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Abstract: In traditional statistics all parameters of the ma
thematical model and possible observations should be well defined. 
Sometimes such assumption appears too rigid for the real-life prob
lems, especially when dealing with imprecise or linguistic data. To 
relax this rigidity fuzzy methods arc incorporated into statistics . 
This paper is devoted to statist ical inference about the population 
median in the presence of vague data. We propose the notion of fuzzy 
median. Then we suggest a fuzzy estimator and fuzzy confidence in
terval for the median. Next we discuss the problem of hypothesis 
testing concerning the median in the presence of imprecise data. All 
methods presented are distribution-free. 
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1. Introduction 

In traditional statistics all parameters of the mathematical model and the ob
served experimental data should be well defined. However often this assumption 
appears too rigid for the real-life problems. We face such situations when our 
experimental data are imprecise or of linguistic type, like: "about five", "more 
or less seven", "not less then fifty", "approximately between seventeen and 
twenty", etc:. Thus two types of uncertainty occur in our problem: randomness 
caused by a chance mechanism and vagueness brought about by the imprecise 
meaning of the data. 

A possible way of handling situations like this is to apply the t heory of fuzzy 
sets to describe vagueness and then generalize c:lassical statistical methods to 
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on fuzzy sets, the extension principle and a concept of a linguistic variable 
Zadeh (1965, 1975) . Next, Kwakernaak (1978, 1979) introduced the notion of a 
fuzzy random variable. Other definitions of fuzzy random variables are due to 
Kruse (1982, 1984), Puri and Ralescu (1986), Stein and Talati (1981). Kruse 
(1982) as well as Miyakoshi and Shimbo (1984) showed that the strong law of 
large numbers also holds for fuzzy random variables. Kruse (1984) suggested 
how to construct estimators under the presence of vagueness . Then Kruse and 
Meyer (1987, 1988) obtained fuzzy confidence intervals for the mean and the 
variance. They also proposed a method of testing statist ical hypotheses for 
fuzzy data (Kruse, Meyer, 1987) , which however has a lot of disadvantages (see 
Grzegorzewski, Hryniewicz, 1997). Attempts to contrive statistical problems 
with fuzzy data were also made by Casals, Gil and Gil (198Ga, 198Gb), Corral , 
Gil (1988), Gil (1988), Son, Song and Kim (1992) and Viertl (1996). 

In all papers mentioned above the authors assume that a distribution in 
question is known except one parameter, e.g. the distribution is Gaussian with 
unknown mean and known standard deviation. Such an approach is called 
by statisticians parametric. Unfortunately we still don't have any effective 
goodness-of-fit test for fuzzy data. Thus we can not be sure that our fuzzy 
data have a distribution of a desired type indeed . Hence nonparametric meth
ods would be useful in fuzzy statistics. 

In this paper we show how to incorporate nonparametric methods into vague 
data problems. In Sec. 2 we define so called fuzzy median. Next we suggest how 
to estimate the median from vague data (Sec. 3) and how to construct a fuzzy 
confidence interval for the median (Sec. 4). Finally we discuss the problem 
of hypothesis testing concerning the median (Sec. 0). We generalize the well 
known sign-test into fuzzy sign-test. All methods presented are distribution-free, 
i.e. uo assumptions on the type of the distribution are made. 

2. Fuzzy random variables 

The basic notion of the probability theory is a random variable. Roughly speak
ing, a random variable is a mapping which assigns to each random event a real 
number. A fuzzy random variable may be defined by analogy, however now we 
deal with fuzzy numbers. Thus we begin by recalling some basic concepts and 
notation connected with the notion of fuzzy number. 

DEFINITION 2 .1 The fuzzy subset A of the real line R, with the mernbe·rship 
fun ction It : R ---+ [0, 1], is a fuzzy number· iff 
(a) A is normal, i.e. ther·e exist an element xo E R such that It( Xo) = 1; 
(b) A is fuzzy convex, i.e. p.( >..:e + (1- >..)y) 2 tt(x) A p.(y) Y x, y E R and 

YO:::;>..:::; 1; 
(c) It is up peT s em icontin uov.s; 
frl\ ''""' "' (A\ ;c hn?mriPrl 
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An useful tool for dealing with fuzzy numbers are their a-level sets. The 
a-level set A"" of a fuzzy number A is a nonfuzzy set defined as 

A"" = {.T E R: J.L(.T) ~a} . 

The family {A"" : a E [0, 1]} is a set representation of the fuzzy number 
A (see Kruse, Meyer, 1987) . Basing on the resolution identity we have the 
alternative description of fuzzy numbers: 

J.L (.T) = sup {alA" (.T)}, 
<>E[O, l] 

where I A" ( x) denotes the indicator function of A"". 
Definition 2.1 implies that every a-level set of fuzzy number is a closed 

interval. Hence we have A"" = [At, A~], where 

A~ inf{x E R : p.(.T) ~a}, 

A~ sup{x E R: J.L(.?:) ~a}. 

R EMARK 2.1 Some autho·rs {see, e. g. Kruse, Meye·r, 1987) consideT sepamtely 
the o•-level sets and the str-ong a -cuts, i.e. sets of the foTm {.1: E R : fL (x) > 
a}, a E [0 , 1) . This distinction, however-, is v.seless in our- case. 

A space of all fuzzy numbers will be denoted by FN(R). Of course, FN(R) C 
F(R), where F(R) is a space of all fuzzy sets on the real line. 

