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Abstract: In this paper, a strong stability result is given for a 
model of an overhead crane which consists of a motorized platform 
moving along an horizoutal beam with a flexible cable, holding a 
load mass NJ. A uon uniform stability result is also shown. 
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1. Introduction 

We consider the following system : 

where 

{ 

Vu.(.?;, t)- (avx)x(:r, t) = 0 
-n.(O)yx(O, t) + rnyu.(O, t) = F(t) 

a.(1)vx(1, t) + Myu(1, t) = 0 
y(.?:, 0) = vo(:r) 1/t(.?:, 0) = 7/1 (:r) 

0 <X< 1, t > 0, 
t > 0, 
t > 0, 

() <X< 1, 

(1) 

• 11 is a scalar function of the variables .?; and t (space and time variables). 
• m. and NI arc given physical constants (masses). 
• a. is a given function. 
• F is a scalar control force depending on time. 

This system models an overhead crane which consists of a motorized platform 
moviug along an horizontal beam with a flexible cable, holding a load mass JV!, 
under the following assumptions: 

• The cable is completely flexible and 11on-stretching. 
• The length of the cable is constant . 
• Displacements arc small. 
• Friction is neglected. 
• The masses rn and M arc poiut masses. 
• The angle of the cable with respect to the vertical axis is small everywhere 
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Figure 1. Overhead crane in 2-d. 

Our goal is to find an appropriate feedback law for which the system (1) 
is well-posed and can be stabilized. In d 'Andrea-Novel , Boustany, Conrad and 
Rao (1994), the authors studied this system with F(t) = - ay(O, t)- f(Yt(O, t)) . 
They neglect the acceleration of the load Ytt(1, t) with respect to the gravity 
acceleration g, and obtain the strong stability of the hybrid system by using 
LaSalle 's invariance principle. In Rao (1993) or Rao (1994), LaSalle's invariance 
principle and Lyapunov approach were used to stabilize the hybrid system under 
the condition m < < M. A decay estimate of the energy associated to the system 
is also given. 

In this paper, we consider the case where the controls F(t) depend, as above, 
only on position and velocity of the platform i.e. y(O , t) and Vt(O, t), but we take 
into account the two masses rn > 0 and M > 0. 

The paper is divided into five sections. Section 2 provides feedback laws and 
energy associated to system (1). Section 3 gives a result on the well-posedness 
of the system (1). In Section 4 a strong stability theorem is obtained by using 
the method of energy. It is also shown that the system (1) cannot be uniformly 
stable. In Section 5, we conclude. 

2. Determination of the feedback laws 

In this section, we give the feedback laws such that the system (1) will be 
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follows: 

1 /'
1 

2 2 a 2 m 2 Jvf 2 
E(t) = 2 .fo (Yt (x , t) + ayx(x, t))d.T + 2y (0, t) + -;;:Yt (0, t) + 2"Yt (1, t) , (2) 

where a is a positive number. 

REMARK 2.1 The term ay2(0, t) is necessaTy to get stabilization to zem, and 
can be Teplaced by a (y(O, t) - c) 2 if the objective is to dTive the systern to a 
nonzeTO constant position. 

We compute formally the derivative of the energy and integrate by parts. 
We obtain 

dE 
- (t) = Yt(O, t)(F(t) + ay(O, t)). 
dt 

The choice F(t) = -ay(O , t)- f(Yt(O , t)) , under the condition that f is a non 
decreasing function with f(O) = 0, leads to 

The system (1) is then dissipative. 
In the next section , we usc semi-group theory (see Pazy, 1983, Curtain and 

Zwart , 1995, Cazcnave, Haraux, 1990) to prove the well-poscdness of the system 
(1) . We transform this system into a system of the type of Ut +AU= 0, where 
A is a maximal monotone operator on H , then we apply Hille-Yosicla theorem. 

3. Wellposedness 

In the sequel of this paper, we assume that 
• a E H 1 (0, 1), a(x) 2: ao > 0. 
• f(Yt (O , t )) = f3Yt(O , t) , where {3 > 0. 

