/ A(t)?j;(.T(t), u(t), h)rJt, 
. J 

(24) 

where ¢i and )... represent multipliers corresponding to (22) and (23), respec
tively. 

We will rearrange (24) to get Lagrangian lin the fonn aualogous to (G). 
Let us extend )... to [0, T] puttiug 

>..(t) = 0 fort tf D. (25) 

Ivioreovcr, note that, in view of (4) ancl (5), 

¢i1?(.1:(wj), h) = ¢119(:7:(0), h)+ ;·wj ¢i1j!(:7:(t ), v.(t), h)rlt . 
. 0 

Dcuote 

tn = I;J ,;,i 
y .7=1'+' (2G) 

and clcfiue the fuuctions 

i() { ¢.7 fortE [O,wj), 
a t = 0 for t E [wj, T], (27) 
a(t) = I;f= 1a·i(t), v(t) = a(t) + >..(t). 

Note that (25)-(27) establish a one-to-one correspondence Get ween ( >.., ¢) awl 
(v, tp), where 

¢i = v(w'-)- v(w''+), 1::; j::; .1, 
.7 .7 

>..i(t) = { ~(t)- v(w'j) for t E [wj, wj], 
fort tf [wj,wj]. 

Using (2G)-(28) we can rewrite Lagrangian (24) in the form 

(28) 

l(z,(,h) = l(:r,u,w,p,p,cp,v,h) =_{(x,v,h) - (p,:i;- f(x,v.,h)) + (
29

) 

+(p, .T(O)- f.(h)) + cp19(:7:(0), h)+ J0 v(t)'lj!(:r(t), v.(t), h)rlt, 

where, for the sake of simplicity, we put z := (:1:,v.,w), ( := (p,p,cp,v). La
grangians (G) and (29) coincide, with cp = p.(O) and v = fl,. Denote 

'Po = /l·O (0), vo = (1.o, zo = (.To, uo, w(O)), (o = (Po, po, 'Po, vo). (30) 
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L E MlviA 3.1 The ele·ment z0 is a statioTW1 ''!J point of L(z, (0 , h0). 0 

Pmo.f Using (7) we obtain the following stationari ty conditions of L with respect 
to ~: ,u,w , respectively 

j; + D.Ji(x , v., p, u, h) = 0 p(T) = 0, 

p(O) + p + <pDx 19(~:(0) , h)= 0, 

D,Ji(~:, v.,p , u, h)= 0, 

f0 (:~: (r), v.(r+ ), h) + u(r+ )'lj;(x(r) , v.(r+ ), h) = 

= f 0 (:r(r), v.(r- ), h)+ u(r- )'1/;(:~:(r), v.(r- ), h) 

for r = wj, w.'/, 1 :::; j :s; .J. 

( ::l1) 

(::l2) 

(::l::l) 

(::l4) 

In view of (8)-( 10) and (::lO) , conditions (31)-(33) hold a t the rcfcrcm:e point. 
On the other hand, by contitmity of u0 and of /1.0 = u0 , condition (::l4) is also 
satisfied . D 

4. Differentiability of stationary points 

In this section we arc going to investigate differentiability with respect to the 
parameter of the stationary points for (Oh)· To this cud , we need the optimality 

system for (0 11 ), which consists of the statiottary conditions (::l 1)-(::l4) awl the 
constrains (20)-(2::l). 

Note that conditions (34) a rc satisfied if functions v. and u arc continuous at 
the juuction points. So, in pa rticular they arc satisfied at the reference solution. 
Sittc:e, in view of (2::l), 

'lj;( :~:(wj), v.(wj+), h) = 0, 'lj;(x(w.'/),v.(w.'/-) , h) = 0, 1 :s; j :s; .1, (::l5) 

in case of cotttitmity of v. we must have 

'lj;( :~:(w.j),u(wj-) , h ) = 0, 'lj;(.?:(w'/),v.(w'j +),h) = 0, 1 :s; j :s; J. (::lG) 

Actually, in om aualysis , we will require that (::lG), rather than (::l4) holds. Later 
on it will be shown that , for stationary points , (::lG) implies (34). 