Sometimes fuzzy sets arc used to describe linguistic properties like: "rather 
less than 10", "greater than 50", etc. Such fuzzy sets arc not fuzzy numbers, 
because their supports arc not bounded. On account of importance of these 
fuzzy sets in applications, we introduce a family of the left-sided fuzzy numbers 
and the right-sided fuzzy numbers defined as follows (see Grzcgorzewski, 1998): 

DEFINITION 2.2 The fu zzy subset A of the r-eal line R, with the mernbeTship 
function f-1· : R ---+ [0, 1] , is the left-sided fv.zzy nv:mber- (right-sided fv.zzy nwnber) 

~If 
(a) A is normal; 
(b) A is fv.zzy convex; 
(c) fL is vpper- semicontinv.ous; 
(d) svpp (A) is bounded only fr-om. the left side (only fmm the Tight side). 

As before, we can use the alternat ive description based on a-level sets and 
the resolution identity. Definition 2.2 implies that every a -level set of the left
sided fuzzy number is an interval bounded from the left side, while the right
sided fuzzy 1mmber has a -level sets bounded from the right side. Families of 
all left-sided and right-sided fuzzy numbers will be denoted by FNLs(R) aud 
FNRs(R) , respectively (obviously, FNLs(R), FNRs(R) C F(R)) . 

Now we will introduce the notion of fuzzy random variable. Our definition 
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Suppose a random experiment is described as usual by a probability space 
(rt,F,P), where 0 is the set of all possible outcomes of the experiment, F is 
a a-algebra of subsets of 0, (the set of all possible events) and the function P , 
defi ned on F , is a probability measure . 

DEFINITIO N 2.3 A mapping X : 0, ___. FN(R) is called a j11.zzy mndorn va·riable 
(f. ·r. v.) if it satisfies the following pmpe'f'ties: 

1. {Xa(w) : a E [0, 1]} is a set repTesentation of X (w) fo·r all wE 0 , 
2. joT each a E [0, 1] both X[; and X~ defined as 

X{: X{:(w) = iuf Xa(w), 

X~ X~(w) = supXa(w), 
ar-e real-val11.ed mndom vaTiables on (0, F , P). 

Thus a fu~zy random variable X can be considered as a perception of an 
unknown usual random variable V : 0 ___. R , called an original of X. Let x 
denote a set of all possible originals of X . If only vague data are available, 
it is of course impossible to show which of the possible originals is the true 
one. Therefore we can define a fu~~y set of x, with a membership function 
v : X ___. FN(R) given a..<> follows: 

v(V) = inf {!LX(w)(V(w)): wE 0}, 

which corresponds to the grade of acceptability that a fixed random variable V 
is the original of the fu~~y random variable in question. 

A random variable is characterized by its probability distribution. However 
often we are interested only in some parameters of the distribution. These 
parameters (e.g. measures of location or dispersion, descrip tors of symmetry or 
shape) play a key role in mathematical statistics. They are useful particularly iu 
statistics of vague data, where handling with probability distributions of fu~zy 
random variables is rather complicated. Let us consider a parameter () = e(V) 
of random variable V. This parameter may be viewed as an image of a mapping 
which assigns to each random variable V with distribution Pe the considered 
parameter e. However if we deal with a fuzzy random variable we cannot observe 
our () directly, but only its vague image. Using this reasoning together with 
Zadeh's extension principle, Kruse and Meyer (1987) introduced the notion of 
fu~~y parameter of fuzzy random variable, also called a fuzzy perception of the 
parameter (). It is defined as follows 

D EFINITIO N 2.4 A fuzzy peTception of a pamm.eter· () is a fuzzy set A(()) with a 
m.embeTship fv:nction 

fLA(e )(t) =sup { iuf fJ.X (w)(V(w)) : VEX, ()(V) = t}, t E R, 
wEn 
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This notion is well defined since if our random variable is crisp, i.e. X= V, 
we get A(B) =e. 

In this paper we restrict our considerations to the central tendency para
meters (i.e. the representative value for the population, also called the location 
parameter). Most often people are intcrest<~d in the mean of a random variable. 
This notion was also generalized to the case of fuzzy random variables (sec 
Kwakernaak, 1078). I3ut there arc distributions which have no mean (e.g. the 
Cauchy distribution). Thus from our nonpararnetric view the median would be 
a more suitable location parameter. Moreover, the median is less affected by 
extremal values of random variable. This is the reason why the median is so 
appreciated in statistics as a parameter robust to outliers. Here we propose 
a dcfini tion of a fuzzy median of fuzzy random variable X. Let us recall that 
"/ E R is the median of the random variable V if it satisfies following inequalities: 

where Dv denotes the distribution function of V. Ui:iing Zadeh'i:i cxtenl:lion 
principle we may generalize this notion to the fuzzy context. 

DEFINITION 2. 5 A f11.zzy median of a f.'/'. v. X is a fuzzy set r with a Tnem.be·rship 
fv:nct?:on defined as 

fl.r(t) =sup { inf Jlx(w)(V(w)): VEX, Dv(C):::; 0.0:::; Dv(t)}, t E R. 
wEst 

Thus a fuzzy median may be regarded as a (fuzzy) perception of the unknown 
usual median. The following theorem is true: 

THEOREM 2.1 The j11.zzy m.edian r of a f. ·r·. v. X is a f11.zzy nv:rnbeT with a set 
Tep·resenfafion fa of the fm"m, fa = [f~, f~], whe'f'C 

r~ = inf {t E R: Dx{;(C):::; 0.0:::; Dx{;(t)} 

and 

f~ =sup {t E R: Dx;_:(C):::; 0.5:::; Dx;_:(t)}. 