Let H = H 1 (0, 1) x £ 2 (0 , 1) x JR2 be the energy space. His a Hilbert space for 
the inner product : 

((y, z , v., v), (y', z', v.', v' ))H 11 

avxY~ + zz'dx + ay(O)y'(O) 

+nmv.' + M vv'. (3) 

REMARK 3.1 The nann associated to (. , . ) H is equivalent to the 11.sv.al prodv.ct 
TW'rm. in H . 

Let y be a regular solution of (1). We introduce the following auxiliary terms 

z(x, t ) = Yt(x, t) v.(t) = Yt(O, t ), 
• .f+\ - •. ( 1 +\ TT - ( •. - • · •. \ 
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We write the system (1) into the form: 

Ue(t) +(A + B )U(t) = 0, U(O) = Uo E H , 

where the operators A and B are defined as follows: 

D (A ) = 

{U = (y, z, v., v) E H 2 (0, 1) x H 1 (0, 1) x IR2 1z(O) = u and z(1) = v} 

AU = 
1 1 

( -z, -(avx)x, m. {ay(O)- a(O)yx(O)} , Ma(1)yx(1)), VUE D(A). 

(J nu = (o, o, - ·u, o), vuE H. 
m. 

(4) 

We use semi-group theory to show t he well-posedness of the system ( 4). First , 
we have the following lemma: 

LEMMA 3.1 The operator A + B is maximal monotone on H and its domain 
D (A +B) is dense in H. 

Proof: First, we prove that A is a maximal monotone operator on H . A is 
monotone on H since for all U E D(A) we have (AU, U) = 0. 
A is maximal, indeed, let Uo = (vo, zo, uo, v0 ) E H , we will find 
U = (y, z, u, v) E D(A) such that 

U +AU= Uo. 

This equation can be written as follows 

{ 

Y - (ayx)x = Yo + zo 
(1 + ~)y(O) - ~a(O)yx(O) = Uo + Yo (O) 
y(1) + ~a(1)y,(1 ) = vo + Yo (1) . 

(5) 

We multiply the first equation of (5) by a test function </J E C 00 (0, 1) and 
integrate by parts on [0, 1]. We get: 

L(y,</J) = l(</J ), (6) 

where 

L(y,</J) .fo
1 

y</J(x) + ayx</Jx(x)dx + y(O)<P(O)(m +a)+ My(1)</J(1) 

l ( <P) 11 

</J(yo + zo) (x) dx . (7) 

It is easy to see that Lis coercive and continuous on H 1(0, 1), and lis continuous 
on H 1(0, 1). So by the Lax-Milgram theorem, there exists one and only one 
y E H 1(0, 1) such that (6) holds for all <PE H 1(0, 1). We will prove that y is 
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t he unique solut ion of (5). Considering a test function cp E CQ"(]O, 1[), (6) can 
be written as follows: 

j ·l ayxc!Jx(x) + ycp(x)dx = ( cp (Yo + zo) (x)dx. 
o .fo 

This equa lity leads to the equation 

(8) 

in the sense of distributions. Since y0 + z0 E £ 2 (0, 1) and y E £ 2 (0, 1), the 
equality (8) is true in £ 2 (0, 1). Then yE H 2 (0, 1), since a E H 1 (0, 1), (see Mif­
dal, 1997). The boundary conditions at x = 0 and x = 1 of (5) can be obtained 
by integrating by parts the equality (6), with test function cp E H 1 (0, 1), and 
using (8). 

Hence, A is a maximal operator on H. 
Moreover, it is obvious t hat B is continuous on H and monotone. This 

completes the proof of Lemma 3.1 (see Brezis, 1973). • 
Now, we apply Hille-Yosicla theorem to the system: 

{ 
Ut+ (A+ B)U = 0 
U(O) = Uo 

THEOREM 3. 1 1. For- all initial data U0 = (y0 ,zo,uo,vo) E D(A), ther·e ex-
ists a unique solution of the system. (4) U(x, t) = (y(:r:, t), z(x, t)u(t), v(t)) E 