Let us introduce the following spaces 

Pej, (O, T; IR" ) = {p E Pe 2 (0, T; IR") I p(T) = 0}, 
u = Pe2(0, T; IR") X pet(o , T; mm) X JR2J X 

x P ej,(O,T ;IR" ) x JR" x lR x p et(O,T;IR ), (::l7) 
11 = pet (0, T; IR") X IR" X pet (0, T; mm) X pet (0, T; IR") X 

x IR" x mJ x pet (o r · IR) x mJ x mJ 
' ' ' 

and define the mapping given by t he left-hand sides of (31)-(3::l), (20)-(23) and 
(::lG) : 

:F : u X G I--+ 11, 

:F( z . ( . h) = ( :F_J~, (,h.) ) (::l8) 
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where 

F'( z, (,h) := 

p + D,H(x, v.,p, v, h) 
p(O) + p + cpDx19(.7:(0) , h) 
D 11.H(x, v.,p, v, h) 
i - f( .1:, v., h) 
x(O)- ~(h) 

19(x(w_j), h), 
1/J(x(t), v.(t), h) , 

F"( (h) ·= [ 'lj;(x(w_j),v.(wj -) ,h), 
z , ' ' ' 'lj;(x(wj) , v.(wj+ ), h), 

K. MALANOWSKI 

1 ~j~J 
tEn 

1<j<J] 
1~j ~ J ' 

(39) 

( 40) 

We arc going to apply the classical implicit function theorem to the equation 

F(z , (,h)= 0 ( 41) 

at the reference point (zo, (o, ho). To this end , we have to show that the Jacobian 
of F with respect to (z, () evaluated at the reference point is regular. Using 
(38), we find that the Jacobian is regular if and only if, for any 

there exists a unique solution ( w, 1]) := (y, v, T, q, (}, fJ, n,) E U of the following 
linear equation: 

[ 
D(z,(. )F'(zo,(o,ho) ] [ w] _ [a] 
D(z,o F"( zo, (o, ho) 1] - b · 

( 42) 

In view of (39)-(40), this equation takes on the form 

and 

rj + Dr.f[t]*q(t) + n ;xif. [t]y(t) + n;,if.[t]v(t) + Dx'l/;[t] *K.(t) = a.l(t),(43) 

q(O) + (} + cpoD;,xtJ[O]y(O) + fJDx19[0] = a.2, (44) 

D~.xH[t]y(t) + D~.11 H[t]v(t) + D,J[t]*q(t) + D,1'lj;[t]*t>.(t) = a.3(t), (45) 

i;(t)- Dxf[t]y(t)- D,J[t]v(t) = a.4(t), (4G) 

y(O) =as, (47) 

Dx19[w_j(O)]y(wj(O)) =a~, 1 ~ j ~ J, (48) 

Dx'l/;[t]y(t) + D,'lj;[t]v (t) = a.1(t), t E Oo, (49) 

Dx'l/;[w_j(O)]y(w_j(O)) + D,.'lj;[w_j(O)]v(w_j(O)-) + -fft'l/;[w.i(O)-]Tj = bi, 

Dx'l/;[w_j' (0) ]y(w_j' (0)) + D,.'lj;[w_j' (O)]v(w_j (0)+) + -fft'l/;[w.i (0)+ ]Tj' = bi, (50) 

for 1 ~ j ~ J. 

Note that (43)-(49) do not depend on T. It follows from the fact that, in view 
of (40), 

d nl l o \ J \ If .. I .L \ . I.L\!.. \ {\ •~ --+ _ , ,/((\ \ , ,11 ( 1\ \ 1 <" ~ < T 
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Thus, we can solve (42) in two steps. In the first step we f-ind (y, v, q, (}, (), K.) 
Lhat solve (4::l)-(4!J) and , in the second step, we substitute this solution to (50) 
and calculate T. This fact simplifies substcntially tltc further analysis. Note 
tltat such a situation takes place only for pmblem.s wilh !Jw .fi·,.st onle-,. state 
constraints. For higher order constraints, the structmc of F(z, (,h) is more 
complicated and we arc not able to repeat this simple two-step procedme (sec, 
Malanowski and :tviaurer, 1!J!J7). 

