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Abstract: In this paper, a strong stability result is given for a
model of an overhead crance which consists of a motorized platform
moving along an horizontal beam with a flexible cable, holding a
load mass M. A non uniform stability result is also shown.
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1. Introduction
We consider the following system :

Yu (1) = (ayz )z (2,1) = 0 O<z<l, t>0,

—a(0)yz(0,1) + myeu(0,t) = F(t) t>0, (1)
a()y=(1,1) + Myu(1,t) =0 t >0,

Y(x,0) = yo(z) we(2,0) = () O<mz<1,

where
e y is a scalar function of the variables 2 and 1 (space and time variables).
e m and M are given physical constants (masses).
e a is a given function.
e ['is a scalar control force depending on time.
This system models an overhead crane which consists of a motorized platform
moving along an horizontal beam with a flexible cable, holding a load mass M,
under the following assumptions:
e The cable is completely flexible and non-stretching.
The length of the cable is constant.
Displacements are small.
Friction is neglected.
The masses m and M are point masscs.
The angle of the cable with respect to the vertical axis is small everywhere
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Figure 1. Overhead crane in 2-d.

Our goal is to find an appropriate feedback law for which the system (1)
is well-posed and can be stabilized. In d’Andréa-Novel, Boustany, Conrad and
Rao (1994), the authors studied this system with F(¢) = —ay(0,t) — f(:(0,1)).
They neglect the acceleration of the load . (1,¢) with respect to the gravity
acceleration g, and obtain the strong stability of the hybrid system by using
LaSalle’s invariance principle. In Rao (1993) or Rao (1994), LaSalle’s invariance
principle and Lyapunov approach were used to stabilize the hybrid system under
the condition m << M. A decay estimate of the energy associated to the system
is also given.

In this paper, we consider the case where the controls F(t) depend, as above,
only on position and velocity of the platform i.e. y(0,t) and y:(0,1), but we take
into account the two masses m > 0 and M > 0.

The paper is divided into five sections. Section 2 provides feedback laws and
cnergy associated to system (1). Section 3 gives a result on the well-posedness
of the system (1). In Section 4 a strong stability theorem is obtained by using
the method of energy. It is also shown that the system (1) cannot be uniformly
stable. In Section 5, we conclude.

2. Determination of the feedback laws

In this section, we give the feedback laws such that the system (1) will be
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follows:

¥

m M
2?,*2(0, t) + 31}3(0, t) + Tyf(l,t), (2)

1
B(t)= [o (532, ) + g (@, 1)dz +

where « is a positive number,

REMARK 2.1 The term ay?(0,t) is necessary to get stabilization to zero, and
can be replaced by « (y(0,t) — (:)2 if the objective is to drive the system to a
nonzero constant position.

We compute formally the derivative of the energy and integrate by parts.
We obtain

dE

dt
The choice F(t) = —ay(0,t) — f(y:(0,1)), under the condition that f is a non
decreasing function with f(0) = 0, leads to

dE
— (1) < 0.
) =0

() = (0, 8)(F(t) + ay(0,1)).

The system (1) is then dissipative.

In the next section, we use semi-group theory (see Pazy, 1983, Curtain and
Zwart, 1995, Cazenave, Haraux, 1990) to prove the well-poseduess of the system
(1). We transform this system into a system of the type of Uy + AU = 0, where
A is a maximal monotone operator on H, then we apply Hille-Yosida theorem.

3. Wellposedness

Inn the sequel of this paper, we assume that

e a€ HY(0,1), a(z) > ap > 0.

. f(yt(ov f)) = ﬁyt (01 t): where 3 > 0.
Let H = H'(0,1) x L?(0,1) x IR? be the energy space. H is a Hilbert space for
the inner product:

1
(g 2, u0), (¢, 2,0 v))y = / ayzy + 22'dz + ay(0)y'(0)
J0O

+muu’ + Mo’ (3)

REMARK 3.1 The norm associated to (.,.), is equivalent to the usual product
norm in H.

