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Abstract: In this paper is considered the problem how to achieve
a specific dynamic behavior of robot end-point from the aspect of
impedance control and actuation redundancy. The target impedance
is analytically formulated. Due to its complexity, analytical formu-
lation is not suitable for real-timme application. To overcome this
problemn, a siinple fuzzy model of isotropic impedance in the form of
adaptive fuzzy network is proposed. This model is incorporated in
the general form of impedance control law, so that a new fuzzy-
impedance control law is obtained.  Verification of the proposed
control law is provided by computer simulation, taking as example
2-d.o.f. manipulating robot.
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1. Introduction

Control of dynainic behavior of manipulating robots is oue of the most challeng-
ing problems in designing intelligent robotic systems. For any given application,
manipulating robot should be able to provide corresponding dynamic behavior.
In the case of robotic assembly, isotropic behavior is found to be one of the
most hmportant mechanical properties of the manipulating robot. Mechanical
isotropy means a collincarity of the contact force vector and the vector of cor-
responding movements of parts to be assembled. If isotropy exists close to the
tip of the peg, irregularitics as jamming and wedping will not occur Whitney,
(1982). In the following text the coutrol of dynamnic belavior of manipulating
robots will be cousidered through the problem of producing mechanical isotropy
of robot cud-point.

Generally, there are two different concepts to achicve isotropic beliavior of
manipulating robots. The first one is based on special devices which may be
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added to the manipulating robot end-point. Remote Center of Compliance unit
(RCQ) is the most successful example of this concept Whitney, (1982). Despite
vood mechanical properties, practical application of this concept is limited due
to the insufficient flexibility (RCC unit is purely mechanical and always adjusted
for particular task in robotic assemnbly). The more flexible concept is based on

i)

isotropic properties which manipulating robot provides itself i.e., by its own
mechanical structure. The problem here is a limited number of robot postures
for whicl isotropic behavior exists, as a result of passive compliance derived
from flexibility of joints. Sclective Comnpliance Asscinbly Robot Arm - SCARA,
Makino and Furuya (1980) is typical exanple of this concept. For SCARA robot
configuration isotropy exists for one specific posture only Bowrieres, Jeannier
and Lhote (1984). This problem may be solved by active adaptation of joiut
compliance achieved through specific behaviour of robot control system.

2. Impedance control and isotropic target impedance

Contrary to passive compliance derived from structural flexibility, active com-
pliance of manipulating robol may be achieved by adjusting the loop gains of
servo actuators. Several linear and nonlinear control methods may be used to
develop compliance control. The survey of these methods is briefly discussed in
Whitney {1987), where geueralized stiffuess control, gencralized damper control,
Liybrid force-position control and impedance control are recognized. All these
methods refer to implicit force control. Sensory force information is used in the
controlled feedback loop for active accommodation of interacting forces through
the correction of programmed end-point position or programmed cnd-point ve-
locity, without explicitly specified programmed force.

2.1. TImpedance control law

The paper pays special attention to the mechanical impedance control law
Hogan (1985). Distinction between the impedance control and the previously
mentioned variant methods is the attemnpt of the controller to implement dy-
namic relation between manipulator variables such as end-point position and
force, rather than control of these variables alone. The target impedance may
be specified in task coordinates, through three characteristic dynamic paran-
cters:  peneralized stiffness, generalized damper and generalized inertia. By
specifying these parameters, we specify at the same time the desired dynamic
behavior of manipulating robot.

The dynamic model of manipulating robot constrained motion is given by
Craig (1986), Vukobratovi¢ and Ekalo (1993):

H(q)i+h(g,q)=7—=J"(q)F , (1)

where: ¢ is the vector of robot generalized coordinates, H{(g) is the robot inertial
matrix, h{q,q) is the vector of nonlincar functions which include centrifugal,
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Coriolis and gravitational terms, 7 is the vector of joiut torques, .J(q) is the
Jacobean matrix, and I is the vector of external force imposed at robot end-
poiut. Applyving duality principle Hogan (1985), the target iimpedance of the
cutire robot - envirommnent systemn should be of the scecond order:

F=M(X-%)+B(X-X)+K(X-X,) , 2)

where M, B and K are the target inertial matvix, damping matrix and stiffuess
matrix expressed in Cartesian coordinates. Superimposing (1) and (2), leads to
the impedance control law in the Cartesian coordinate frame:

FC=G(q) [Xp+ M~ (~BE - KE+F)| +1(q,) - F , (3)

where: P9 is the generalized actuation force vector (fictitions actuator placed
at the robot end-point), G(q) is the generalized inertial watrix in respect of the
robot end-point (effective mass, described in Asada and Ogawa (1987), h%(q, §)
is the generalized vector of nonlincar functions, and E{q,f) = X — X, is the
error function where subscript p denotes the preseribed (programmmed) values.

2.2. Isotropic target impedance

Essentially, isotropy counotes equal properties in all directions. Paradigins of
isotropy are Platonic solids. The cube, as a rigid body of uniforin deusity, is
one of Platonic solids. If we excite such a cube to rotate about a certain axis in
space, the body will continue rotating about the same axis and no motion will
arise about other ones. Isotropy may be also attribnted to multi-d.o.f. (degrees
of freadom) manipulating robots in kinetostatic sense, if such structures are
recognized as black-box that transforins the external excitation, acting on robot.
cud-point (excitation point), in iuterual joints torgnes of robot kinematic chain,
resulting in A superposed corresponding movement of robot end-point Angeles
(1995).