An inspection shows that (4::l)-(4!J) constitute an optimality system for the 
followiug accessory optimal control problem: 

when~ 

Find (:11c5, v0 ) E zoo such that 
l (y0 , v0 , 8) = min(y ,v) I(y , v , 8) 
sub.icct to 
1/(t)- D,,f[t]y(t)- D,J[t]v(t)- a.4 (t) = 0, 
y(O) - n.5 = 0, 
Dr19[wj(O)]y(wj(O))- n:1, = 0, 
Dx 1/J [t]y(t ) + D,.1/J[t]v(t)- n.7(t) = 0, 

!('t V h)= 1.r {l. [ y(t)] * [ n;.x~ [tj 
.}, ' · 0 2 v(t;) D~x H[t] 

_ r y(t) ] • [ a.1(t) ] } rlt. l v(t) n.3(t) 

n;,'H[t] 
D~,H[t] 

1 ~ j ~ .1, 
t E no , 

y(t) 
v(t) ] -

Thus, (43)-(40) have a solution for auy 8 E V if and only if (100) has a unique 
stationary poiut , which is more regular , with the regularity corresponding to U. 
'Vc will use conditions that ensure cxistcm:e and uniqueness of the solutions and 
Lagrange nHiltipliers of (100). To this end , we will require that the mapping 
given by the linear part of the c:onstraiuts is surjective and the cost functional 
is coercive on the kernel of this mapping. To meet these properties we need the 
following a..'iS ltmptions (sec, lVIalanowski awll\ifaurer , 1!J!J8): 
(I. G) ( Controlla.bilit.y condition) For any e E m/ there exists (z , w) E zoo such 

that 
z(t) - Dxf[t]z(t)- D,J[t]w(t) = 0, 
z(O) = 0, 
Dx19[wj(O)] z(wj(O)) = e·i, 1 ~ j:::; .1, 
Dx1/J[t] z(t) + D"1/J[t]w(t) = 0, for a.a. t; E n0 . 

(I. 7) ( Coe·,.civity condition) There exists 'Y > 0 such that 

( ( 
D

2 lo D
2 lo ) ) 2 ~ 

(z, w), D~:zo D~::zo (z, w) ~ 'Y(iizlll,2 + llwll2), (51) 

for a ll ( z, w) E zoo such that 

z(t)- Dx.f[t]z(t)- D,,J[t]w(t) = 0, 
In\ (52) 
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Dx7J;[t ]z(t) + D,7j; [t ]w(t) = 0, for a.a. t E Do, (S0) 
wberelo := l(:ro,vo,w(O ),po,(Jo,r.po,vo,ho). 

REMARK 4.1 By Lem:rna 2 in DontchP-1J, FTn.g e1·, Poo'f'e and Yang {1995) , if (!. 4) 
holds then Coen:ivity condition (I. 7) i·mpl'l:es Legendre-Clcbsc:h condition (LC), 
so that nnde·r assnm.ption (I. 7) Lem:ma 2.2 holds. 0 

LEMMA 4.2 If (!.1)-(I. 7) hold then, fo ·r any !i E V , pmblem (100) has a. nniqn r. 
solv.tion (y0 , v0 ) E PC'2 (0, T ; IR") x PC1(0 , T ; IR"') and nnique associated La
gmngr. m:u.ltiplir.'f' (qo,[}o,Xo,K·o) E PC2(0,T;IRn) X mn X IR1 X PC1 (0,T;JR ). 

0 

Proof If (I.l )-(I. 7) ::tre s::tt.isfied then, by Proposition S.;) iu Nialauowski aud 
lVIaurer (1008) there exists a nnicplC solation and a nniqne Lagrange mnltiplier 
of (100). Hence, to complete the proof of the lcrrun::t, it is enough to slww the 
appropria te regularity of the primal and dual variables. 

I3y (4S) and (40) we h::tvc 

[ n;,~~'H [t] D,7J;[ t. ]* J [ vo(t) J = 
D,7j; [t] 0 h:o (t) 

= - [ n;, x'H[t]yo(t) + DIIJ[t]* q(t;) - a.3(t) ] · 
Dx'lf;[t]y0(t.) - n.7(t) 

for t E ( wj , w'j) , 1 ::; j ::; J. 
I3y (I.4) and (I.G) the nmtrix 

K(t) := [ n;,li.'H[t] 
D, 7j; [t] 

Dn7J;[t]* 
0 

is nonsingnlar (sec, e.g., Lemma 3.2 i11 Hager , 1070). Hence 

(S4) 

and, in view of (I.1 ) as well ::ts of tlw rcgnlarity of a.3 ::tnd n.7, we find t lmt v0 

::tml K.0 arc of class C'1 on (w.j,wj' ). 
Simila rly, by (I.G) 

Vo(t;) = - ( n;,,,'H [tJ) - l [n;,x'H[t]yo(t ) + D,J[t]*q(t)- a.3(t)]) 

r;·,6 = 0, 

for all t E (0, T) \ D0 , i. e., v6 and n.0 arc of class C 1 
011 any open subintcrv::tl of 