Let y be a regular solution of (1). We introduce the following auxiliary terms

@, t) = (e, t)  u(t) = w(0,1),

s TEN el N TT s = o)
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We write the system (1) into the form:
Vi) + (A+ B)U(®) =0, U(0)=Up e H, (1)

where the operators A and B are defined as follows:

D(A) =

{U = (y,2,u,v) € H*(0,1) x H(0,1) x IR?*|2(0) = wand z(1) = v}
AU =

(=2, ~(ayz)z, :;{ay(ﬂ) —a(0)yz(0)}, %a(l)ym(l)), YU € D(4).
BU = (0,0, %«; 0), YU € H.

We use semi-group theory to show the well-posedness of the system (4). First,
we have the following lemmas:

LEMMA 3.1 The operator A + B is mazimal monotone on H and its domain
D(A+ B) is dense in H.

Proof: First, we prove that A is a maximal monotone operator on H. A is
monotone on H since for all U € D(A) we have (AU,U) = 0.

A is maximal, indeed, let Uy = (yo,20,u0,%) € H, we will find
U = (y, z,u,v) € D(A) such that
U+ AU = Uy.

This equation can be written as follows

Y — (a¥z)z = yo + 20
(1+ 2)y(0) — 7-a(0)y:(0) = uo + y0(0) (5)
y(1) + 2ra()y(1) = vo + 1o(1).

We multiply the first equation of (5) by a test function ¢ € C*°(0,1) and
integrate by parts on [0,1]. We get:

L(y,6) = 1(4), (6)
where
1
Liy,¢) = /D y(x) + ayeda()dz + y(0)$(0)(m + ) + My(1)$(1)
¢) = [ $lon+0)(a)da. (7)

It is easy to see that L is coercive and continuous on H*(0, 1), and [ is continuous
on H'(0,1). So by the Lax-Milgram theorem, there exists one and only one
y € H'(0,1) such that (6) holds for all ¢ € H'(0,1). We will prove that y is




Strong stability of a model of an overhead crane 367

the unique solution of (5). Considering a test function ¢ € C§(]0,1[), (6) can
be written as follows:

vl 1
/ ay:$z(z) + yo(z)dr = / ¢ (Yo + zo) (z)dz.
40 J0
This equality leads to the equation

y— (6Ys), = Yo + zo, (8)

in the sense of distributions. Since yo + zp € L3(0,1) and y € L?*(0,1), the
equality (8) is true in L?(0,1). Then y € H?(0,1), since a € H'(0,1), (see Mif-
dal, 1997). The boundary conditions at = 0 and z = 1 of (5) can be obtained
by integrating by parts the equality (6), with test function ¢ € H'(0, 1), and
using (8).

Hence, A4 is a maximal operator on H.

Moreover, it is obvious that B is continuous on H and monotone. This
completes the proof of Lemma 3.1 (see Brézis, 1973). 2]

Now, we apply Hille-Yosida theorem to the system:

{ U+ (A+BYU =0

THEOREM 3.1 1. For all initial data Uy = (yo, 20,20, v0) € D(A), there ex-
ists o unigque solution of the system (4) U(x,t) = (y(x, ), z{(z, Ou(t),v(t)) €
D(A). Moreover, we have the reqularity:

y € C°%0,00; H*(0,1)) NC*(0,00; H'(0,1))
y(Ua ')a y(1= ) € 02(03 OO;R)' (9)
2. For all initial data Uy = (yo, z0,U0,v0) € H, there exists a unique weak
solution of the system (4) Ulx,t) = (y(z, 1), z(z, 1), u(t),v(t)) € H. More-
over, we have the regularity:
y € C°0,00; HY(0,1)) N C*(0,00; L*0,1)). (10)

REMARK 3.2 The problems (1) and (4) are eguivalent for all
Us = (yo, 20, U0, vo) € D(A) (see Mifdal, 1997).

4. Stability
4.1. Strong stability

In this subsection we prove strong stability of (4) by using the invariance prin-
ciple of LaSalle. We first pive the lemmas which will be used in the proof of the
main result of this subsection.

LEMMA 4.1 The canonical injection of D(A) into H is compact.

The proof of Lemma 4.1 is obvious.
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LEMMA 4.2 The function ¢, being the solution of the system

¢z(z) + B|%=|(z) = 1 O<a<l
i )

satisfies the following properties
e ¢(z) < —M, and ¢(1) = —M.

e ¢(z) >1 0zl
e a($),(x)>1, O<az<l.

