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1. Introduction 

The notion of contingent derivative of a set-valued mapping plays an important 
role in vector optimization. For instance, cont ingent derivat ive is used to for
nmlate optimality conditions for vector optimization pro!Jlcms with set-valued 
maps (eg. Corley, 1988, Luc, 1989), and to study sensitivity (eg. Tanino, 1988a, 
b, Sawaragi, Nakayama and Tanino, 1985, Shi, 1993) . 

To derive sufficient and necessary optimality conditions Jahn and Rauh 
(1997) introd uced the notion of contingent cpiderivative of a set-valued map. In 
the present paper we give an alternat ive definition of contingent epiderivative 
and present some of its applications. In Section 2, we introduce the concept of 
contingent cpiclcrivative and investigate its properties. In Section 3, we forn1ll
late necessary optimality conditions for Denson 's proper minimality and suffi
cient optimality conditions for minimality for a set-valued optimization problem. 
In Section 4, we exploit the contingent epiclerivative to study sensitivity of a 
r .... . .... ~ l ~- ...... c ________ ... _ : ~- ..1 -· -~· .... --- ___ J..: . ·-- l. · 
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2. Contingent epiderivative of set-valued mappings 

In this section we give a definition of contingent epiderivative for set-valued 
mappings. 

Let X and Y be real normed spaces, and Jet F: X ----) Y be a set-valued 
mapping. The domain and graph of F are defined by 

dom(F) := {x EX I F(.r.) # 0}, 

·gr(F) := {(.r. , y) EX x Y I y E F(.r.)}. 

DEFINITION 1 (Aubin and Frankowska (1990)) Let A be a nonempty set of 
X and v. E cl(A) (closur·e of A) a given element. The contingent cone TA ( v.) is 
defined by 

TA(v.) = {vEX I liminf h- 1c!A (v. + hv ) = 0}, 
hlO 

whe·re dA ( v.) = inf llv. - vII· Equivalently, v E 1'.4 ( v.) if and only if theTe exist 
vEA 

sequences { h,} of positive Teal n11.rnbeTS and { v,.} C X with h, ----) 0, v, ----) v 
such that 

v. + h,v, E A, for· all n ;::: 1. 

Clearly, TA (x) is a closed cone, and if A is a convex set, then TA (.r.) is a 
closed convex cone (sec Aubin and Frankowska, 1990). 

DEFI NITION 2 (Aubin and Frankowska (1990)) Let F: X ----) Y be a set
valv.ed map, and let (x,y) E gr(F). A set-valued m.ap DF(.i: ,y):X----) Y whose 
gmph equals the contingent cone to the gmph ofF at (x,Y) , i.e. 

gr( DF(x, y)) = Tgr(F)(.'i:, y), 

is called the contingent der·ivative ofF at (x, y). 

It is well known that the concept of contingent derivat ive is a natural exten
sion of tangency and plays an important role in set-valued analysis (see Aubiu 
and Frankowska, 1900) . This concept has been used in set-valued optimiza
tion to formulate optimality conditions (Corley, 1988, Luc , 1989) and to study 
sensitivity analysis (see Tanino, 1988a, band Shi, 1993) . 

In order to generalize classical optimality conditions, a concept of contin
gent epiderivativc has been introduced by Aubin (1981) (sec also Aubin and 
Frankowska, 1990) for extended real-valued functions. This concept has been 
used by Penot (1097) to study sensitivity in optimization. In a very recent 
paper, the concept of contingent. epidcrivative has been extended by J ahn and 
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Let J( be a closed convex cone of Y and let F: X ---> Y be a set-valued map. 
The set 

epi(F) := {(x, y) EX x Y I y E F(x) + K} 

is called the epigraph of F. 

DEFINITION 3 (Jahn and Rauh (1997)) Let (x, y) E gr(F). A single-valv.ed 
·map D' F( :r, y): X -t Y whose epigmph equals the contingent cone to the epi
g·mph ofF at (.r, y) , i.e. 

epi(D' F(x , y)) = T epi( F)(x, y) , 

is called contingent epider·ivative ofF at (.r, y). 