D(A) . Mor·eove-r, we have the r·egular-ity: 
y E C 0 (0,oo; H 2 (0, 1)) n C 1 (0,oo; H 1(0, 1)) 

y(O, .), y(1, .) E C 2 (0, oo; R) . (9) 
2. FaT all initial data U0 = (y0 , z0 , u0 , v0 ) E H , ther-e exists a unique weak 

solution of the system. (4) U(x, t) = (y(x, t), z (x, t), u(t), v(t)) EH. Mor-e-
over-, we have the r-egularity: 

y E C 0 (0,oo;H1 (0, l))nC1(0,oo;L2 (0,1)). (10) 

REMARK 3.2 The pmblem.s (1) and (4) are eq'u.ivalent joT all 
Uo = (yo, zo, uo, vo) E D(A) (see Mifdal, 1997). 

4. Stability 

4.1. Strong stability 

In this subsection we prove strong stability of ( 4) by using the invariance prin­
ciple of LaSalle. We first give t he lemmas which will be used in the proof of the 
main result of this subsection. 

LEMMA 4 .1 The canonical injection of D(A) into H is compact. 

The proof of Lemma 4.1 is obvious. 
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LEMMA 4.2 The function ¢, being the solution of the system 

{ 
<Px(x) +¢1a;l(x) = 1 
¢(1) = -M 

satisfies the following properties 
• ¢(x) ~ -M, and ¢(1) = -M. 
• </Jx( .'E ) 2:: 1 0 < .'E < 1. 
• a(~)x(x) 2:: 1, 0 < .'E < 1. 

(11) 

Proof: The function ¢, solution of the system (11), can be written as follows 

¢(x) = {lx exp (lsI a: l(a)do-) ds- M} e.'Ep ( -lx I~ l(s)ds) ~ 0. (12) 

This leads to the properties 
1. </Jx =1- ¢171 2:: 1, 

2. Vx E [0, 1] ¢(x) ~ ¢(1) = -M. 

3. a(~)x=</Jx-¢7 
2:: </Jx + ¢1 a; I = 1. 

• 
LEMMA 4.3 Let y be a sol·u.tion of 

l 
Ytt(X, t)- (ayx )x(.'E, t) = 0 0 < .'E < 1 t > 0 
a(O)yx(O, t)- ay(O, t) = 0 t > 0 
ayx(1, t) + Mytt(1, t) = 0 t > 0 

Yt (0, t) = 0 t > 0 
y(x,O) = Yo(x) Yt ( :~;,O ) = Yl(:~;) 

(13) 

with y ve·rifing (9). Then, y vanishes identically. 

Proof: We integrate the first equation of (13) in x and t to get 

j
·l 

0 
(yt( x, T)- Yt(x, O))dx = j

·T 

0 
(ayx(1 , t)- ayx(O, t))dt 

j
·T 

(-Mytt(1,t) -ay(O,t))dt 
. 0 

M[yt(1, 0) -yt(1,T) ]-aTy(O,t) . 

By using triangular inequality and Young's inequality, we obtain 

I [\vt(x,T)+Myt(1,T)I ~ {1vt(x ,T)Idx+Miyt(1,T)I 
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1 
+ 2E MIYt(1, T)l2 

E 1 
< 2(1 + M) + -;_E(T). 

E 1 
-(1 + M) + -E(O). 
2 E 

If we take E1 = E(1 + M) and c€ = ~,then 
E 

aTiy(O, t)l ~ E1 + ~- (E(O) + E(T)) 

~ E1 + C,E(O). 

This inequality is available for all T positive, so we deduce that 

y(O, t) = 0 'Vt > 0. 
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(14) 

Now, consider the solution¢ of (11), multiply the first equation of (13) by ¢Yx 
aucl integrate in x and t. We obtain: 

/

·T ;·1 
Ytt¢Yx(x, t)dxdt = 

. 0 . 0 

/
·1 j·T ;·1 [ Yt¢Yx(x, t)d:r]6- Yt¢Yr-t( .r, t)dxdt 

. 0 0 . 0 

/
·1 1 ;·T ;·1 

= [ ¢(x)YtYx(x, t)dxJ6- 2 ¢(x)(yz)x(x, t)d.rdt 
. 0 . 0 . 0 

/

·1 1 ;·T 
= [ ¢(x)YtYx(x, t)dx]6- 2[ ¢(.r)yz(x, t)dtJ6 

. 0 . 0 

1 ;·T ;·1 +2 y;(.r, t)¢(x)xdxdt 
. 0 . 0 

/
·Tj·1 

¢(.r)yr-(a.yx)x(x, t)&rdt = 
' 0 0 

1 ;·1 ;·T cp(::e) 2 -
2 

-((a.yx) )x(.r, t)dxdt 
. 0 . 0 a. 