Proof: The function ¢, solution of the system (11), can be written as follows

o(z) = {[ exp ([1 |%“;(o)da) ds — M} exp (- /II |%3-|(3)d3) <0. (12

This leads to the properties
1. ¢z =1-¢|%| > 1,

2. vz € [0,1] ¢(z) < ¢(1) = —M.

3. a‘('ff)m: ¢: - ¢%:'
2 ¢zt Qﬁ[%l = 1.

[ |
LEMMA 4.3 Let y be a solution of
Yo (2, t) — (aye)z(2,1) = 0 0x@el 50
a(0)y2(0,1) — ay(0,£) = 0 t>0
ayz(1,t) + My (1,t) =0 t>0 (13)

y:(0,t) =0 t>0
y(2,0) = yo(z) ye(2,0) =y (z)

with y verifing (9). Then, y vanishes identically.

Proof: We integrate the first equation of (13) in z and ¢ to get

.1 T
| ) @ ts = [ (ana(1,0) - ap (0,
0 JO

[T(—Myuil,t) —ay(0,t))dt
J0
My(1,0) — 5:(1,T)] — aTy(0,1).

Il

By using triangular inequality and Young’s inequality, we obtain

1 -1
[ D) + My < [ e, Tl + Mlye(1, 7))
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il
=t T)|?
+2€M|yt(1’ )l
£ %(1+M) + %E(T).
1
1
[ o0+ Mp,0) < 50400+ 2B(0)
Jo
If we take €; = ¢(1 + M) and C, = %, then

aTly(0,t)] < e+ %(E(O) + E(T))

< €+ CEE(O)

This inequality is available for all T' positive, so we deduce that
y(0,t) =0 Vt > 0. (14)

Now, consider the solution ¢ of (11), multiply the first equation of (13) by ¢y,
and integrate in z and t. We obtain:

T
/ / Yty (z, ) ddt =
JO JO
i
[,/o Yoy (x,t)dz)d / / Y DYt (T, t)dzdt
2l
-1 ¢(m>ywm<x,t)dx1§—§./o /0 B (52 (3, )
il 1 T
=[/ ¢(~77).1/r,ym(w,t)dw]oT—§[/O o(z)y2 (z, t)dt)

/ / y2 (z,t)p(x) pdadt

/ / O(2)Yo(0ys)x (z, t)dxdt =
// 2z ((ayz)?)s(z, t)dzdt

o / [@m 2, 1))}

/ /

We combine these terms and use the equality y:(0,%) = 0 to get:

z)ay2(v,t) + ¢ (x)y? (z, t)drdt + — o y2(1,t)dt
2 Jo

)eay> (z,t)dzdt.

T
—[/ as(a:m/v(m.mdﬂhl(/ ® (o) a2 (. O
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Using the properties of ¢ in the second member, ay;(0) = ay(0) = 0, and
neglecting the second term in the second member which is negative, we get:

T 1
| Bwas< - [ ol (15)
0 JO
Hence
T
/'Emm < C(E(T) + E(0))
' < 2CE©).

From :(0,#) = 0, we deduce that the energy is constant. Hence
B(T) < ZCB(0),
and then
Et)=0Vt>0,
ie
y = 0. | |
THEOREM 4.1 Let Uy € H. We have
lim E(t) =0 (16)

t—oo

Proof: Since D(A) is dense in H, we can take Uy € D(A). So, let Uy =
(Y0, 20, 10, v0) € D(A). We have (see Cazenave, Haraux, 1990)

o w(lp) #0,

e S(t)w(Us) C D(A),

e E(t) is constant on w(Uy),
where w(Up) is the w-limit set of Up, and S(t) is the C%semi-group generated
by the operator A + .