This concept has been used in Jahu and Rauh (1997) to formulate optimality 
conditions for set-valued optimization problems. However, even for a simple set
valued map, this epiderivative may not exist . 

EXAMPLE 1 Let X = R 1 , Y = R2 , J( = R~. Defin e a set-val11.ed mapping as 
follows 

if 0 ::::: X ::::: 1; 
if X < 0 0 '1' X > 1. 

L t . - 1 - ( fl fl) e · ·7· 0 - , Yo- - 2 , - 2 · 

T ep i(F)(.xo,7Jo) = {( :~: ,y) E R1 
X R2 

I y= (6,6), ~1 + 6 2: - J2.r}. 

It 1:s easy to show that the contingent epide·rivative n' F(.x0 , y0) does not 
exist 

lu what follows we shall give another definition of coutingent epiderivativc 
for a set-valued map. Since no confusion arises, we use the same name as in 
Jahn and Rauh (1997). 

Let A be a subset of Y and J( C Y be a closed convex pointed cone. 
A point ao E A is a minimal point (an efficient point) of A with respect to 

K (sec Jalm, 1986), a0 EMinA , if 

(A- a0 ) n ( -K) = {0}. 

Define (F + K)(.r) = F(x) + J(, for .TEX. 

DEFINITION 4 Let (x, y) E gr(F). We say that the set-valv.ed map DrF(x, y) : X---> 
Y defin ed by 

DrF(;,:, y)(v.) := 1/IiuD(F + K)(.r , y)(u), 

is the contingent epideTivative ofF at (x, y). 
Th e set-valued map F is said to be contingently epidiffer-entiable at ( x, y) if 

..J ...... _.. f n J'7! f _ _ . \\ .J ____ fnfT.1, r.r\t .. _ \\ 
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The idea of Dcfiuition 4 is based on Defini t ion G.l. 2 in Aubiu and Frankowska. 
( 1 000). Iudependcutly, this dcf-i ui tion was also introcl uced in Chen aJHI J aim 
(1008) . 

Clearly, if the contingent epideriva tive n ' F(:r, y) exists, Ly noting that 
epi(F) = gr(F + K), we obtain 

n' F(x, y)(v.) + J( = D(F + K)(x, y)(v.), for 11. E dom(D(F + K)(.1:, y)). 

Hence 

EXAMPLE 2 Let us consideT EJ;ample 1 again. It is cleo,. !.hat 

DrF(:J:o, JJo)(v.) = {y = (6, 6) E R2 I 6 + 6 = -J2v.}. 

Let (:r, y) E gr(F). l3y P roposition 2.1 of Tanino (1088a), we have 

DF(:r:,y)(v.) + J( c D(F + K)(1:,y)(v.), for all v. EX. (1) 

l3y similar arguments a..s those used in the proof of Proposition 2.1 of Taniuo 
(1088a) , we can also prove that 

D(F + K)(:r, y)(u) + J( = D(F + K)(:r: , y)(v.), for all<t. EX. 

PnOPOS!TJON 1 Let. (x , fJ) E gr(F). If J( has a co·mpact base, /.hen 

DrF(:l:,J7)(v.) C l'viinDF(:l:, J7)(u), fo ·r all v. EX. (2) 

Proof. Since J( has a compact base, Ly Theorem 2.1 of Tauino (1088a), 

DrF(:J:,y)(v.) c DF(:c,y) (v.), for allv. EX. 

i,From (1) and (3) it follows that 

DrF(J:, y)(v.) C J\!Iin(DF(:r;, y)(u) + K) = lVIinDF(:r, y)(u), for allv EX. 

DEFI NITION 5 A sel;-valv.ed m.a.p F: X ---> Y is J( -convex if !.he epi.rrmph ofF is 
conveJ:, i.e. joT all :r 1,:r:2 EX and A E [0, 1], 

IfF is K-couvex, D(F + K)(x , y)C) is clearly a dosed couvex process, D(F + 
K) (:r, y)(v.) is closed and convex for each v. E clom (D(F+K)(1:,y)), aucl D(F + 
K)(:r, y)(O) is a closed convex cone. 