(0, T) \Do. 
Thus, v0 E PC1 (0, T;lR111

), 1\',6 E PC1 (0 ,T ;IR ). These regnlarity results , 
together with equations (4G) and (43), show that y0 , q0 E PC'2 (0, T ; IR") . That 
completes the proof of the lemma. 0 

To cnsme existence and uniqueness ofT satisfying (SO) for any given 
I 11 /n\\ I /1 /{ \ \\ - - --1 £~ - · ~~-~ - 1. ;t- : ~ . ,. , r, ,,..\, f· .-~ ,....,,~, 111 nn• 
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(I.8) (Nontangential.function) 

:t 1{1[w.j(O)-] # 0, 
r1 
-d ~;[wj'(O)+] # 0, 

t 

347 

1 <5: j <5: .J. 

REMARK 4.3 The role played by the nontangential junction condition: is two
folded: 
1) by this condition the Jacobian ofF is TegulaT (see, Proposition 4.4, below), 
2) it ensv.r-es that the stationaTy points of (Oh) aTe feasible for· (Oh) (see, cmn
ments in Section 5. and Lem:ma 7.8 in Malanowski and Mav:reT, 1998). <> 

PROPOSITION 4.4 If (1.1)-(1.8) hold, then theTe exist neighboThoods G C G C 

H and U C U of ho and (zo, (o), Tespectively, such that joT each hE G th e·re is 
a 11.niqv.e in U stationaTy po1:nt (zh, (h) of (Oh) such that uh., vh aTe continuov.s 
functions on [0, T]. 

The pe'f'tv:rbed stationaTy point at h = h0 + r1 E G can be e:wressed by the 
following Taylo·r expansion 

wheTe 

xh = :ro + Dhxod + ol,q(d), 
uh = v.o + Dhv.orl + oq(d), 
wh = wo + Dhwod + o(d), 
Ph = Po+ Dhpod + ol,q(d), 
Ph= Po+ Dhpod + o(d), 
<Ph= cpo + Dhcpod + o(d), 
vh = Vo + Dhvod + oq(d), 

11°I,q(d) ll l,q lloq(d)llq Jo(d) J ___, 0 as llrlllH ___, 0 joT q E [1, oo) . (56) 
llrlllH ' llrlllH ' lld llH 

The Fnichet diffeTentials (Dh.r.od, Dh v.od) and (Dhpod, Dhpod, Dhcporl, DhYod) 
aTe given as the sol·u.tion and Lagmnge m.?J.ltiplieTs of the following lineaT-quadmtic 
optimal contml pToblem: 

wheTe 

Find (yd, vd) E PC'2 (0, T; Ifln) x PC'1 (0, T; Iflm) 

.J(yd,vd,d) = min(y,v) .J(y,v,d) 
sv.bject to 
y(t)- Dxf[t]y(t)- D,J[t]v(t)- Dhf[t]d = 0, 
y(O)- Dh~(ho)rl = 0, 
Dx19[w.j(O)]y(wj(O)) + Dh19[w.j(O)]d = 0, 
Dx~J[t]y(t) + D11~J[t]v(t) + Dh~;[t]d = 0, 

sv.ch that 

1 <5: j <5: .J, 
t E Do, 

J('IJ V d)= rT { l [ y(t) ] * [ D;x~[t] D;,~[t] l [ y(t) ] _ 
·' ' · 0 2 v(t) D?,x'H[t] D?,

11
'H[t] v(t) 

_ 1 y(t) l*l n;,~[t]l dl dt . 
I v(t) I n21-!ftl ( 
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The diffe·rentials of the jv.nction points aTe given by: 

Dhw_j(O)d =- { ft'I/J[w_j(O)-J} -
1 

x 
X { Dx'I/J [w_j (0) ]yd(w_j (O)) + Dv.'I/J[w_j (0) ]vd(w_j (0)) + Dh '1/J [w_j (O)]d} , 

D~tw'J (O)d = - { ft'I/J[wj (0)+]} -
1 

x 
X { Dx'I/J[w_j (O)]yd(wj (0)) + Dn'I/J [wj(O) ]vd(w_j(O)) + D~t 'I/J [w_j'(O)]d} . 

<> 

Pr-oof By Lemma 4.2 and assumption (1.8) the Jacobian D(z,()F(z0 , ( 0 , ho) is 
regular. Hence, by the implicit function theorem, there exists a neighborhood 
G of ho such that for each hE G there is a locally unique solut ion of (41), which 
is a differentiable function of h in U and 

D, ( ~~ ) =- (D(z,() F (zo, (o, ho)) - l D,F(zo, (o, ho). 