If we prove that w(Up) = {0}, then the distance between S(t)Up and w(Up)
converges to zero, which then implies

Jim E(t) =0. (17)

So let us show that w(Up) = {0}. .
Let Uy = (y1,21,u1,v1) € w(Up) C D(A) and let U(z,t) = (3, Z,4,7)(z,t) be
the solution of (4). We have:

Uz, t) = S()U, € w(lp) ¥t > 0,

s0, the energy function E(i) is constant, and then §;(0,#) = 0. Theorem 4.1 is
a 1. i ~r 4 n =
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REMARK 4.1 Systemn (1) with F(t) = —ay(0,1) — fy(0,1) can be written in the
following form

u; = Au + Bw,

with w = —B*u, where
0 I 00 0
4L (aL) 00 0 0
20 4] 5~ Z(0|o 0 0 0 8
—d | 00 0 0

A has a compact resolvant and generates a semi-group on H, and B is bounded
on H. So, strong stability of systemn u, = Au— BB*u amounts to prove that the
only solution of B*eA'u = 0 for any t > 0 is u = 0, Slemrod (1989). This is
exactly what is contained in Lemma 4.3. See also Benchimol (1978) for a rather
general treatment of necessary and sufficient conditions to obtain strong or weak
stabilizability of contraction semi-groups, and You (1988) for an application to
a vibrating plate.

4.2. Nonuniform stability

In the system (4), we have a compact perturbation of the linear operator A on
Hilbert space H. Using a compactuess perturbation argimnent due to Russell
(1975), we will prove the nonuniform stability of (4).

DEFINITION 4.1 Let A be an operator generating a C° semi-group (S(t))iso,
A is uniformly stable if there exists M > 0 and w > 0 such that

IS(t)]| € Me™* ¥t > 0.
We recall that if A is a lincar operator, with dense domain on Hilbert space H
aud if we denote by (.,.) the inner product on H, we define the adjoint A* as
follows

D(A™) = {¢ € H|Fc > 0 |(¢, Au)| < ¢|ju]| Yu € D(A)},

(A*v,u) = (v, Au), Yu € D(A), Yv € D(A*).
LEMMA 4.4 The operator A is skew-adjoint on H.

Pranf.
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A is skew-symmetrical, in fact from the proof of Lemma 3.1, we deduce that
for all U and V' in D(A)
(AU +V),U+V)g =0,
which leads to:
(AU Vg = —(U, AV )y Y V € D(A) Y U € D(A).
Morever D(A) C D(A*). In fact let ® € D(A). We show that & € D(A*). Let
U € D(A), we have
I(®, AU)ull = | - (A2, V)]
< AR U]k,

which implies the inclusion of D(A) into D(A*).

Conversely, let x € D(—A*), and put g =2 — A*z € H.
Since A is maximal monotone on H, there exists y € D(A) such that
g=y+Ay.
We use the fact that A* = —A on D(A), we put z = 2 — y to obtain:
(z,2) = (A%z,2) < 0.
Hence 2 =0i.e. 2 =y € D(A).

REMARK 4.2 The operator A, which is maximal monotone and skew adjoint,
generates a group of isometries that we denote (S4(t))ie -

Now, we can give the result of nonuniform stability
THEOREM 4.2 The problem (4) is not uniformly stable.

Proof: Let U = (y(a,1), z(x,t),u(t), v(t)) € D(A) be the solution of the prob-
lem (4) with initial condition U(0) = Uy € D(A). We introduce the auxiliary
terms:
j(z, 1) y(z, =), Z(z,t) = —z(z, —t),
a(t) = —u(-t), o) = —v(~1),
Ua,t) = (j(a,1), 2(z,1),8(t), 5(t)).

We verify casily that

40 L (A-B)T=01t>0

{ U(z,0) = (y(z,0), —2(z,0), —u(0), —v(0)), 0 <z < 1 (18)

This solution can be written as:

U(z,t) = S@t)U(z,0) t>0 0<z<]1,
where S(t) is the C° semi-group which is associated to A — B. The operator A
generates a group of isometries, the operator B is compact. So, from Russell’s
theorem, Russel (1975), there exist no reals v < 1 and T > 0 such that we have:
IS < =,

=T - 10\
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On the other hand, we have ¥Vt > ()
U (z,0)|| = 1T (z,0)], (20)
U, )| = [T (2, ~t)]l. (21)
We deduce

IS = 1S(=1)].

Finally, from (19) we deduce that there exist no reals v < 1 and 7' > 0 such
that we have:

I1S(T)] <. (22)
|

5. Conclusion

The hybrid system modeling an overhead crane can be stabilized strongly but
not uniformly when the action on the platform depends only on its position
y(0,1) and velocity 2:(0,1). To obtain the uniform stability, we may take into
account the rotation velocity of the cable at 2 = 0 (see Mifdal, 1997).

