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Abstract: The paper concerns an application of the idea of field 
theory and the concept of "concourse of flights " to the sufficient opti
mality conditions for the optimal control problems stated iu terms of 
focal and conjugate points. The concept of concourse of flights was 
begun by Young (1969), and later extended by Nowakowski (1988). 
In the paper the definition of a focal and coujugate point of a field of 
ext rema.ls is given. Using these concepts, we prove that the existence 
of a field of extremals without conjugate points implies the existence 
of concourse of flights ami consequently we obtain the second order 
sufficient conditions for the generalized problem of Bolza. Another 
approach to the concept of focal and conjugate points is given by 
Zeidan (1983, 1984). 
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1. Preliminaries and assumptions 

Let us consider the generalized problem of Bolza: 

!
·T 

minimize J(:r,u) = L(t,.1:(t),v.(t) ) dt+l (x(T)) 
, Q 

subject to 

.?: (t)=f(t,:z:(t),v.(t)) a.e. in [O ,T], :r(O)=O, 

v.(t) E Q C ~m a.e. in [0, T], where Q is a compact set 

( 1) 

(2) 

(3) 

Here .T : [0, T] --f ~n is an absolutely continuous function, v. : [0, T] --> ~m is 
a Lebesgue measmable funct ion, L : [0, T] x ~n x ~m. --> ~ ' f : [0, T] x ~n x ~m. --> 

~n, l : ~n --> ~ U { + oo}, f : [0, T] X ~n X ~m --f ~n , l : ~n --> ~ U { +oo} and 
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We assume that f, 1, L and v, satisfy the following hypotheses: 
Hl. the functions L, f are continuous with respect to all variables, the 

function l is lower semicontinuous and not identifically +oo , there exist the 
following derivatives: fx, Lx, f xx, Lxx and they are continuous 

H2. there exists a neighbourhood of (0, 0, 0) such that the function 
H (t, x, y) = sup { y f (t, :1:, v.)- L (t, .1:, v.) I v. E Q } has continuous partial 

derivatives H11 (t, .1:, y), which is a Lipschitzian function with respect to .1:, and 
Hx (t, :1:, y), which is a Lipschitzian function with respect toy . 

The consequence of these assumptions is the existence of local solutions of 
the following Hamilton equations: 

dx dy 
dt = Hy ( t, X' y) ' dt = - H X ( t' X' y) ' X ( 0' ~) = ~ (4) 

where ~ belongs to some open set in 3t", which will be defined later. 

2. The local sufficient condition 

A family of solutions of (4) will be named canonical extremals of our problem. 
We shall distinguish one of them, namely that for which x(O , 0) = 0, denoting 
it by .r (t) and the canonical trajectory fJ (t), and the control function iJ.. (t) , 
corresponding to it (i.e. x (t), iJ.. (t) satisfy (2)) . 

We assume that : 
H3. the control function iJ.. (t) is piecewise continuous and for t E [0, T] the 

generalized Jacobian 811 H 11 (t, x (t), fJ (t)) in the sense of Clark of the function 
H11 (t, .r (t) , fJ (t)) has the maximal rank n. 

The last hypothesis allow us to state a local one to one and smooth embed
ding theorem. 

THEOREM 2.1 TheTe e:rist 8 > 0 and a neighbouThood N of the point (0, 0), 
such that the e:J:t·rernals x(t) of (4), TestTicted to (0,8) , coveT N simply. 

Proof. This is basically a "three map" proof. We construct three separate 
maps. 

Map n°1. Let us consider the extremal x(t) in a neighbourhood of (0,0). 
There exists a canonical trajectory fJ (t) such that d?~~t) = -Hx (t, x (t), fJ (t)). 
Denoting Yo = fJ (0) , we have x (0) = H11 (0, 0, yo). 