1 ;·T[¢(.r) 2 ]1 
= -

2 
-(a.vx) (x, t)rlt 0 

. 0 a. 

1 ;·T ;·1 ¢(.r) 2 -- a.(-)xavx(.r, t)rl.ult. 
2.o .o a. 

We combine these terms and use the equality Yt(O, t) = 0 to get: 

1 ;·T ;·1 (¢) M ;·T ? 2 a. ~ (.1:)a.y;(x, t) + ¢x(x)yZ(.r, t)rlxdt + 2 y;(1, t)dt 
• 0 • 0 X • 0 

/
·1 1 ;·T cp 

= -r dJ(x)1!t1!rCr.t)dx1l: + ::-r -(x)(av.,. )2 (r. t)1A . 
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Using the properties of ¢ in the second member, ayx(O) = ay(O) = 0, and 
neglecting the second term in the second member which is negative, we get: 

j·T ;·1 
E(t)dt :S - ¢[YtYx]~ d.r- . 

0 . 0 

Hence 

.lr E(t)dt < C(E(T) + E(O)) 

< 2CE(O). 

From Yt(O , t) = 0, we deduce that the energy is constant. Hence 

E(T) ::; ~CE(O), 
and then 

E(t) = 0 V t 2 0, 

i.e 

y := 0. • 

THEOREM 4.1 Let U0 E H. We have 

lim E(t) = 0 
t-+oo 

(15) 

(16) 

Proof: Since D(A) is dense in H, we can take Uo E D(A). So, let Uo = 
(yo, zo, u0 , v0 ) E D(A). We have (see Cazenave, Haraux, 1990) 

• w(Uo) i= 0, 
• S(t)w(Uo) c D(A), 
• E(t) is constant on w(U0 ), 

where w(Uo) is thew-limit set of U0 , and S(t) is the C0-semi-group generated 
by the operator A + B. 

If we prove that w(Uo) = {0}, then the distance between S(t)Uo and w(Uo) 
converges to zero, which then implies 

lim E(t) = 0. 
t~oo 

(17) 

So let us show that w(Uo) = {0}. 
Let ul = ('!Jl,Zl,v•l,vl) E w(Uo) c D(A) and let U(x,t) = (jj,z,v.,v)(x,t) be 
the solution of (4). We have: 

U(x, t) = S(t)U1 E w(Uo) Vt 2 0, 

so, the energy function E(t) is constant, and then Yt(O, t) = 0. Theorem 4.1 is -
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REMARK 4.1 System. (1) with F(t) = -uy(O, t)- f3Yt(O, t) can be ?J!'ritten in the 
following fm"rn 

v.t = Av. + Bw, 

with w = -B*u, wheTe 

0 I 0 0 0 

.E... (a .E...) dx 'dx 0 () 0 0 

A= B= 
a~~) d~ lx=O ~ () lx=D () () () fi 
- ai~) ddr, lr.=l () () () 0 

A has a compact 1·esolvant and genemtes a sem.i-gmup on H, and B is bounded 
on H. So, st'!'ong stability of system v 1. =An- BB*v. arnonnts to pmve that the 
only solution of B*eAtv. = 0 fo ·r any t ;:::: 0 is v. = 0, Slem.md (1989). This i:; 
exactly what is CO'ntained in Lem:rna 4.8. See also Benchim.ol (1918) fo·r a mthe·r 
geneml t·reatm.ent of n.ecessm·y and svJjicient conditions to obtain sl:rong O'!' weak 
stabil1:zability of contmction sem.i-gmv.ps, and You (1988) jo'l' an application to 
a vib·mting plate. 

