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Abstract: This paper deals with optimization of portfolios com-
posed of securities (equities). The drawbacks of existing methodolo-
gies, based on a single factor utility function, are indicated. The two-
factor utility function introduced takes into account the expected
excess return and expected worst case return (both in monctary
units). Assuming that utility is “risk averse” and “constant returns
to scale”, a theorem on existence of optimum strategy of investments
is proven. The optimum strategy is derived in an explicit form. A
numerical example is also given.
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1. Introduction

The basic portfolio optimization methodology rests formally on the conditional
optimization problems, see e.g. Elton, Gruber (1994), Markowitz (1952). An
objective function, called utility, such as e.g. the expected portfolio return, is
maximized subject to the constraints including a risk measure, such as variance.
A concrete example of such an approach, called mean-variance, is provided by
the well known paper by H. Markowitz.

It should be observed that in order to describe properly investor’s behaviour,
such as risk aversion, one has to deal with a nonlinear (increasing, concave)
utility function. Unfortunately the exact analytical form of that function is
unknown. Assuining a concrete utility function (from the class of possible risk
averse functions) one gets a solution, which generally depends on the analytic
form of utility function adopted.

Another class of simplified alternatives to the expected utility approach,
stems from the belief that investors prefer to apply criteria that concentrate on

worse outcomes (returns). The first criterion developed by Roy, Elton, Gruber
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a specified level. The Kataoki and Telsar criteria, Elton, Gruber (1994), also
belong to the class of worst case approaches. An obvious drawback of worse case
approaches is the absence of the risk aversion mechanism (i.e. the decreasing
marginal return of utility), which characterizes most of the investors.

In the present paper an attempt has been made to incorporate worse case
criterion into the utility function as an additional factor. In other words the
two-factor utility function is proposed, with expected return and worse case
return, as the main factors describing decision makers behaviour.

It is also assumed that factors are expressed in monetary units and utility
is a homogeneous, constant return to scale function. Since utility cannot be
changed by a change of monetary units such an assumption is obvious.

Then one can show that an optimal strategy, determining the structure of
optimal portfolio of assets exists and can be derived in an explicit manner.

The solution does not depend on the exact analytic form of utility function
(unless it does not belong to the class of strictly concave, scale preserving func-
tions). Being “universal” within that class of functions the two-factor utility
function is able to represent and satisfy different individual decision makers.

The two-factor approach is also convenient for system analysts who con-
struct portfolio decision support systems. They do not need to worry about the
identification of an investor’s utility function.

It can be used for optimization of derivative securities with asyminetrical
probability distribution functions. It should also be noted that the two-factor
utility approach has already been used for the optimum allocation of labour
resources, Kulikowski (1993, 1994). The present paper can therefore be regarded
as an extension of the two-factors approach to the capital allocation problems.

2. Single factor utility functions

There exists an impressive literature on the single factor utility theory (sce e.g.
Elton, Gruber, 1994; Zenios, 1993). In the present paper the utility function
U (21, 22,...,2n) of the portfolio consisting of n assets, generating the monetary
returns zp,..., z,, will be used. The monetary, one period, return for equities

is defined as follows:
zi(t) =P (t+1)—-PF;(t)+ D: (t+1)

where
P; (1) is the price of the i-th security in period ¢,
D; (t) is the dividend received in period f.

The notion of return (non monetary):

Ri(1) =2z () : Pi(t)

will be also used.
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2.1. Additivity

For analytic convenience it is usually assumed for the utility of the portfolio
that

f}(zl,...,z“)=%ZU(zi) (1)

The formal justification for that assumption can be based on the well known
Von Newmann and Morgenstern theorem that (under the specified set of five
axioms) the utility of a gamble equals the expected utility of its outcomes, which
is known as the “expectation principle”. Obviously, the expectation principle
has an appealing psychological interpretation.

2.2. Risk aversion

The analytical form of the U (z) function is generally unknown. However, the
psychological considerations suggest that U (z) should be continuously increas-
ing and concave. Such a utility is called risk averse (R.A.). Additional property
is connected with marginal effects with respect to the wealth level of the in-
vestor. Generally, the richer the investor, the more he is inclined to invest. In
formal terms the coefficient
U.H (Z)
a(z) = —z2—"—, 2
()=~ @)
called the relative risk aversion, should be negative, Elton, Gruber (1994).
When a (z) < 0 the percentage of funds invested in assets increases as wealth
increases.