Proof: If {r"'} is a set representation of the fuzzy median then 

fa= {t E R : 3V EX with Dv(C):::; 0.0:::; Dv(t) 

snch that V(w) E Xa(w) '\lw ED}. 

I3y Definition 2.3 X~(w), X:f(w) E Xa(w) '\lw E D all<l '\/a E [0 , 1]. So the 
mccliaus of the random variables X~ (w) and X:f (w) belong to r"' for all o E 
[0, 1]. 

Let 0' E [0, 1], and V E Xa. Assume that"/ is a median of V. Since 



452 

we have 

DxL(t) > Dv(t) > Dxu(t) for all t E R. 
0: - - Or: 

Therefore 

inf { t E R: Dx!; (C) ::; 0.5 ::; Dx!; (t)} ::; "f 

::; sup { t E R : Dx:; (C) ::; 0.5 ::; Dx:; (t)}. 

P. GRZEG ORZEWSKI 

Since it holds for all a E [0, 1], we conclude that fc, = [r~, f~], where 

f~ inf{t E R: Dx!;(c)::; 0.5::; Dxf:(t ) } , 

f~ sup{tER: Dx:;(C):S 0.5:SDx:;(t )}, 

is the set representation of the fuzzy median r. By the normality of a fuzzy 
random variable, we have r "' f 0 Va E [0, 1]. Since f.r.v. is fuzzy-convex, we 
get r a 1 ~ r a 2 Va1 > a 2 E [0, 1]. Thus we conclude that r is a fuzzy number, 
which proves the theorem. • 

3. Fuzzy point estimation 

Let il1, il2 , ... , v;, be a random sample which is the outcome of a random exper
iment . The problem of point estimation is to give a good guess for an unknown 
parameter of the underlying distribution . The best known point estimator of 
the median is, so called, the sample median defined as 

if n is odd, 

if n is even, 

where if1:n. ::; if2:n. ::; . .. ::; iln:n denote order statistics of the sample (i.e. the 
original sample after arrangement in the increasing order of magnitude) and 
where [:~:] is the largest integer less than or equal to 1: . It is known that if the 
sample is drawn from the distribution with the uniquely determined median, 
then .:Y is a consistent estimator. 

Now consider the situat ion that the results of our random experiment are not 
precise but vague. We describe them by a fuzzy random sample Xr, X 2, . . . , X, 
which may be considered as a fuzzy perception of the random sample il1, ifz , .. . , 
V,,,. A natural question arises: is it possible to estimate precisely an unknown 
median on the basis of these vague observations? The answer is negative, of 
course, because in the presence of randomness and fuzziness we can infer with 
the precision no better than the precision of the experiment outcomes. The best 
we may get is a fuzzy perception of our unknown parameter defined above. 

Thus our task is to obtain a fuzzy point estimator of the fuzzy median, 
which may be viewed as a perception of the unknown parameter. Basing on the 
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DEFINITION 3.1 A fuzzy sample median f' from th e fuzzy mndom. sample X1 , 
X2 , ... , X, is a fuzzy set with a mernbeTship function l'·t : (FN(R))n. _, [0, 1] 
given as follows 

and 

ifn is odd, 

if n is even, 

'U _ ' U _ { ( X~)[¥]+ln ifn is odd, 
r a: - ra: (Xl,X2,···,X,) - 1 (( u) · ( u) ) f 

2 xa: lf:n + x a: lf+l:n i n is even. 

HeTe (X[:)h,, denotes th e k-th o·rdeT statistic of the sample (XI)~, ... , (X,)~ , 
while (X~)k:n is the k.-th O'!'de·r statistic of the sample (X1 )~, ... , (X,)~ . 

REMARK 3.1 If the obseTvations m·e not; vague but C'risp, ov:r fuzzy sample me
dian becom.es a tTaditional ( cTisp) sample ·median. 

The algebraic properties of the fuzzy sample median , in partint!ar, fuzzy 
convexity and normality, arc stated by the theorem. 

THEOREM 3' 1 The fu. zzy sample m.edian r fmm. the fuzzy mndom sample X 1 ! 

X2, ... , X, is a. fuzzy nv.mbe·r. 

Proof: Without loss of generality we assume that the size of our sample n is 
odd (otherwise the reasoning is analogous) . 
(i) Let take any o E [0,1]. Suppose that f'~ =(Xi)~, where i E 1,2, ... ,n. 

Hence there exist at least [%] + 1 observations Xk such that (X,,)~ 2: 
(Xi)~, k E 1, 2, .. . , n . Dy Dcfi.nition 3.1 we get f'~ = (X~)[¥ ] +1:n > 

L_ ' L ." _ ' L 'U . (Xi)a:- r ". Thus f a: - [f a: ,fa: J i- 0 for all o E [0 , 1]. 
(ii) Let take any two o:1, o 2 E [0, 1] such that o 1 > o2. Suppose that 

' L L ' U U 'L L 'U U 
fa: 1 = (Xi)a: 1 ; fa: 1 = (Xi)a: 1 ; fa: 2 = (X,)a: 2 ; f"' 2 = (Xk)o:z· 

There is no Joss of generality in assuming that l = i. We have to consider tltrec 
cases: 

1. if j = k thcu fa: 1 = [f~ 1 ,f~1 ] = [ (Xi) ~ 1 ,(Xi)~1 ] ~ [(Xi)~2 ,(Xi)~2 ] = 