PROPOSITION 2 Let F : X ---> Y be a. I( -conve1: set-valued m.ap ar1.d let (i:, 77) E 
I ..t . •• -····' ··· 1. - 1 .1 
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(i) Fo'f' eve·ry A> 0 and 11. EX, 
>-DrF(x, Y)(v.) = DrF(x, v)(>-v.); 

(ii) if DrF(x, 77)(0) # 0, then 
0 E DrF(x, y)(O); 

(iii) if cpi(DrF(.i:, V)) = Tepi(F)(x, fj), then fo '!' eve·ry 11.1, 11.2 EX, 
DrF(:r, y)(ul) + DrF(x, 77)(11.2) c DrF(x, 77)(v.1 + v.2) + K ; 

(iv) if cpi(DrF(x, 77)) = Tepi(F)(.i:, fj) , then 
cpi(DF(x, 17)) c epi(DrF(x, ?7)), 

379 

and the conve'!'se inclusion holds if K has a com,pact base. Consequently, 
DrF(x, y)(v.) = MinD F(.-r, J7)(v.), fo·r all v. E dorn(D(F + K)(x, y)). 

Proof. (i) and (iii) arc proved in Chen and Jahn (1998) . 
(ii) Assume on the contrary that 0 ef. DrF(x, fj)(O) . Then there exists k E 

]( \ {0} with 

-k E D(F + K)(x, 77)(0). 

For every y E D(F + K)(i:, y)(O), since D(F + K)(x, fj)(O) is a closed convex 
cone, 

y- k E D(F + K)(.i: , y)(O). 

Hence 

y ef, MinD(F + K)(x, 77)(0) . 

T hus 

DrF(x , 77)(0) = 0, 

a contradiction. 

(iv) If epi(DrF(x, 77)) = Tepi(F)(x, 77), from (1), we get 

epi(DF(x, 77)) c epi(DrF(i:, y)). 

The converse inclusion follows from Proposition 1. • 
Now we give the conditions ensuring the equa li ty 

epi(DrF(x,D)) = Tepi(F)(x , Y) (4) 

LEMMA 1 (Ha (1994)) Let K have a bounded base. Let F: X ---> Y be a K 
conve1: set-valv.ed map and let (x, Y) E gr(F). If there e1:ists a set-valv.ed ·map 
G: X ---> Y with bov.nded irnages such that 

Tepi(F)( x, Y) C epi(G), 

then (4) holds. 
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LEMMA 2 Let K c R11 be a closed convex pointed cone, let F: X --* R 11 be a 
K- convex set-valued map, and let (x,y) E gr(F). If DyF(x,y)(O)-=/= 0, then (4) 
holds. 

Proof. From the definition it follows that 

D(F + K)(x, y)(v.) = L,. n Tepi(F)(.i, Y) , for all v. E dom(D(F + K)(x , jj)) , 

where Lu. = {(v.,y) EX x Y I y E Y} . Since L11 and Tepi(F)(.i:,jj) are closed and 
convex, by Proposition 2.G of Luc (1989) , 

o+ D(F + K)(x , y)(v. ) = o+ Lu n Tepi(F)(x, 77) = D(F + K)(x , y)(O). 

Since DyF(x , jj)(O) -=/= 0, by Proposition 2, 0 E DyF(.i, y) (O). Hence 

D(F + K)(.r.,y)(O) n (-K) = {0}. 

By Corollary 4.6 of Luc (1989), D(F+K)(x, y)(v.) has the dominat ion property, 
i.e. , 

D(F + K)(x ,Y)(v.) = DrF(.i,jj)(v.) + K 

Thus, (4) holds. • 
PROPOSITION 3 (Shi (1993)) Let K be a closed conve1: pointed cone in R". 
Let F: Rm --* R" be a K -convex set-valued ·map and let x E int( dom(F)). If jj 
is a Benson prope't" minimal point of F(x), then 

D(F + K)(.r., Y)(v.) = DF(x , 17)(n) + K , fa.,. all v. E Rm . 