Using the above formula, together with definitions (39) and ( 40) of F , and 
performing straightforward calculations, we find that D,z0d and Dh.(od are 
characterized as in the formulation of the proposition. 

We will show that (zh, (;,) arc the stationary points of ( (\) , i.e., that concli
tions (34) hold. To this end, it is enough to show that uh ami vh are continuous 
at the j unction points w_j, w_j'. Note that by (33), (35) and (3G), at any junctiou 
poiut w_i(h) = wj( h), w_j(h), the following equations hold 

where 

Q(xh(w.i (h)), uh(w.i (h)- ),ph.(wi (h)), vh(w.i (h) - ), h) = 0, 
Q(x,(wj(h) ), uh.(w.i(h)+ ),p,(wi(h)), ll,(w.i( h)+ ), h)= 0, 

Q( . . h) ·- ( D,J1.(:z:, v.,p, v, h) ) :J.,v.,p, v, . . - ·'( h) . 
•P x, v., . 

(57) 

Hence, both pairs (:U,(wj(h)-),v,(w_i(h)-)) aud (u,(w.i(h)+),v,(w.i(h)+)) are 
solutions of t he parametric equation 

(58) 

corresponding to the same value (x,(wj(h)) ,Ph(wj(h)) , h) of the parameter. At 
the refereuce point (xo(w.i(O)), v.o(w.i(O)),po(w.i(O)) , vo(w.i(O)) , ho) , the Jacobian 
of (58) is given by nonsingular matrix K(w.i(O)) defined in (54). Hence, in a 
neighborhood of the refereuc:e point, (58) has a locally unique solution. On the 
other hand , (z,, (;,) is a continuous function of h , so for (h- h0 ) sufficiently 
small , (58) must have a locally unique solut ion, i.e., :U,(w_i(h)- ) = uh(w.i(h)+) 
and l!,(w.i(h)-) = l!,(w.i(h)+ ). Thus, (zh. , (h) is a stationary poin t of (Oh)· On 
the other hand, let us note that any stationary point (z,, (;,_) of (O~t), such that 

I A, \ - - : .1.... : -- ---- ~ - ·- .- :-- 1 I 
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To complete the proof of the proposition it remains to show that the remain
der terms in (55) satisfy conditions (56) . Let us confine ourselves to U!J.. By 
(14) ancl by continuity of uh(-) we have 

u11.(t) = a"(t) + ~.I~ 1 "(l,R~(t), 

where a h. and "(h. as well as the junction points w.i (h) arc cliffcrcntiablc functions 
of h. Hence 

uh(t) -v.o(t) = (ah(t)- ao(t)) + [~I~ 1 "(/,R{(t)- ~J~ 1 'Y6R6(t) ] . (59) 

In view of differentiability of a" in C2 (0, T; IRm), we have 

u,- ao = Dh.ao(h- ho) + ol,oo(h- ho) . (GO) 

Consider the second term on the right-hand side of (59) . Without loss of gen
erality we can assume that w.i(ho) < w.i(h). In view of the definition of R },, 

'YhRJ, (t)- "f~Rb(t) = 

= { ~'Y6(t- w.i(ho)) 
"(/,(t- w.i(h)) -!6(t- w.i(ho)) 

fortE [O ,w.i(ho)], 
fortE (wj(ho),w.i(h)), 
fortE lwJ(h), T]. 

Since 'Y/,. ancl Wj (h) are differentiable functions of h, we have 

"(l, ( t - Wj (h)) - "(6( t - Wj ( ho)) = 

(61) 

= (t- w.i(ho))("fh - ~~) - "(l, (w.i(h) - wi(ho)) = (62) 

= [(t - wi(ho))Dh"fo- "(~Dhw.i(ho)] (h- ho) + g(t, h - ho), 

I '·' le(t,h-h.o) l 0 · lh h I 0 'f · · I · t [ (h) T] w 1erc I h.-ho i ----7 as , - ·O ----7 tmr orrn y m , E wj , , . 
On the other hand 