[f~2 , f~2 ] = f a: 2 1 bcca11SC both X i <'tlld Xi arc fuzzy convex; 

2. if j i- k and (Xi)~2 :::; (Xk)~2 then we have fa: 1 = [f~ 1 ,f~1 ] = [(Xi)~,, 
(Xi)~,] ~ [(Xi)~2 , (X i )~2 ] ~ [(X;)~2 , (Xk)~zl = [f~2 , f~2 ] = 1\2; 

3. if j i- k and ( Xi)~2 > (Xk)~2 then it should happen that (Xi)~1 < 
U . . . ' _ 'L 'U _ L U L U (Xk)a:

1 
sowcgcLfa: 1 - [fa:

1
,ro:J - [(Xi)a:

1
,(Xi)a:

1
] ~ [(Xi) a:

1
, (X k)a:

1
l ~ 

ff v \ L f v \ U 1 _ rr£ r U 1 _ r 
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Thus we have f cq ~ f a 2 for any a 1 > a 2 and l = i. If l # i the reasoning 
is analogous to that given above. Hence 

• Va E [0, 1] fa is an interval (by the definition); 
• Va E [0, 1] fa# 0; 
• Va1 > a2 E [0, 1] f a 1 ~ f a 2 

and we conclude that the fuzzy sample median f is convex. Moreover, by (i) 
f a=l # 0, so there exist such an element :ro E R that JJt(:~: o) = 1, and we see 
that r is normal. Since each a-level set of r is also bounded we conclude that 
the fuzzy sample median r is a fuzzy number, which completes the proof. • 

Now we will discuss statistical properties of the fuzzy sample median. We 
begin by recalling some basic concepts connected with the subject (see, e.g., 
Kruse, 1984, and Kruse, Meyer, 1987). 

DEFINITION 3.2 We say that a sequence {Xn} ~=l of fuzzy mndom. vaTiables 

converges in pTnbability to the fuzzy numbeT Z (and we W'rite Xn I'., Z) if fo ·r 
eveTy E > 0 

sup p (wE w: I(Xn(w))~- z; l v I(Xn (w))~- Z~l >E)---) 0 
<>E[O,l] 

as n ---) oo. 

It is easily seen that this is a generalization of the convergence in probability 
for usual random variables to the case of fuz,;y random variables. 

Suppose that the unknown parameter e has to be estimated from the vague 
data Xl, x2, ... 'Xn . Any mapping B,(Xl, Xz , ... ,Xn) from (FN(R))" into 
FN(R) may be considered as a fu,;,;y point estimator of that unknown param
eter. However we need some criteria to choose a reasonable estimator among 
all possible ones. In the c:la..'>sical statistics such a basic: property that a reason
able estimator should possess is consistency. In our case of vague data we may 
express this property in the following way. 

DEFINITION 3.3 Let X 1 ,X2 , ... ,X, denote a fuzzy mndom. sample from the 
distTibution with 1J.nknown pamm.eter· e and let A( B) denote a fuzzy peTception 
of B based on X 1 , X2, ... , Xn (see Definition 2.4). Then a fuzzy point est?>matoT 
B, = e, (X 1' Xz' ... 'Xn) is called a fuzzy-consistent estirnato·r of the pamm.eteT 
B (actually we have a seqv.ence { Bn}~=l of estim.ators) if joT all seqv.ences of 
fuzzy mndom. variables { Xn} ~=l 

Now we may prove a following theorem: 

THEOREM 3.2 The fuzzy sample ·median f is a fv.zzy-consistent estim.atoT of the 
. . : .J..t - ·-- _. ... . - ---· _ J _· -·-· 
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Proof: Let () denote the median we want to estimate (here we restrict our 
considerations only to distributions with unique median). If we have vague data 
X 1 , X 2 , . .. , Xn. , then the fuzzy median r is the fuzzy perception of/, i.e. A (I) = 
r. Let us consider the set representation {r a} of the fuzzy sample median f, 
i.e. f" = [f~, f~] for a E [0, 1]. By Definition 3.1 it is easily seen that both 
f~ = f~(X1 , X2, ... , X,t) and f~ = f~ (X1, X2, ... , Xn) are usual estimators of 
the crisp medians 11 and 12 from crisp random samples (X1 )~, (X2)~, ... , (Xn)~ 
and (XI)~, (X2 )~, ... , (Xn)~, respectively. These medians are unique, because 
of the assumption on distributions (originals) under discussion. Since the usual 
sample median is a consistent estimator of the crisp median, provided that 

we restrict ourselves to distributions with unique median, we have r~ ~ r~ 
awl t~ ~ r~ \fa E [0, 1], where 1'1 = r~ and 1'2 = r~. Therefore VE > 
0 and \fa E [0, 1] we get P (wE W: ~ f~(X1(w), X2(w), ... , Xn(w))- f~ ~ V 

lr~(X1(w),X2(w), ... ,Xn(w))- r~l >E) ---) 0 as n ---) 00. Thus the fuzzy 

sample median f is a fuzzy-consistent estimator of the median, which completes 
the proof. • 

4. A fuzzy confidence interval for the median 

Very often the experimenter is interested in finding an interval that contains the 
true (but unknown) parameter with a specified high probability. This is a prob
lem of interval estimation. The desired interval is called the confidence interval 
and this specified probability is called the confidence level. Thus 1r = [-rr1 , -rr2], 
where -rr 1 and -rr2 arc functions of the observable random variables V1 , V2, ... , Vn, 
is a confidence interval for the parameter () on the confidence level 1 - 8 if 

P{()E-rr};:=::1-8. 