3. Portfolio optimization

The single factor portfolio optimization problem can be formulated as follows.

Introduce the variables z; = X; /X, where X (X;) is the total (asset 2) funds
the investor is willing to invest in risky assets (labelled by the indexi = 1,...,n).
Investors want to find such a vector = &, that

!;E&r}zi Z U,' (’l";) = Z U;' (‘f'i) s ('5)
i=1

i=1

where ) is the admissible set.
For example:

Q= miZ$i=1, 220, Viz) sV,

i=]
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When U (z;) is the expected return, i.e. U (2;) = R;z; and V (z) - portfolio
variance:

n n n
= Zm?a? + Zzﬂ?iﬂ?joeﬂjﬂa‘j: (4)

i=1 i=1 j#i

0; = standard deviations, p;; correlation coefficients between assets labelled 1, j;
one gets the classical “mean-variance” portfolio optimization problem.

It can be observed that the optimization strategy & (if it exists) depends on
the analytic form of the utility function U (z). That form is generally unknown
though some properties such as, risk aversion, a (z) < 0, ete. can be postulated.
Assuming a concrete form of U (z), c.g.

U(x) =z —bz®, b= positive constant,

one can show that the optimum solution obtained by a particular methodology
(c.g. mean-variance) is compatible with one property (risk aversion) but at the
same time is not compatible with the other, e.g. a(z) < 0 (for discussion of
such situations see Elton, Gruber, 1994).

There exists, of course, the possibility of identification of the utility function
by experiments, conducted with real investors. It seems, however, that investors
do not like identification experiments. Besides, the identified functions are not
stable in time. They depend on age, financial status and emotions of the decision
malkers.

4. Worse case return

An alternative (to the maximization of utility) approach to the decision prob-
lems stems from the belief that decision makers concentrate on the bad out-
comes mostly. For example, the approach developed by Roy (1952) states that
the best asset (having the return R;) is the one that has the smallest probability
of producing returns below a specified (Rf) level, i.c.

Ri= 11‘1;1? Prob (R; < Rp), J = the set of all assets.
J
If returns are normally distributed then the optimum asset would be the one
which corresponds to the maximum number of standard deviations (o;) away
from the mean (I?;).
That criterion is, obviously, equivalent to
« Ri—R
Ry =max =L —F . (5)
J a;
Another possible approach is the one which assumes that the “worse case”

proba.blhtv is hxed For example, one can assumc that tlw praba,blhty distribu-
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Figure 1.

out of six actual outcomes should, on average, lie within one standard deviation
o; of the expected outcome R;. However, two times, out of six, the outcome
can be expected to lie outside one standard deviation and one out of six will lie
below R; — o;.

The best asset corresponds here to R = max; (IR; — o).

The present approach can be generalized to the situation where the proba-
bility distribution is not normal. For that purpose the Tchebyshev incquality,
see Korn (1968):

2 zai)g(ﬁ)g, Va; > 0. (6)

can be used.
- e I - = R ey T wisii N
Assuming (a—i) = po, where pg is a given number (po € [0,1]), e.g. po = 3,
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on the average lie outside the interval
|R|f — 1.732 J,‘l

If R; has a continuous unimodal distribution, an estimate of probabilities
stronger than (6) can be used, see Korn (1968):

1+ s?

(3‘ - |Sil)2’

where s; is the Pearson measure of asymmetry (s; = &;—RM-, Ry = return
corresponding to the max of distribution function, when s; = 0, one gets the
distribution which is symmetrical with respect to Rpy).

Assuming

Prob (|Ri ~ | > 0) < 5 (7)

4 1+ 82
s ———==po, (0<po<1),

" (- 1w)

one gets

1+ s?

a; = ¢ (Py), where @ (Pp) = + s

wlro

For s; = 0, and pg = 1/3 one obtains a; = 1.155 ¢;. Then for the symmetrical
p.d.f. one out of six actual outcomes should lie below the R; —a; = R;—1.1550;
level. Observe also that when pg increases then all levels a; are decreasing.

1t should be observed that the worse case approach does not take into account
the concavity (risk aversion) of the utility of investors. For that reason it cannot
be recommended as a general criterion for portfolio optimization methodology.