I3y H3, the generalized Jacobian o11 H11 (0, 0, Yo) has the maximal rank. By 
the generalized implicit theorem (Clarke, 1983), there exist a neighbourhood K 
of (0, 0, y0 ) and a neighbourhood N of (0, 0, .7: (0)) and a one-to-one map K onto 
N . Our map n°1 is thus a map (t,x,y) __... (t,x ,x) . 

Map n°2. Consider the canonical extremals :1:(t,w,v), y(t,w,v), t E (0,8), 
(8 is determined by the neighbourhood K) with the initial values .7:(0, w, v) = w, 

' ' ,, 1 ·-- = - - - ~1 L- - T/ r"f"1\... ..-. 
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canouical cxtremals exist and arc unique, by H2. For these extremals, consider 
the following system of equations 

t = t, :r(t,w,v) = x,y(t,w,v) = y, t E [0,8]. 

At t = 0 the Jacobian in w, v is the identity matrix, and so nonsingular. By 
the implicit fuuc:tion theory, the above equations have unique solutions locally. 
After diminishing J( suitably, we can determine our second map defined by these 
solutions, in the form 

(t,w,v)--) (t,:r,y). 

l\!Iap n° 3. The same arguments allows us to define our third map 

(t,x,v)--) (t,w,v) 

in suitable domains. All the three maps arc one-to-one. !VIorcover, if we diminish 
the initial domain sufficiently, the image of each map can be mapped by the 
previous map, and the final image will be inN. 

The composite map T. Y./c cau now arrange the three maps and combine 
them by writing 

(t,.1:,v)--) (t,w,v) --) 

(t,:r,v) --) 

(t,.T,y)--) (t,:r,i:), 

(t,.T,:i:) 

If we inverse the above map, we shall obtain a map T: (t, :r, :i:) --) (t, :r, v). For 
a given (t, :r, :i:) E N, there is just one v for which the equations 

t = t,:r = :i:, .i = p(t, :r,v ) 

have solutions. The map T realizes the required covering. • 
In order to study the existence of an extremal joining two given points, we 

assume the local restriction of the maps in (4). By a c:hauge of scale of the 
form (t, x, y) --) (at, In:, cy), where a, IJ, c arc positive constants, we now arrange 
that there exists a neighbourhood of (0, 0, y0 ) such that, for any (t, :r, y) in this 
neighbourhood , we have the following inequalities: IH11 (t,x,y)l:::; 1, lwl:::; 1 
for all w E D11 H11 (t, x, y) , lsi :::; 1 for all s E DxH11 (t, :e, y), lz l :::; 1 for all 
z E 8tH11 (t, :r, y). 

By a 8-tmjecto·ry, we shall mean the solut ion :r(t) of (4) that corresponds 
to the interval [0, 8]. Further, we shall term local 8-pencil of 8-trajectorics, 
the family of 8-trajectories beginning at t = 0, whose derivatives :i: at t = 0 
satisfy l:i: (0) - x (0) 1 :::; 8. The set of points (t, :~: ) for which t E [0, 8] and 

I x-7(0) - x (0) I < 8 will be termed a local angle about (0, x (0), x (0)). 

LEMMA 2.1 If :r(t) is a 8-tmjecto·ry on the inte-rval [0, 8], then fo ·r any t, t1, t2 
from, the inteTval [0, 8], we have 

l
:r( t2) -x(ti) . )I {' I I I} ___:_...::..:.... _ ____:_c:.:.. - :r (t :::; max 3lt2 - t , 3 t 1 - t 

t,., - t, 
(5) 
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Proof. We may set t = 0. Then we have 
x(t2)-x(tl) · (0) _ 1 j't2 H ( . ( ) ( )) d H (0 0 ) t2-tl - X -t2-tl tl y T, X T ,y T T- 11 ',yo 
= t2 ~t 1 J/~