Conseq?J,ently, 

DyF(.r. , y)(v.) = MinDF(.'i: , )})(v.) , fo.,. all v. E Rm . 

DEFINITION 6 A set-valued map F: X --* Y is said to be uppe't" locally Lipschitz 
at xo E X if theTe e1:ist a neighbo·f'hood U of :~: o and a positive constant M sv.ch 
that 

F(:~:) C F(xo) + Mllx - 1:oi1 By, faT all x E U, 

wheTe By is the unit ball of the space Y. 

PROPOSITION 4 (Tanino (1988a)) Let K C Y have a compact base. Let 
F: X --* Y be v.ppeT locally Lipschitz at x E dorn(F). If y is a Benson pTopeT 
minimal point of F(.r.) , then 

D(F + K)(x, y)(v.) = DF(x , y)(u) + K, for- allu EX. 

Consequently, 
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DEFI NITIO N 7 Let F: X ---* Y be a set-valv.ed mapping defined on a neighboThood 
of x and let fj E F(x). F is called diTectionally compact at (x, 77) in the dir·ection 
iJ. if f o·r eveTy sequence of positive nu:mbeTs hn ---* 0 and eveTy sequence u, ---* 11., 

any seqv.ence y, with 

fj + h, yn E F(.i + h11 v., ), joT each n 

contains a conve·tgent subsequence. 

IfF is single-valued and Frechet differentiable at x, then F is directionally 
compact at x in any direction u. 

Following Penot (1984), a set-valued mapping F: X ---* Y is called compact 
at x if for every sequence x, ---* x, any sequence y, E F(x,) has a converging 
subsequence. 

If DF(x, 77) is compact at v. ami F is pseudo-convex at (i:, 77) (see Aubin and 
Frankowska, 1990), i.e. 

grF C (i:, 77) + T grF(.7:, f;), 

then F is directionally compact at (x, f;) in the direction u. Indeed, for every 
sequence of positive numbers h, ---* 0 and every sequence u, ---* v., any sequence 
Yn with 

17 + h,y, E F(x + h,u,), for each n, 

Since F is pseudo-convex at (.7:, fj), we have 

Yn E DF(x, J})(v.nJ 

Because DF(x , fJ) is compact at u., y, has a converging subsequence. 

PROPOSITION 5 Let (x, fJ) E gr(F ). IfF is diTectionally com.pact at (x, 77) in 
the di·rection v. E X , then 

D(F + K)(x , JJ)(v.) = DF(x, 1/)(v.) + K 

Consequently, 

DrF(x, fj)(u.) = MinDF(x, 1/)(v.). 

P roof. In view of (1) , it suffices to prove that 

D(F+K)(x,1})(v.) c DF(x,J})(u) +K 

Let y E D (F + I< )(x,1})(7t.). From the definition , there exist a sequence of 
positive mnnbers h, ---* 0 and sequences v.n ---* v., y, ---* y and rl, E f{ such that 

fj + h,y, - rl, E F( x + h,v.,), for all n. 

By our assumpt ion, y, - r1 11./ h, contains a convergent subsequence. Without 
loss of generality, we may assume that Yn - r111./ hn COil verges to some element y1 . 

Hence V1 E DF(x, 1/)(v.) and rl,/hn ---* y - 1/1 E K Thus, y E DF(.i:, fJ)(v.) + K 
• 



382 E.M. BEDNARCZUK and W. SONG 

3. Optimality condit ions in set-valued optimization 

Let X and Y be real normed spaces, let A be a nonernpty subset of X, and let 
I< be a convex and pointed cone of Y. Let F: A --""* Y be a set-valued map. 