5. Two-factors utility approach

The two-factor approach stems from the belief that in order to properly describe
the investor’s behaviour one should take into account two factors: monetary
expected return and “the worse case” monetary return. It should be noticed,
that from the formal point of view, the risk measure, in the single-factor-utility
optimization problems, enters into the constraints. In the two-factor approach
it is incorporated in the structure of the utility function.

In other words the utility of the i-th asset can be written

U (Zt'-t iy ],!.) )

where

Z; = P;R; monetary expected return on one unit of ¢-th asset, having price P;
A | 1 . . R LY
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x; the number of i-th assets in the portfolio (a decision variable),
Y = R(R,; — ko) worse case monetary return, where o; is the standard devia-
tion.

The threshold levels xo; depend on the asset’s p.d. function. For a normal
distribution, as already mentioned it can be assumed that, e.p., & = 1. For a
unimodal symmetrical distribution x = 1.155.

Since worse case frequency (i.c. po) is assumed to be given (e.g. 1/6) onc
can say that Y; represents the worse expected monetary return level. One can
expect returns to be not more than 1_2,; — a; once out of six periods.

On the other hand Z; represents the expected monetary return. Generally
the parameter R; can be regarded as the individual investor’s expectation, which
may differ from the mean value, based on historical observations, or — from the
market expectations.

It is also assumed that the investor is driven by the desire to get maximum
utility from the portfolio (which consists of n assets, each purchased in quantity
z;) and he, or she wants to get a given value (Z) of total return:

1=1

In order to solve the portfolio optimization problem explicitly the following
important assumption should be introduced.

Constant return to scale (CRS) and risk averseness (RA)

The function U (Z;z;,Y;) is CRS, (i.e. homogencous degree one) so it can
be written in the following form:

Zi r;

where F' is strictly concave; F(-) > 0, F'(-) > 0, F’(-) < 0, and

Y; i
A1:—:1—I{,10-?

o 7 >0, Ri>0, Vi (8)

The number A;, which reflects the investor’s confidence in i-th asset, can be
called the coefficient of assurance.

One can observe that utility introduced concerns the expected return Z;, the
risk measure A; and the number of securities z;. For risk free asset A; = 1 and
the utility reduces to the classical single factor utility function U; = P;R; F(x;),
which is used commonly in economic sciences.

It is also assumed that the risk averse (RA) investor is interested in assets
with positive worse case return only, i.e. one assumes P;, R;, A, to be positive
Vi. Then the utilitics

U; = P,R;A;F (—Z—’) , Vi are strictly concave.
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REMARK 5.1 Observe that when U; is not CRS one can generate additional
utility by changing monetary units (e.qg. US $ for cents) of the factors Z;,Y;.

The following are two examples of CRS functions:
1. U(Zz:,Yi) = (Ziz)™ (Y5)'™%, F()= (‘;37}5'?:')

2. U(Zizi,Yi) = [a(Ziz:)” + (1 — o) YY), F(-):[a(%mi)y+1—a]uy

where a, v are positive numbers (0 < a < 1), (0<v < 1).

THEOREM 5.1 A unique investment strateqy 2 &, for an investor with strictly
concave utility exists, such that:

e (1) 7o ().

where
Q:{T H Z?=l Z":'.!'.‘,;:Z, & 20, Vﬁ},
Y =31, Y; = total worse case return,
A=Y 1Ai, Z = required level of return.
The optimum strategy becomes

&4 =A,-§, Vi (10)

and

U(ZY)=YF (;) ;

Proof. The problem reduces to max, »_; Y;F" (z;/A;) subject to the con-
straint:

z Zi.'!-‘i =Z.

The Lagrangean of the problem becomes

$(x,2) = ZYF(T‘)+AZ Zzn}.

i=1
where A = Lagrange multiplier.
The necessary conditions of optimality require that

I

Al) AZ;=0, Vi, 11)

8. = Yi/di F (

br=2-) Zig;=0. (12)
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Since Yi/A; = Zi, A = F(Z/Y) = const, the strategy (10) satisfies the first
order condition (11). Setting that strategy in (12) one finds also that

ZIZI%Z = ;ilA;Z, = Z,

and

g” (:1_) i (";Z?) =U(2Y).

In order to complete the proof of optimality of (10) it is necessary to check
the Kuhn-Tucker conditions at 2; = 0, Vi.