- "f~(t- w.i(ho)) = ['Yl,(t - wi(h))- "f6(t- w.i(ho))]-!l,(t- w.i(h)). (63) 

vVe have 

[ !·wj(h) bl, (t - w.i (h) Wdtl % = lrl, I (IJ + 1)-% lw.i (h) - w.i(ho) 11+%, 
· Wj(ho) 

and, in view of uniform boundedness of 'Yh ancl differentiability of w.i(h), 
1 

[J •Wj(h) I .i (t (h)) lq .I] q 
w1 (ho) 'Yh , - w.i . o.t 

I I ----7 0 as lh- ho l ----7 0, h- ho 
(64) 

for any IJ E [1, oo). 
Combining (GO) through (64) we obtain from (59) 

Uh = vo + Dhv.o(h - ho) + oq(h- ho) for allq E [1, oo). 
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REMARK 4.5 It was incorTectly stated in Malanowski and Mav:rer· {1998) that 
convergence in (56) holds joT q = oo. <> 

5. Differentiability of solutions 

In this section we are going to show that, under addit ional stTict complernentm·
ity conditions and a strengthened version of (I. 7), the stationary points of (0 11 ) 

become the solutions and Lagrange multipliers of (0 11 ), so by Proposition 4.4, 
they are Frechet differentiable functions of the parameter. Both, the obtained 
results and the used procedure, are virtually the same as those iu Sections 7 
and 8 of Malanowski and Maurer (1998), so we confine ourselves to a short 
recollection of these results. 

Iu Section 7 of Malauowski and Niaurcr ( 1998) the conditions are discussed 
under which the stationary points of (Oh) become the (KKT) points of (Oh)· 
In Lemma 7.3 therein, it is proved that 

'!'J(xh(t), h) < 0, fortE [0 , T] \ Oh, 

i. e., (xh, uh) is feasible for (Oh)· In the proof, nontaugentialjunction condition 
(I.8) plays the crucial role. 

To show that the Lagrange multipliers C{Jh, vh correspoud to Jl.!J.(O), Jl·h an 
additional strict cornplernentaTity condition is int roduced: 
(Ul) (StTi ct complernentaTity) 

j.t.0 (-) = v0 (-) is positive and decreasing on each subinterval (wj(O),wj'(O) ), 
l SjSJ. 

It is shown in Lemma 7.5 in 1\tialanowski and Maurer (Hl98) that, for (h- ho ) 
sufficiently small, condition (I. 9) is also satisfied by vh, so that P·h = vh is a 
Lagrange multiplier for (Oh)· Thus, (zh, (h) corresponds to a (KKT)-point of 
(Oh) · 

To complete sensitivity analysis it remains to show that the (KKT) points 
of (Oh) are actually the solutions and Lagrange multipliers. To do that we have 
to strengthen coercivity conditions. Namely, instead of (I. 7) we assume: 
(I. 7') Condit ion (51) holds for all ( z, w) E zoo satisfying (52). 
Using (I. 7') and Proposition 4. 4 we easily fi nd that there exists a neighborhood 
Go of h0 such that for all h E Go we have 

(65) 

for all ( z, w) E zoo such that 

z(t)- Dxf(.7:h(t) , uh(t), h) z(t)- D,J( xh(t), v.h(t), h)w(t) = 0, 
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where £h := £(:rh , v.h,Ph,{Jh , Jl·h, h) . It is well known that by (G5) there exist 
positive constants p(h) and c(h) such that 

F(x, v.,h) ~ F(xh,uh ,h) + c(h) ll(:r, v.) - (xh,'ll·h)ll1z 

for all feasible (x,v.) such that II(.T,u) - (xh,uh) ll z= :S p(h), 

i. e., (:rh, uh) is a locally unique local solution of (Oh)· By (6G) and by Propo
sition 4.4, the constants p(h) = p and c(h) = c can be chosen independent of 
hE Go. In view of Proposition 4.4 we can shrink Go so that , for a ll hE Go we 
have 

Thus, we arrive at our principal differentiability result: 

THEOREM 5.1 If assv.rnptions (!.1)-(!.6) , (I. 7'), (!.8) and (!.9) hold, then theTe 
e1:ist neighboT'hoods Go C G C H and Zo C zoo of ho and of (:ro, uo) , Tespec
tively, such that, joT each hE G0, theTe e1:ists a v:n.iqu.e in Z0 solu.tion (xh, v.h) 
of (Oh ) and unique associated Lagmnge rnultiplieTs (p,, p, , p.,) that aTe Frechet 
di.ffeTentiable function s of h in zq and wq' Tespectively, Jo ·r any q E [1, ()()). The 
Tespective di.fj'eTentials m·e given by the stationaTy points of the pToblem. (LQd). 

0 
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