Consider a set-valued optimization problem: 

minF(x). 
xEA 

(5) 

DEFINITION 8 (a) A pai1· (x, '[)) with .1: E A and'[) E F(x) 1:s called a minimal 
solu,tion of (5) 1:j '[) is a minimal point of the set F(A) = UxEAF(:r), i.e 

(F(A)- '[)) n (-I<) = {0}. 
(b) A paiT (x , y) with x E A and 'f) E F(x) is called a Benson pr-ope1· minim.al 

solution of (5) if 'f) is a Benson pmper· m.inirn.al point of the set F(A) = 

UxEAF(x), i.e 
cl[cone(F(A) +I<- y)] n (-I<)= {0}. 

Optimality conditions in set-valued optimization have been given by Corley 
(1988) and Luc (1989) with the aid of contingent derivatives, and by Jahn and 
Rauh (1997) with the aiel of their concept of contingent epiderivative. 

We present a necessary optimality condition for proper minimal solution 
of problem (5) by using the notion of contingent cpidcrivative introduced in 
previous section. We also give a sufficient condition for minimal solution of 
problem (G) under convexity assumption. For weak minimizers, sufficient and 
necessary conditions were given in Chen and Jahn (1998). 

THEOREM 1 Suppose that I< has a weakly compact base and F(A) +I< is conve:r 
o·r I< has a compact base. If (x, y) is a Benson pmpe·r m.inimal solution of (5), 
then 

DrF(x, 77)(.r-- .1: ) n ( -K \ {0}) = 0, for all X EA. 

Proof. Since (.1:, '[)) is a Benson proper minimal solu tion of (5) , we have 

cl[cone(F(A) +I<- y) ] n ( -K) = {0}. 

By our assumptions and Theorem 1 in Dauer and Saleh (1993), there exists a 
closed convex pointed cone S such that I<\ {0} C int S and 

cl[cone(F(A) +I<- y)] n ( -int S) = 0. 

Assume that there exists :r1 E A such that 

DrF(.i:, y)(x1 - x) n (-I<\ {0}) 

contains an clement v . Then there exist sequences {x,J C A, {vn} C Y and 
{hn} of positive real numbers with .T 71 --""* .7:1- x, Vn--""* v and hn--""* 0 such that 
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Hence 

Yn = fj + hnVn - kn E F(.f: + hn Xn), for kn E K. 

Since v E -K \ {0} C - intS, there exists N such that 

hnVn E -intS, for all n 2:: N. 

Since intS + K \ {0} C intS, 

YN - fj E - intS. 

Hence (x,y) is not a proper minimal solution of (G). • 
Under some additional assumptions, we obtain the following sufficient con

di tions. 

THEOREM 2 Let A be conveJ: and let F: A --) Y be K -conveJ:. Let x E A and 

f) E F(.f:) with epi(DrF(x,y)) = T ep i(F)(x , f)). If 

DrF(x , fJ)( :~:- x) n ( -K \ {0}) = 0, joT all .x E A, 

then (x, J7) is a minimal solution of (5). 

Proof. Since F is K-c:onvex, 

F( .T)- 17 C D(F + K)(.r,y)(x- x), for all x EA. 

In view of the equality 

epi(DrF(.i,y)) = T epi (F)(x ,Y) , 

we have 

F(;~:)- f) c DrF(x,J])(x - x) + K, for all .x EA. 

If 

DrF(.i: ,fJ)(.T - x) n (-K \ {0}) = 0, for al11: E A, 

then 

[DrF(.f: , fJ)(x- x) + K] n ( - K \ {0}) = 0, for all x EA. 

Hence 

[F(.1:) - fJ] n (-K \ {0}) = 0, for all .x EA. 

rr1 . : .... ~;-,,., _, ,.. f. l-.. .... 4- ( z ..;-;\ : ........ -- = ~ ! --- 1 -- l . . J.: ___ _ J: fr:\ -
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4. Sensitivity analysis 

In this section, we consider a family of parametrized vector optimization prob
lems. Let <P be a set-valued map from a normed space W toY, where Till is the 
parameter space. The set-valued map P: W ~ Y defined by 

P(w) = Min<P(w), for every wE W 

is called the perturbation map. 
Sensitivity analysis concerns differentiability properties of the perturbation 

map P(-). For vector optimization problems, contingent derivatives of P has 
been investigated in eg. Tanino (1988a, b) , Sawaragi, Nakayama and Tanino 
(1985) and Shi (1993). 