Now we define a concept of the fuzzy confidence interval, due to Kruse and 
Meyer. Let X 1 , X 2 , ... , Xn be a fuzzy sample and let denote by A(()) the fuzzy 
perception of e. 

DEFINITION 4.1 A j11,zzy set 11 is called a j11,zzy con.fi:dence inteTval joT() on the 
confidence level 1 - 8 if 

inf P {wED: Aa <:;;; 11a};:::: 1-8, 
aE[0,1] 

wheTe 11a = [11~,11~ ] and l1L,l1u: (FN(R))n---) FN(R). 

Our definition is similar to those given in Kruse , Meyer (1987, 1988) . If we 
know two usual (i.e. crisp) one-sided confidence intervals [-rr 1 , oo) and ( - oo, -rr2 ] 

for () we can also derive a fuzzy confidence interval for e. This construction is 
n l rr. ,.."l,, n 4- r.. I/" .... ,, .-,,..., ,...,..., ..-1 1\ Jf ...., ... ....,_ (1 ()0'7 1 f\00\ 



456 P. GRZEGORZEWSKI 

THEOREM 4.1 Let [1r1,oo) and ( - oo,1r2] be two usual one-sided confidence in
tervals joT e on the confidence level 81 and fh r-espectively, whe'l'e 81 + 62 = 8, 
t5 E (0, 1), and 1r1 :<::; 1r2. Let X 1 , X2, ... , Xn be a fuzzy sample and A(B) denote 
a fuzzy peTception of B. Define for a E [0, 1] 

Jm(t) 

inf{t E R: ViE {1 , 2, ... , n} 3:ri E (Xi)a 

such that 1r1(x1,:r2, ... ,.?:,) :<::; t}, 

sup{t E R: ViE {1, 2, ... , n} 3xi E (Xi)a 

sv.ch that 1r2(.r,1 , .?:2, ... ,x,) 2: t} , 

sup { o:I[n ~,n~J(t) : a E [0,1]}. 

Then a fuzzy set II with a rnern.beTship function J.l·n is a fuzzy confidence inteTval 
joT e on the confidence level 1 - tJ. 

For the proof we refer the reader to Kruse, Meyer (Hl87). Basing on this 
theorem we may construct a confidence interval for the median. 

THEOREM 4.2 LetX1 ,X2 , ... ,X, be afuzzysam.ple andt5E (0,1). Definefo·r 
a E [0, 1] 

wheTe k1 is chosen to be the lmgest integeT which satisfies I;~:~ o ( ~ ) (0.5)"' :<::; 

~ and k2 = n - k1 . Then a fv.zzy set IIr with a membeTship function 

is a confidence inteTval fo ·r the m.edian on the confidence level 1 - t5. 

Proof: By Theorem 4.1 it suffices to show that for every fu<~<~Y sample X 1 ,X2, 
... , X, and Va E [0, 1] (II~(X1 , X2 , ... , X,) , II~ (.X1 , X2, ... , X,)] ~ 
(IIr(X1,X2 , ... ,X,))<> is valid. Without loss of geuerality we assume that the 
sample si<~e is odd. 

It is known (e.g. see Gibl.Jons, 1971) that if V1 , V2 , ... , v;, denote a usual 
(i.e. crisp) random sample then the confidence interval for the median on the 
confidence Ievell- 6 has a form: [Vk 1 +l:n., \;/,, 2 ,,], where k1 and k2 are defined 
as in Theorem 4.2. 

Let us set any a E [0, 1]. Let us take~ E R such that there are :ei E (Xi)a 
\;;/ i E 1, 2, ... , n for which 1r1 (1; 1, .1:2, ... , .?:n.) = :J:k 1 +1: , :<::; ~ holds. Such ~ exists 
because the supports of Xi, i = 1,2, ... ,n, are finite. Since ViE {1,2, ... ,n} 
Ti 2: (Xi)~ is valid , it follows that 
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Therefore we get 

II~(X1,X2, ... ,Xn) = inf {t E R : ViE {1,2, ... ,n} 3.r-i E (Xi)a 

such that '11'1(.r-1,.r-2, ... ,.r-,,):::; t} ~ (X,;-h 1 +1:n· 

vVc can show in a similar way that 

II~(X1,X2, ... ,X,) = sup{t E R: ViE {1,2, ... ,n} 3:-ri E (Xi)a 

such that '11'2(:r1, :r2, . .. , x,) ~ t}:::; (X~)k2 :n· 
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These two inequalities show that [II~(X1 ,X2 , ... ,X,),II~(X1 ,X2 , 

... ,X,)]~ [(x,;-)k 1 +1:n, (X~)k2 ,,] = (IIr(X1,X2, ... ,X,))"' which proves the 
assertion. • 

Sometimes one-sided confidence intervals arc used in applications. Kruse and 
I\ifcycr (1987) also showed how to derive one-sided fuzzy confidence intervals. 

THEOREM 4.3 Let ['11'1, oo) and ( -oo, '11'2] be two 1J,S1J,a[ one-sided confidence in
ten;als joT (} on the confidence level 8, 8 E ( 0, 1). Let X 1 , X 2 , ... , X, be a f11,zzy 
sam,ple and A((}) denote a f11,zzy perception of 0. 
(i) Define for a E [0, 1] 

.!.1,(X1, X2, . .. , X,) inf {t E R: ViE {1, 2, ... , n} 3.r-i E (Xi)a 

81J,Ch that '11'1(.r-1,.T2, ... ,.T,):::; t}, 

fiil.(t) sup { ai[!L,,oo)(t): a E [0, 1]}. 