Aknowledgement

The authors thank the referces for helpful suggestions.

References

D'ANDREA-NOVEL, B., BOusTANY, I., CONRAD, . and Rao, B. (1994)
Feedback stabilization of a hybrid PDE-ODE system: Application to an
overhead crane. Math. Control Signals Systems, 7, 1-22.

BALAKRISHNAN, A.V. (1981) Strong stabilizability and the steady state Ric-
cati equation. Applied Mathematics and Optimization, 7, 335-345.

BENCHIMOL, C.D. (1978) A note on weak stabilizability of contraction semi-
groups. SIAM Journal on Control and Optimization, 16, 373-379.

BousTany, F. (1992) Commande non linéaire adaptative de systémes mécani-
ques de type pont roulant. Stabilisation frontiére d’EDP. These Ecole des
Mines de Paris.

BrEzis, H. (1983) Analyse fonctionnelle, Théorie et Applications. Masson.

BrEzis, H. (1973) Opérateurs mazimaux monotones et semi-groupes de con-
tractions dans les espaces de Hilbert. North-Holland.

CAZENAVE, T. and HARAUX, A. (1990) Introduction auz problémes d’évolution
semi-linéaires. SMAI Ed. Ellipses.

CONRAD, IF., MORGUL, O. aud Rao, B. (1994) Ou the stabilization of a ca-

| 5% FEMRPEEY, JI°X | LYy o TR m et L r ' I 2/ O an N ar



374 F. CONRAD and A. MIFDAL

CONRAD, F. and Rao, B. (1993) Dccay of solutions of the wave equation in
star-shaped domain with nonlinear boundary feedback. Asymptotic Anal-
ysis, 7, 159-177.

CuURTAIN, R.F. and ZwarT, H.J. (1995) An introduction to infinile dirnen-
stonal linear systems theory. Springer-Verlag,

Haraux, A. (1978) Semi-groupes linéaires et équations d’évolution linéaires
périodiques. Publication du Laboratoire d’Analyse Numdérique No. 78011,
Université Pierre et Marie Curie, Paris.

ICART, S., LEBLOND, J. and SAMsoN, C. (1991) Some results on feedback sta-
bilization of a one-link flexible arm. Rapport de Recherche INRIA-Sophia
Antipolis No. 1682.

JosH1, S.M. (1989) Control of Large Flexible Space Structure. Lectures notes
in control and information sciences, 131, Springer-Verlag,.

LAGNESE, J. (1989) Boundary Stabilization of Thin Plates. SIAM Studies in
Appl. Math., Philadelphia.

LASALLE, J.P., LEFSHETZ, S. (1961) Stability by Lyapunuv’s direct method.
Academnic Press.

LiTT™MAN, W, and MARKUS, L. (1988) Stabilization of Lybrid system of clas-
ticity by feedback boundary damping. Annali di Mathematica Pura ed
Applicata, IV, 152, 281-330.

MIFDAL, A. (1997) FEtude de la stabilisation forte et uniforme d'un systéme
hybride: Application @ un modéle de pont roulant. These Université de
Nancy.

MIFDAL, A. (1997) Stabilisation uniforme d'un systéme hybride. C. R. Acad.
Sei. Paris, 324, série 1, 37-42.

Pazy, A. (1983) Semigroups of Linear Operators and Applications to Partial
Differential Equations. Springer Verlag, New York.

Rao, B. (1993) Decay estimates of solutions for hybrid system of flexible struc-
tures. Eur. J. of Applied Math., 4, 303-319.

Rao, B. (1994) Mémoire d’Habilitation & diriger des recherches. Université
de Nancy L.

RusseLL, D.L. (1975) Decay rates for weakly damped systems in Hilbert space
obtained with control theoretic methods. J. Differential Equations, 19,
344-370.

SLEMROD, M. (1989) Feedback stabilization of lincar control system in Hilbert
space with an a priori bounded control. Mathematics of Control, Signals
and Systems, 2, 265-285.

You, Y. (1988) Dynamical Boundary Control of Two-Dimensional Petrovsky
Systemn: Vibrating Rectangular Plate. Lecture notes in control and infor-
mation sciences, Springer-Verlag, Heidelberg, 111, 519-530.