2 [fly ( T, X ( T) , Y ( T)) - fly (0, X ( T) , y ( T)) j dT 

+ t2~tl }~1~2 [Hy (0, X (T)) y (T))- Hy (0, 0, y (T))] dT 

+ t 2 ~ 1. 1 }~1~2 [H11 (0, 0, y (T)) - H11 (0, 0, y0 )] dT. 
By the mean-value theorem of Leburg (Clarke, 1983) , forT E (t1, t2), we 

obtain for i = 1, 2, ... , n 

Hy; (T,x (T),y(T)) -Hy; (O,O,yo) E (DtHy; (t;,x(T),y(T)) ,T)+ 
(DxHy; (0, i;, y ( T)) , X ( T) ) + (8yHy; (0, 0, j}; ) , y ( T) - Yo) , 

where t; E (0, T), .i; E (0, x ( T)), iJ; E (Yo, y ( T)), and Ot Hy;, DxH11,, 811 Hy, denote 
the generalized gradients in the sense of Clark of the funct ion H 11; (t, x, y). 

In view of above, we have that forTE (t1, t2) and fori= 1, 2, . . . , n, 

IH11; (T, x (T), y (T))- Hy; (0, 0, Yo) l ::; T + lx (T) I + IY (T)- Yo I . 

Using the relations 

/

·t 

.T(t)= Hy(t,x(t) , y(t))dt, 
. o /

·t 

y(t)-yo=- Hx (t,x(t),y(t))dt, 
. o 

we would have, 

1.1: (t) l ::; t, IY (t)- Yo I ::; t 

and in consequence 

• 
Two 8-trajec:tories r 1, I'2 will be t ermed markedly deflected if they possess, 

respccti vcly, line clements ( t 1, .1:1, pi) , ( t2, x2, P2) such that ei thcr IP2 - p 1l 2: 128 
or (t1, .T I) = (t2,x2) and IP2 - PII > 68. 

LEMMA 2.2 Two rna·rkedly deflected tmjectoTies cannot intersect at moTe than 
one point. 

P roof. Suppose that there exist t 1 =1- t2 of the interval [0, 8] such that 
x1 (ti) = x2 (ti) and x 1 (t2) = x2 (t2). Denoting ih = x 1 (ti) ,jh = :i;2 (ti) , p1 = 
.i:1 (t2) ,p2 = ±2 (t2) , we have I.P2- .P1 I > 68 and IP2 - PII > 68 . By Lemma 2.1 , 
I'M +_+ ... ~ ~hl- n ;~ I x1(t2)-x1(t!) __ ,.;. _ (+.\ I < 'V\ oonrl I x2(t2)-x2(t1) _ ,;.n (f. 11 < 
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38. Arguing as before, we find that I.P2 - hi :::; 68, which contradicts the defi
nition of markedly deflected trajectories. • 

We are now in a position to establish, for differential equat ions (4) , the 
existence of a solution of the boundary-value problem in a local angle. 

THEOREM 2.2 (Local Angle Theorem) Let (t1 ,xl) li e in the local ( 1
6
2 )-anqle 

abov.t (0, O,x (0)). Then the points (0, 0) and (t 1,.1; I) can be joined by a tmjecto·ry 
of the local 3 8-pencil, and by no t-rajectory not belonging to that pencil. 

P roof. It will be sufficient that the points in question can be joined by a 
trajectory of a local (%)-pencil. Then two trajectories, one from the G8-pencil 

and one from the (%)-pencil will be markedly deflected , and they will have only 

one common point (0, 0) . The exis tence of the trajectory from a local %-pencil , 
joining the points ( 0, 0) and ( t 1 , :rl) follows from the distortion theorem ~(Young, 
19G9). 

Let us denote 

s = { J! liP - X ( 0) I < ~ } ) H = { p liP - X ( 0) I < 1
8
2 } . 