Then a f7J,zzy set II with a membership function fJ·IT is the loweT f1J,zzy 
confidence inteTval for· 0 on the confidence level 1 - 15. 

(ii) Define fo·r a E [0, 1] 
Da(X1, x2, .. ,) Xn) Bllp {t E R: ViE {1, 2, ... 'n} 3J;i E (Xi)a 

81J,Ch that '11'2(.1;1, .r-2, ... , X 11,) ~ t}, 

/l·ff(t) BUp { oJ(-oo,ffo](t): a E [0, 1]}. 

Then a f1J,zzy set ITa with a membeTship fv:nction /l·ff is !.he 1J,ppeT f1J,zzy 
confidence inte·rval joT(} on the confidence level1 - 8. 

For more details we refer the reader again to Kruse, Meyer (1987). As in 
Theorem 4.2 we may construct the one-sided fuzzy confidence intervals for the 
median. 

THEOREM 4.4 Let X1, X2, ... , X, be a fuzzy sample and 8 E (0, 1). 
(i) Define joT a E [0, 1] 

(Ilr(X1,X2, ... ,X,))a = [(x;)k 1 +1:n,oo), 
whe·re k1 is chosen to be the largest integeT which satisfies 

t ( ~ ) (0.5)" :::; 8. 
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Then a fuzzy set D.r with a membership function 

J..Lgr(t) =sup { nfgr (X 1 ,x 2 , ... ,x,)(t) : a E [0, 1]} 

is the lower confidence 1:nterval joT the median on the confidence level1- 8. 
(ii) Define for a E [0, 1] 

(llr(X1,X2, ... ,X,.)) , = (-oo,(X~ ) k 2 :n.], 
where k2 is chosen to be the smallest integer satisfying 

t ( ~ ) (0.5t' :S 8. 
k' =k2 

Then a fuzzy set llr with a membership function 

J..Lnr (t) =sup { a lnr (x
1 

,Xz , .. ,x,) (t ) : a E [0 , 1]} 
is the v.pper confidence interval jO'f· the median on the confidence level1 -8. 

The proof is similar to the proof of Theorem 4.2. 

5. Fuzzy sign-test 

In addit ion to estimation, one of the primary purposes of statist ical inference is 
to test hypotheses. A statistical hypothesis is a statement about the population 
(or popula tions) from which one or more samples arc drawn. The hypothesis 
under test is called the null hypothesis H0 . A statistical procedure which enables 
one to make a decision whether or not H 0 should be rejected is called a test . 
If the null hypothesis is rejected one accepts the alternative hypothesis H 1 . A 
significance level 8 is a preselected upper bound for a type I error , i. e. the error 
committed if the null hypothesis is rejected when it is true. 

In the traditional approach to hypothesis testing all the concepts stated 
above arc precise and well-defined and the theory of that problem has been ex
plored thoroughly (see, e.g. Lehmann, 1986) . However if we introduce vagueness 
into observations or hypotheses we face quite new and interesting problems. Di
versity of approaches to testing hypotheses in fuzzy environment indica tes that 
we arc yet in the initial stage and t he commonly accepted methodology har:; 
not been worked out. For a review of the achievements in this area we refer 
the reader to Gr:wgorzewski, Hryniewicz (1997). Here we present our view on 
the general problem of tes ting crisp hypothesis in the presence of vague data. 
Then we apply the submitted theory to distribution-free problems concerning 
the median. 

Let vl' v2' . .. ' v,, be a usual random sample from the population with Ull

known parameter 80 . We consider the null hypothesis H0 : () = 80 against the 
two-sided alternative hypothesis H 1 : () i= 80 or against one of the following 
one-sided hypotheses H{ : () > ()0 or H{' : () < 00 . To verify the Hull hypothesis 
on the sigHificancc level 8 we usc a test ¢ : R __.... 0, 1 defined as followr:; 

.,.-, ( I ( T T T T T T \ "1 I TT ") / C' 



Statistical inference about the median from vague data 459 

In statistics randomized tests ¢ : R ---> [0, 1], which use an additional random 
mechanism, independent from a sample, arc also known. Since their importance 
is rather of theoretical kind, here we restrict ourselves to non-randomized tests, 
called simply tests. 

Now let us consider a fuzzy random sample X 1 , X 2 , ... , X,. Grzegorzewski 
(1997) introduced the notion of fuzzy test for testing hypotheses in the presence 
of vague data. 

DEFINITION 5.1 Let 8 E (0, 1) and let H0 and H1 denote the nv.ll hypothesis 
and the alteTnative hypothesis, ·respectively. A function 'P : (F(R) )"' ---> F( {0, 1}) 
is called a fuzzy test fo·r Ho on the significance level 8 if 

sup p {wEn: 'Pa: (Xl(w), X2(w), . .. , X,(w)) <:::; {1} IHo} ~ 8, 
a:E[D,l] 

wheTe 'Po: is the a-level set of 'P· 

This definition reduces to the classical one if all observations arc crisp. 
It is well known that there is an equivalence between the totality of para

meter values for which the null hypothesis is accepted and the structure of 
the confidence intervals (sec, e.g. Lehmann, 1980) . Thus having a confidence 
interval for a given parameter 011e may obtain easily a test for that parameter. 
Similarly, fuzzy confidence intervals can be used for the construction of fuzzy 
tests. That construction is due to Grzcgorzcwski (1997). 