4.2. Nonuniform stability 

In the system (4), we have a compact perturbation of the linear operator A on 
Hilbert space H. Using a compactness perturbation argument clue to Russell 
( 1975), we will prove the nonuniform stability of ( 4) . 

DEFINITION 4.1 Let A be an opemto·r genemting a C0 sem.i-gTO?l.p (S(t))t >o, 
A is v.TI.ijm"Tnly stable if theTe e1:ists JVI > 0 and w > 0 such that 

IIS(t) II :::; M e-wt Vt ;:::: 0. 

Vve recall that if A is a liucar operator, with deuse domain 011 Hilbert space H 
aud if we denote by (., .) the inner product on H, we define the adjoint A* as 
follows 

D(A*) = {¢ E HI::Jc:;:::: 0 I(¢,Au)l:::; c: II11IIVv. E D(A)}, 

(A*v, v.) = (v, Au), Vv. E D(A), Vv E D(A*). 

LE!vi!VIA 4.4 The opemto·r A is skew-adjoint on H. 
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A is skew-symmetrical, in fact from the proof of Lemma 3.1, we deduce that 
for all U and V in D(A) 

(A(U + V) ,U + V)H = 0, 
which leads to: 

(AU, V)H = -(U, AV)H '</ V E D(A) '</ U E D(A). 
Morever D(A) C D(A*). In fact let~ E D(A). We show that <I> E D(A*). Let 

U E D(A) , we have 
II(<I>, AU)HII = II - (A~, U) ll 

:::; IIA<I>IIHIIUIIH, 
which implies the inclusion of D(A) into D(A*) . 

Conversely, let xED( -A*), and put g = x- A*.?: E H. 
Since A is maximal monotone on H, there exists y E D (A) such that 
g = y+Ay. 
We use the fact that A* = -A on D(A) , we put z = x- y to obtain: 

(z,z) = (A* z,z):::; 0. 
Hence z = 0 i. e. x = y E D(A) . 

REMARK 4.2 The operator A, which is maximal monotone and skew adjoint, 
generates a gr·ov.p of isometr-ies that we denote (SA(t))tEm· 

Now, we can give the result of nonuniform stabili ty 

THEOREM 4.2 The pmblern (4) is not umfonnly stable. 

Proof: Let U = (y(.?:, t), z(.?:, t ), v.(t), v(t)) E D(A) be the solution of the prob­
lem (4) with initial condition U(O) = U0 E D(A). We introduce the auxiliary 
terms: 

jj(.?:, t) 

v.( t) 

U(x, t) 

y( :J.:, -t), z(x , t) = -z(:~:, - t), 

-u( -t), v(t) = -v( -t), 

(jj(x,t),z(x,t),u(t),v(t)). 

We verify easily that 

{ 
~~ +(A- B)U = 0 t > 0 

U(.1:, 0) = (y(x, 0), -z(:~:, 0), -v.(O), -v(O)), 0 < :r < 1 

This solution can be written as: 

U(x, t) = S(t)U(x , 0) t > 0 0 < x < 1, 

(18) 

where S(t) is the C0 semi-group which is associated to A- B. The operator A 
generates a group of isometrics, the operator B is compact. So, from Russell's 
theorem, Russel (1975), there exist no reals 1 < 1 and T > 0 such that we have: 

IIS(T)II < ,, 
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On the other hand, we have "it 2 0 

IIU(x, O)II = IIU(.r,O)I I, 

II U(:1:, t)ll = II U(.r, -t)ll· 

We deduce 

IIS(t) ll = liS( -t)il· 
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(20) 

(21) 

Final ly, from (19) we deduce that there exist no rcals 1 < 1 and T > 0 such 
that we have: 

IIS(T)I :::; ,. 

5. Conclusion 

(22) 

• 
The hybrid system modeling an overhead crane can be stabilized strongly but 
not uniformly when the action on the platform depends only on its position 
y(O, t) and velocity Yt(O, t). To obtain the uniform stabi li ty, we may take into 
account the rotation velocity of the cable at:-~;= 0 (sec 1\!Iifdal, 1997) . 
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