VIc have that the boundary of the set H is distant at least ~~ from the boundary 
of the set S. Let us define the following continuous map T : S ---> S1 

( ) 
:r (t1 ,p) T p = ___:._..:...:..:.~ 

t1 

where t 1 E (0, 1
6
2 ) and 1:(t, p) is the /2 -trajectory satysfying .1:(0) 

:i: (0) = p . By Lemma 2.1, 

I() I 
l

:r(ti>p) I 8 5, 
T P - p = t1 - p :::; 3t1 :::; 3 . 12 < 12 u. 

0 and 

By the distortion theorem , H C S1. This, in particular, implies 7;- E S1 , 
which means that , for Ji E S, we have T(p) = 7;- , so x(t1 ,p1 ) = x 1 . This 
completes t he proof. • 

THEOREM 2.3 (Minimum Prope'f"ty of Well DiTected Local E1:tremals). 
TheTe e1:ist a Tl.eighbov:rhood N of (0, 0) and a local angle abo71.t (0, 0, x (0)) 

sv.ch that, fo·r any extrem.al Co inN with one end at (0, 0) and with !.he de·rivative 
at som.e ·relevant t in the local angle, and fo ·r any otheT ad·rnissible t·rajectory C 
lying in N with the same ends as C0 , we have 

J (Co):::; .J(C) 

whe1·e J (C), (J (Co)) denote the valv.es of functional (1) TestTicted to the tmjec-
f n•··· 0 (('1 \ 
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Proof. The existence of the neighbourhood N and of the local angle, such 
that N is covered one-to-one by graphs of the extremals satisfying ( 4) , follows 
from Theorems 2.1 and 2.2. Then we have the existence of a local spray of flights 
described in Nowakowski (1988). Thus the assertion of the theorem follows from 
(Nowakowski, 1988, Theorem 4). • 

3. Focal and conjugate points 

We assume the following hypothesis: 
H4. there exists a division of the interval [0, T] into subintervals [t;, t;+ 1], 

i = 0, . .. , q, such that, for each i = 0, . . . , q, there exist an open set Q; c i}(m ; of 
parameters CJ i, containing zero, functions t; (CJ i), ti+l (CJi) , (t ; (0) = t; , ti+l (0) 
= ti+ 1 ) of the c:lass C 1 , canonical extremals 

(G) 

which are smooth functions of both variables and :z: (t, 0) = .i: (t) . Moreover, we 
assume that at CJi = 0 the ·m.; x 2n Jacobian matrix (.Ta i , 7Ja i ) has rank m.; for 
some t0 E ( t;, t;+ 1), i = 0, ... , q. 

For i = 0, . .. , q, let us denote: 
T; a set covered by graphs of trajectories :r (t , CJi) , t E [t;, t;+I] , CJi E Q;, 

si- = {(t,CJi) lt=t;(CJi);:: t; ,CJi E Q;} , 
S; = {(t,CJi) It; (CJi) < t < t;+1 (CJi) ,CJi E Q; }, 

st = {(t,CJi) It= ti+l ((Ji)::; ti+l,(Ji E Q, } , 

[S;J = s; u S; u st , 
E;- = {(t ,1:) l1: = .T (t,CJi) , (t ,ai) E S;- }, 
E; = {(t,.'l;) 1·1: =X (t,CJ i), (t,CJi) E S; }, 

Et = {(t,:1:) lx = :~ : (t,CJi), (t,CJi) ESt}, 
[E;] = Ei U E; U Et, 

By :E; we denote a canonical family 

For (t,x) E [E;] , we denote sets 

YE ; (t,x) 

UE; (t,.?:) 

{y (t, .7:) I (t, :1:) E [E;], X =,'); (t, CJ 7
) } , 

{ v. ( t, :1:) I ( t, x) E [ E;], x = x ( t, a 7) } • 

(7) 

(8) 

DEFINITION 3.1 A set T; will be called a relative e:wct set for the fa·m.ily L:; 
1j, for each bo'IJ,nded rectifiable cv:rve C C T; 1m:th end points ( t1 , :~: 1) , (t2, x2) , 

r r -r I' "' rlf ri -r. l I 
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of the de.~cTiption of C), at almost every point of C takes the sa·rne value joT all 
y(t,x) EYE, (t,:r) ,v.(t,x) E UE, (t,:~:), we have 