Let us denote by ·A the complement of a fuzzy set A, i.e. if fJ·A is a 
membership function of A then a membership function of ·A is defined as 
fJ· ~A(:r) = 1 - fJ·A( :r),rh; EX. 

THEOREM 5.1 Let X 1 ,X2 , ... ,X, be a fuzzy sa·rnple and let 8 E (0,1) . Let 
TI = TI(X1, X2, ... , X,) denote the two-sided fuzzy confidence interval for the 
pamm.ete·rB on the confidence level1-8. Then afv:nction 'P: (F(R))"'---> F(O, 1) 
with its a-level sets defined as follows 

{1} 

{ 

{0} 

lfJa:(X1,X2, ... ,X,)= ~O, 1} 

if Bo E (Tia: \ ( •TI)a:), 
if fioE((•TI)a:\Tia:), 
if Bo E (Tia: n ( • TI)a:), 
if Bo ~ (Tia: u (•TI)a:), 

is a fuzzy test for the hypothesis Ho : fi = Bo against H 1 : e -=/= Bo on the 
significance level 8. 

By the theorem given above we may express a membership function of the 
fuzzy test considered above in a form more suitable for applications: 

p.'P(x) fJ·n(Bo)Io(x) + Jl·~n(Bo)h(x) = 
" ( IJ \T f ~ \ I ( 1 , ( fj \ \ T f ~ \ ~ r rn 11 
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or, for short, cp(x) = J.Lo/0 + (1- f.Lo) / 1, where fl·O = J.Ln(Bo) . Thus it is seen 
that the fuzzy test, contrary to the classical crisp test, does not lead to the 
binary decision - to reject or to accept the null hypothesis - but to a fuzzy 
decision: we may get cp = 0/0 + 1/1 which indicates that we should reject Ho, 
or cp = 1/0 + 0/1 which means that H 0 should be accepted, but we may also 
get cp(x) = J.Lo/0 + (1- f.Lo)/1, where p.0 E (0, 1), which may be interpreted as a 
degree of conviction that we should accept (p.0 ) or reject (1-f.Lo) the hypothesis 
Ho. 

It is worth noting that our fuzzy tests reduce do the usual (i.e. crisp) tests 
if the data are not vague but crisp. 

We may also obtain fuz:.~y tests for one-sided hypotheses. In order to get 
a fuzzy test for testing hypothesis H0 : e :::; e0 against H 1 : e > e0 it suffices 
to replace P in Theorem 5.1 by IT. Similarly, to get a fuzzy test for testing 
Ho: e;::: eo against Hl : e <eo, oue has to replace pin Theorem 5.1 by IT. 

Now we can derive a fuzzy test for testing hypotheses concerning the me
dian. This test is a natural generalization of the well-known sign-test (see, e.g., 
Gibbons, 1971) into situation with the presence of vague data. 

THEOREM 5.2 Let X 1,X2, ... , Xn be a fuzzy sample and let 8 E (0, 1). Define 
joT a E [0, 1] 

'Pa(Xl, X2, ... , Xn 

{0} if ((X~)k 1 +l:n V (Xf-ah 1 +l:n):::; "to 
:::; ((X~)k2:n 1\ (Xf-ah2:n), 

{1} if "to< ((X~)hc 1 +l:n 1\ (Xf_a)k 1 +l :n) o·r· 

"(o > ((X~)k 1 +l:n V (Xf_a)k2:n) 
{0, 1} if (X~)k 1 +l:n:::; "Yo< (Xf-ah1 +l:n o·r· 

(Xf- ah2:n <"to:::; (X~)k 1 +l:n), 
0 if (Xf_a)k 1 +l:n:::; "to< (X~)k1 +l:n 0'1' 

(X~)k2'1'· <"to:::; (Xf-ahl+l:n, 

wher·e k1 1:s chosen to be the laT:qest integeT which satisfies 2::~~0 ( ~ ) (0.5)n :::; 

% and k2 = n- k1 . Then a fv:n.ction cp : (F(R) )n _, F( {0, 1}) with its a-level sets 
defined above is a test for· the hypothesis that the median is equal to "to against 
the altenwtive that it is not eqv.al to "to (i.e. Ho : "( = "to vs H 1 : "( =f. "to) on the 
significance level 8. 

Proof: By Theorem 5.1 we know that a test for an unknown parameter with 
the two-sided alternative is completely determined by the confidence interval 
for that parameter and its complement. As it was shown in Theorem 4.2 that 
a fuzzy set II= II(X1 ,X2 , ... , Xn) with a-level sets defined as 
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where k1 is chosen to be the largest integer which satisfies :z=~:~o ( ~ ) (0.5) 11 
:::; 

% and k2 = n - k1 , is a two-sided confidence interval for the median /'o on the 
confidence level 1 - 8. 

Our next claim is to find a cornplemeut of that confidence interval. A fol
lowing lemma will be useful: 

LEMMA 5.1 

(a) If A E F Ls(R) then -.A E F Rs(R) and ( -.A)o: = ( -oo, Af_o:]· 
(b) If BE FRs(R) then -.BE FLs(R) and (-.B)o: = [Bf_o: ,oo). 