In our simple case these conditions require that for x; = 0, Vi the derivatives
U(zi)z=0 be positive, i.c.

Y:: :! B ' -
Up, = = F' (L) =PR;F'(0) >0, Vi
' A" I:’I.'=U

Since F'(0) > 0, R; > 0, Vi, by assumptions, the Kuhn-Tucker conditions
hold.

Since the objective function is strictly concave in ) the strategy (10) is
unique and the sufficiency condition holds. m

It can be observed that for CRS, RA utility, the strategy (10) represents also
the solution of the problem:

n
max U (Zl Zix;, Y) =U(Z.Y),
1=

where
Q= {'r : Z Ziz; < Z, w20, \r‘z}
i=1
Y:ZK:ZF{R;A;
i=1 i=1

Indeed, since within €' there is no stationary point, i.c.

5 ZiTi /4
ZaﬂTT) & . 0, forz; € Q, Vi

' - YF!
UT,‘ ( Y

the optimum solution (according to the Weierstras theorem or Kuhn-Tucker
PPN, 1 1 s, . S, (R (SRS, CONPRIPRSY. ; LIDUL., [ORUUNPR. (UL | OSUII | S, L v
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REMARK 5.2 The total return level Z in the formulation of the Theorem can

be replaced by the given total initial investment value, Y, P;#; denoted by X.
Indeed,

X= Zmi = ; Y P, (13)

S0

=AM, Vi (14)

Then one obtains
U=YF(X/P).

REMARK 5.3 The optimnun strategies (10), (14) do not depend on the individual
investor’s utility function (unless it is not RA & CRS function). Though optimal
strategies are “universal”, each individual can enjoy his own level of wutility,
which is specified by his individual F-function (expressed in monetary units of
Y with F(Z]Y) as a dimensionless multiplier). Suggesting these strategies to
an investor one should not worry about identification of the investor’s utility
function. However, in such a case it is tmmportant to check: does the investor
accept the two factor utility as a function which, in the best sense, reflects his
or her tastes and preferences? That is especially important for system analysts
who construct the portfolio decision support systems.

RE\AARK .4 The optirmum strategies do not cllow for the so called “short sell-
ing”, i.e. @; < 0. In the case when, for an asset, A; < 0, the asset should
be dropped from the portfolio. In such a case it is also possible to decrease the
general level of all a; by increasing the probability po, as already mentioned.

REMARK 5.5 The two-level approach enables one to optimize portfolios with the
asymmetric probability distribution function, such as derivative securities (e.g.
equities + options).

6. An application

The two-factor utility theory can be used to derive the optimum portfolio con-
sisting of equities. In particular, it can be used for n fully diversified portfolios
of equities. Since diversification removes the unsystematic risk component it
is (,onvcmcnt to deal with portfolios which are diversified at the preliminary

r G S T el af = ~dicaesblend cwmapPadta Y wmmmibmevinitiz il
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Ri |Biom | As | B/X | 23 | &iP/X
0.19 | 0.10 | 0.47 | 0.033 | 10.77 | 0.356
0.23 | 0.15 | 0.35 | 0.025 | 8.01 0.200
0.14 | 0.05 | 0.64 | 0.025 | 14.66 | 0.366
0.25 1 0.20 | 0.20 | 0.017 | 4.58 0.078

e | LS| D] =

Table 1.

The systematic risk component can be derived by employing the so called beta
cocfficient, Elton, Gruber (1994):

2 .
ﬁt':'gim/a;na ‘L:l,...,ﬂ,,

Oim covariance between market and i-th portfolio,

o2, market variance.

The parameters im, 02, and 3 can be derived using historical data. The
systematic risk component o; can be derived using relation, see Elton, Gruber
(1994):

oi = fioym, Vi

Since f3; is a measure of correlation between the i-th asset and the market the
risk (expressed by o;) decreases along with ;. At the same time the coefficient
of assurance increases and so does the number of shares chosen by formulac
(14).

When the numerical values of parameters R,—_, Bi, om and P/ X arc given
one can derive &; explicitly. As an example consider four diversified portfolios
with oy, = 0.10 and the rest of parammcters given in Table 1.

Since P/X = £ 30 AP, = 288% one gets X/P = 22.90. Then the
optimum strategy #; and the investment shares 7; P;/X, i = 1,2,3,4, can be
derived, as shown in Table 1.
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