!. {L (t, :r, v. (t, :r)) - y (t, x) · f (t, .1:, v. (t, x))} dt + y (t, :~:) dx 
. c 
= l (t1,xl) -I(t2,x2) (9) 

Jo·r each admissible pai·r y(t,x) EYE, (t , :r) ,v.(t,x) E UE , (t,:~: ), ( t ,:~; ) E T;. 

Let fur ther "(; denote the extremal x (t) restricted to the interval [t;, t;+ 1] . 

The extremal"(; is then embedded in the family of extrernals (7). 

DEFINITION 3.2 By a focal point of ouT embedding we mean a point of"(; at 
which the ·real Jacobian mat·ri:r xu' has mnk less than m;. 

When a family of solutions to ( 4) satisfies H4 and in addition the expression 
y· t;, + J~t;+ 1 8~, L(T, x(T, O'i), v.(T, O'i))dT vanishes at the point (ti+ 1 ((J;), :r (t i+l ((Ji), O'i)) 
for all y E YE, ( t, x), i = 0, .. . , q, we call such an embedding of "(;. canonical. 
Now, we can formulate 

THEOREM 3.1 Let "(; have a canonical embedding withov.t fo cal points. Then 
theTe e:~;is ts a neighbov:rhood W of "(; s11.ch that joT any admissible t-ra.fectO'l·y 
:~: (t) whose gmph lies in T; n W with the sa·me ends as"(; we have 

L (t, .1: (t), fi. (t)) dt ~ L (t, :r (t), v. (t)) rlt . 
/

·1.;+1 (0) ;·l·i+l (0) 

. 1.;(0) . 1.;(0) 

Proof. The consequence of the assumption about the existence of a canon
ical embedding .7: (t, O'i) , v, (t, O'i), v. (t, O'i) without focal points is that the ma
trix Xu; (t, 0) has rank Tn; for all t E [t;, t;+ 1]. By the implicit function theorem 
(Clarke, 1983), there exist a neighbourhood Ut. for all t E [t;, t i+1], a neighbour
hood V0 of (J ; = 0 and a map (J;: Ut _, Vo, such that :1: (t,O' ; (t)) = :~:. Since 
(Ji E Q; c ~m, and .T E ~", T/1; < n, the covering of the strip t E Ut. of ( t , .7:) 
by the extremals :1: (t, (Ji (t)) is not one to one. This covering will be descriptive 
(Young, 1!)69). Each small arc of .1: (t ,O'i ) is the image of an arc of (t,fJi (t)) in 
ui X Vo. Let us denote by Wt. the embedding of"(; restricted to the image under 
the map .7: (t, (J; (t)) of the set ui X Vo . The neighborhood w of"(; has the form 

w = U t.E[t, ,t,+ll w~.. 
In view of the assumption preceding the theorem (Lemma 4 in Nowakowski , 

1!)88), we have that the identity 

holds in [S;], where L; = L (t , :~; (t,O'i) ,v. (t,ai)). Then L:; is an exact spray of 
flights. The final inequality thus follows from Theorem 4 published in Nowakowski 
(1 ()00\ 
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We suppose one more hypothesis to be satisfied: 
H5. the function z+ (O"q) = l (x (T, O"q)) has a continuous derivative z:q in Tq. 

The map s: -) E:, ( E: = { (T, :r) J.r = x (T, O"q) , O"q E Q q } ) has the following 
property: given any bounded rectifiable curve C in E:, there exists a rectifiable 
curve r in s: such that C is its image under the map (T, O"q) -) (T, x (T, O"q)) 
and the ends of c are the images of those of r . 