Below we present some sensitivity results by using the notion of contingent 
epiderivative introduced in Section 2. 

DEFINITION 9 We say that <P has domination property neaT w if theTe exists a 
neighbo·rhood U of w such that 

<P(w) C P(w) + K , joT all wE U. 

THEOREM 3 Sv.ppose that K has a com.pact base and <P has dom.inat?:on pTopeTty 
neaT fiJ. Let 'fj E P(w). Then 

DrP( w, Y)(v.) C MiuD <P ( w, Y)(v.), for· all u E U, (6) 

and the conveTse inclusion holds if, in addition, 

epi(Dr<P(w,y)) = Tepi(<J.>)(w,y). 

Proof. Since P(w) C <P(w) and <P has the domination property near w, there 
exists a neighborhood U of w such that 

<P (w) + K = P(w) + K, for all wE U. 

Hence 

D(<P + K)(w , y)(u) = D(P + K)(tv, y)(u), for all v. E U. 

Thus 

DrP(w, Y)(v.) = Dr<P(w , y)(v.). (7) 

By Proposition 1, we get (6). The converse inclusion follows from Proposition 
2 (iv) . • 

As a consequence of Theorem 3 and Lemma 2, we obtain the following result. 

CoROLLARY 1 Let K C R " be a closed convex pointed cone, let <P: VV ~ R" be 
a J( -convex set-valv.ed m.ap with dom.ination pmpe·rty n ea·r w, and let 'fj E P( w). 
If Dr<P(w,Y)(O) =1- 0, then 
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COROLLARY 2 Let J( C R 11 be a closed convex pointed cone, let <l?: Rm --> R 11 

be a K-conve1; set-valned map sv.ch that <D(w) + J( is closed (oT <D(w) is closed 
and convex) joT w neaT w E int( dom( <l?)), and let f) be a Benson pmpeT minim.al 
point of <D(w). Then 

DrP(w, Y)(v.) = MinD<D(w, y)(v.), joT all v. E Rm. 

Proof. By the assumptions and by Lemmas 4.3, 4.4 of Tanino (1988b), <D(w) 
has domination property for w near iiJ. By Proposition 3 and formula (7), we 
get the conclusion. • 

By Proposition 4, 5 we obtain the following results. 

COROLLARY 3 Let I< C Y have a cornpact base and let <l?: W --> Y be nppeT 
locally Lipschitz at w E clom ( <l?) and have domination property near w. If f.} is 
a Benson proper minimal point of <D( w), then 

DrP(w, fJ)(v.) = MinD<D(w, J7)(u), for all v E W . 

CoROLLARY 4 Let <l?: W --> Y have domination pmperty near w and let f) E 

P(?"i!). If <l? is diTectionally compact at ( w, fJ) in the dir·ection v., then 

DrP(w, fJ)(v.) = MinD<D(w, tJ)(v.). 

Note. After we had finished this paper, we got a copy of manuscript of Chen 
and Jahn (1998) where the authors give the definition of generalized contingent 
epiderivative which coincides with the definition of contingent epiderivative we 
propose. \Ale decided to submit our paper in its present form because our presen
tation differs from that of Chen and Jahn (Hl98) in many aspects. In our paper 
some results are stronger ( eg. the statement below Definition 4 is stronger 
than Theorem 4 of Chen and Jahn, 1998) and some additional properties of 
the contingent epiderivative arc proved. As original and new applications we 
give necessary optimality conditions for Benson's proper minimality, sufficient 
conditions for rninimality, and we study sensitivity of parametrized vector opti
mization problems. 
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