The proof of the lemma is straightforward. 
Since I1 is a fuzzy number, it follows that 

n = nn D, 

where IT and D arc the left-sided and the right-sided fuzzy numbers respectively, 
with a -level sets defined as 

ITo:= [(X~),, 1 +l:n, oo) and Do:= ( -oo, (X;')k2:n]· 

Thus 

aud by the lemma given above we get 

Thus a simple analysis lead as to the following couc:lusiou 

Do: \ (-.D) a: = 

= {r E R: ((X~)k 1 +l:n V (Xf-o:k+l:n):::; r:::; ((X;'),, 2 ,, A (Xf_o:)k2,,)} 
- - { L L ( -.TI)o: \ I1o: = r E R: r < ((X a: )k 1 +l:n A (Xl_o:)k1 +l:n) or 

ro > ((X~)k 1 +l:n V (Xf_o:)k2,,)} 
- - { L L I1o: n (-.TI)o: = r E R: (Xo:hi+l:n:::; r < (X1_o:)k1 +l:n or 

(Xf_o:)k2 n < /' ::=; (X~)hc 1 +l:n)} 
- - { L L I1o: U (-.TI)o: = r E R: (X1_o:)k 1 +l:n:::; r < (Xo:)k1 +l:n or 

(X;')k2:n < /' ::=; (Xf-o:h1 +l:n} · 

Hence 

{1} 
{ 

{0} 

<t?o:(Xl,X2,···,Xn)= ~0, 1 } 

if ro E (Do: \ (-.IT) a:), 
if /'O E ( (-.IT) a: \Do:)) 
if ro E (Do: n (-.IT) a:), 
; f , ,_ d rn 1 1 r _ n\ \ 
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{0} if ((X~)k 1 +1:n V (Xf_ 0 )k1+1:n) :S 'Yo :S 
((X~)k2 :n. 1\ (Xf_a)i.,2,,), 

{1} if 'Yo< ((X~)kd1:n. 1\ (Xf- ah1+1:n.) or 
'Yo> ((X~)k 1 +1:n. V (Xf-ah2:n) 

{0, 1} if (X~)i., 1 +1:n.::; 'Yo< (Xf-ah1+1:n. or 
(Xf_a)k2:n. <'Yo :S (X~)J.,1+1:n.), 

0 if (Xf_ 0 )k1+1:n :S 'Yo< (X~)k1 +1:n or 
(X~)k2 :n <'YO :S (Xf_a) k1+1:n· 

By Theorem G.1 this completes the proof. 

For one-sided alternatives we have 

THEOREM 5.3 Let X 1, X2 , . .. , Xn. be a fuzzy sample and let 8 E (0, 1). 
(i) Defin e joT a. E [0, 1] 

(X X X ) _ {1} if 'Yo< (X~)k 1 +1:n. 1\ (Xf-ah1+1:n., 
1. a k1+l:n :S 'YO< 1-a k1+l:n., 

• 

{ 

{0} if 'Yo 2:: (X~)k 1 + 1:n V (Xf-ah1+1:n., 

'Pa 1, 2, ... , n- ~0, 1 } ·f (XL) (XL ) 

if (Xf-ah 1+1:n :S 'YO< (X~)k1 +l:n> 
wheTe k1 is chosen to be the laTgest integeT which satisfies 

L~~o ( ~ ) (0.5)n. ::; 8. Then a function cp: (F(R))n _, F( {0, 1}) with 

its a.-level sets defined above is a fv.zzy test fo ·r the hypothesis that the 
median is less o·r· equal to 'Yo against the alte·rnative that the tTv.e median 
exceeds the hypothes1:zed value 'Yo (i.e. Ho : 'Y ::; 'Yo vs fh : 'Y > 'Yo) on the 
s1:gn~{icance level 8. 

(ii) A function cp: (F(R) )n _, F({O, 1}) with its c:t-level sets defin ed as 

(X X X ) _ {1} if 'Yo > (Xf_a)k2,, V (X~)i.,2 ,n, 
{ 

{0} if 'Yo :S (X~)k2 :n 1\ (Xf-ah2 :n., 

'Pa 1' 2' · · ·' n - {0, 1} if (Xf_a)''2"'· <'Yo :S (X~)k2:n, 
0 if (X~)k2 n <'Yo :S (Xf-ah2:n., 

wheTe k2 is chosen to be the smallest integeT satisfying 

L~~=k2 ( ~ ) (0.5)n.::; 8, is a fuzzy test for the hypothesis that the m.edian 

is g·reate·r or equal to 'Yo against the alteTnative that it is less than 'Yo (i .e. 
Ho : 'Y 2:: 'Yo vs H 1 : 'Y < 'Yo) on the sign~ficance level 8. 

The proof is analogous to the previous one. 

REMARK 5.1 TheoTem 5.3, part (i), ·remains valid if instead of fuzzy nv:rnbeTs 
we v.se the left-sided fuzzy numbers, wh1:le TheoTem 5. 3, part (ii} also holds if 
instead of fuzzy nv:rnbeTs we v.se the Tight-s1:ded fuzzy nv:rnbeTs. 

6. Conclusions 

It was shown how to estimate an unknown median, how to construct fuzzy 
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the median in the presence of vague data, so frequent in the real life practice 
(environmetrics, medicine, social sciences, quality management, etc.). In fact , 
we have generalized techniques - well known in the traditional statistics - into 
more universal situation with fuzzy observations. These generalizations are 
natural, since if the data are precise, not vague, suggested procedures reduces 
to the traditional (i.e. crisp) ones. 

The usefulness of the results stated above also lies in their distribution-free 
character. This is extremely important in the presence of vague data, because 
it is not known how to check the compatibility of a set of such observations with 
given distribution. 

There are however, some open problems, e.g., how to verify fuzzy hypotheses, 
how to construct confidence intervals and statistical tests when the confidence 
level or significance level, respectively, is also not precise but vague, etc. 
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