Arguing analogously as in Nowakowski (1988) , we get: 

LEMMA 3.1 Under the assumption HS, the set E: is a Telative exact set to L::q. 

Our next step is to fit together many different sprays of flights . Analogously 
as in Nowakowski (1988) and in Young (1969) we have: 

DEFINITION 3.3 A finit e or countable seq11ence of spmy of flights in T 

will be t er-med a chain of fl ights if Et C Eif-1 foT i = 1, 2, .... 

If Ei of I:: 1 happens to be a relative exact set then all sets Ei and Ei, 
i = 1, 2, .. . , N, .. . , are relat ive exact sets, and such a chain will be termed an 
exact chain of flights. 

The consequence of the above definition and of Lemma 3. 1 is 

THEOREM 3.2 Let "/ have a canonical embedding (6) without focal points and 
let HS be satisfied. Then the .finite sequence L::q , I::q_ 1 , .. . , I::0 is an e2;act chain 
of flights in T . 

Proof. In view of Theorem 3.1 our canonical embedding, if we diminish it 
if necessary - obtaining in this way a W , consists of a finit e number of sprays of 
flights. What we need to do now is to join them together. But this procedure is 
described in Nowakowski (1988) and in Young (1969). In consequence, we have 
a chain of flights in T consisting of L::q, L::q_ 1 , ... , I::o . By the H5 and Lemma 
3.1, this chain is an exact chain of flights in T. • 

It is clear that the nonexistence of focal points for embedding (6) means that 
there arc no focal points in any subinterval [ti , ti+l], i = 0, . . . , q, in the sense of 
Definition 3.1. Therefore we can formulate the global version of Theorem 3.1. 

THEOREM 3.3 Let x (t), t E [0, T], have a canonical embedding (6) without fo cal 
points. Then the'f'e exists a neighbmhood W of x (t) such that foT any ad·rnissible 
tmjectoTy x(t), t E [0 , T] , x (0) = 0, whose gmph li es in T n W we have 

I·T ;·T 
L ( t, x ( t) , ii. ( t)) dt :::; L ( t , x ( t) , v. ( t)) dt. 
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In the sequel, the most important case of embedding (8) will be that in 
which the extremals a ll pass through the same point (0, 0). In that case we 
speak of a pencil of extrernals and the point (0, 0) will be termed its vertex. 
Thus we shall further consider only such an embedding of x (t) , t E [0, T], for 
which a family of canonical extremals in the subinterval [0, t 1] is of the form 
:~; (t , a 0 ) , y (t, a 0 ) , a 0 E Q0 C ~n subject at t = 0 to the initial comlition 

We assume that the matrix ( Xao, Yao) has rank n for 0"0 = 0. By Theorems 2.1 
and 2.2, there exist a neighbourhood N of (0, 0) and a local angle with vertex 
(O ,O,x(O)) such that the neighbourhood N can be covered by :~: (t , 0" 0 ) with 
line elemeuts (t , :~: (t , a 0 ) ,1: (t,a0 )) from the local angle. The vertex (0,0) is a 
focal point of this embedding. Other focal points, if any, on x (t), constitute the 
conjugate set of the point (0, 0). 

With the notion of the conjugate poiuts just defined, we shall write the 
followiug version of Theorem 3.3. 

THEOREM 3.4 (.Ja cobi) A ssume hypotheses (H1)-(H5) to be satisfied. Sv,ppose 
that :f: (t), t E [0, T], .r (0) = 0, contains no cor1:fvgate points of (0, 0). Then 
theTe e:rists an open set 1¥0 containing the gmph of i (t), t E [0, T], such that, 
fo ·r any othe·r ad·missible ha_jectory :~:(t) , t E [0 , T], :~:(0) = 0, whose gmph lies 
in W 0 , we have 

!·T ;·T L ( t) :f: ( t) ' fi. ( t)) rlt :::; L ( t' X ( t) ) 1J, ( t)) rlt . 
. 0 ' 0 
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