The problem of isotropic belhavior of mwanipulating robots is discussed in
Angeles (1995), where quasi-static aud kinematics isotropy are identified. To
achieve isotropic belhiavior of robot end-point we propose the following target
nnpedance parameters Petrovié and Milacié (1996):

M= T"T(q)H(q) T (q) = G(q) , (4)
B2 —4KM =0, (5)
K = diag [kr, ke, ke, kg, kg, kn] (6)

These paraincters are derived from cousiderations desceribed below.
For the robot in rest (zero end-point velocity), the following are satisficd:
E = const — E=0, X =0, and h%(q,q), so that the coutrol law (3) becomes:

FC = -GqM'KE+GqM™'F - F . (7)
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By substituting (4) in (7) the following is obtained:

FC=—-KB=K(X—X) (8)

The physical meaning of the equation (8) is that if target stiffuess matrix I
satisfies (6) then generalized actuation force vector will be collinear to the end-
point displaceinent vector, or analytically expressed:

Fx6X=0. (9)

This is a nccessary condition for quasi-static isotropy. DBesides this, there is
another important consequence of equation (8).

Tinpedance control law may be expressed in generalized (joint) coordinates
of manipulating robot, so that equation (8) becomes:

T=J ) KJ(q)(q— @) = K'q)n , (10)

where 1(q, 1) = q — gp is the error function. The member J7(q)K.J(q) = K9(q)
ig the stiffness matrix K expressed in manipulating robot generalized (joint)
coordinates. This matrix is always symnctric, positive definite and, o general,
non diagonal. Because the matrix /2 represents stiffness of joiut actuators, in
the case of nonredundant actuation this matrix mnst be diagonal. It is clear
that this condition is very restrictive, so the sotropy exists only under specific
gcometrical relations in kinematic chain and for a very few number of robot
postures Bowrrieres, Jeanuier and Lhote (1084). Equation (8) is equivalent to
equation (10) but, from the aspect of impedance coutrol law (3), it is not so re-
strictive. In this case any nondiagonal may be realized electronically. According
to (8) and (10) we can write:

KE=JT(q)K J(q)n =K — (11)
7= Kl & ook Bt v B e = 300 Kl my

Cross torms in (11) generate clectronic conpling between joiuts equivalent to
mechanically realized actuation redundancy observed in biomechanical systemns.
For previously wmentioned 2-dlo.f. SCARA robot arm, clectronic conpling de-
fined by (11) is mechanically equivalent to the actuation system shown in Fig. 1.
Cross term K, denotes stiffuess of third (redundant) actuator which simmlta-
neously actuates both joints with 7 o driving torque. This additional actuator
plays a very important role hecause it compensates weakness of non-reduundant
actuated robot chain.

Target damnping matrix B is chosen according to the critical dainping con-
dition and no other analytical relations arc formulated for kinematic isotropy.
Further rescarch is needed.
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Figure 1. Mechanical actuation redundancy for 2-d.o.f. robot arnn defined by
Eq. (11).

3. Fuzzy model of isotropic target impedance

Impedance control law (3) is based on the manipulating robot dynamic model
which is highly non-lincar sccoud order model. The dynamic phenomena which
follow constrained motion, require short sampling tiimne in digital control systein,
approximately 1 ms or less. This requirement is disproportional to necessary
calculations and hard to realize in practice. To solve this problem, the fuzsy sef
theory and approximate reasouing are used [or modeling isotropic impedance
(4), (5), and (G), in more cfficient way than the analytical one.

Fuzzy model of isotropic target impedance should be fuzzy dynamic formal
structure with v luputs and n outpuis, which maps input vector X = X (#),
XeR™1 into output vector ¥ = Y (1), YeR™. With regard to: q = q(t),
qeR™ Y = n(t), nelR™, 1 =9(t), neR™* and , F = F(t), FeR"*? number
of luputs is 1 = 3n + n. (n denotes the munber of actuated joints while n, is
environment dimension).

Functional relationships to be represented by the Muzzy model are complex
and highly nonlinear, so learning time may generally become extremely long.
Part of difficulty arises from size of sample training space. Let’s consider another
simple case of 2-d.o.f. SCARA robot arm. If, for example, & = 10 samples arc
required in cach dimension, the total munber of required training samples would
be N = k4 = 108, The nunber of required samples becomes astronomically
large for 6-d.o.f. manipulating robot arm. It is clearly unrealistic.

The context sensitive fuzzy model represents one possible answer to this
problem. Isotropic target hmpedance may be decomposed into a large mumber
of low order subsystems. These subsystems require a small number of training
saiples and reduce convergence tie.
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3.1. Functional decomposition of control law

The first step in target impedance fuzzy modeling is functional decomposition
of impedance control law (3). Expressing (3) in generalized coordinates, we
stiggest decomposition in the following way:

% = H(q) [§+ P(n,7) + Qa, F)] + ha,d) — 7T (@) F , (12)
where: P(n,9) is an n-dimensional vector function of robot transient processes,

Qq, F') is an n-dimensional vector function which reprosents the dynamnic iu-
teraction of robotic manipulator with the enviromunent.
Vector fuuction P may be adopted in the form:
P(i,m) = Pl(q,n) + P*(q,n) ,

P g, ) = )= Ng) M~ BI() = T g} (13)
Pa,m) = =T Ha)M K J(q)n =T*(q)y ,

where T''(q) and T'?(g) are the nonlinear matrix functions. In the same way,

function ¢ may be represented as:

Q. F) =T Y q)M™'F = A()F . (14)
Now, the reformulated target impedance is expressed with matrix functions
I (q) and T?(g) and A(q), which, for isotropic target impedance given by (4),
(5) and (G) arc defined as:

I'q) = —H Yg)J"(q)B(q) ) (a) , (15)
I(q) = —H ) JT () K T(q) , (16)
Alg) = H )T (q) - a7)

Matrix functions (15), (16) and (17) physically represent nonlinear gains in
controlled feedback loops (see Fig. 2). This is a primary decomposition.

Decomposition of matrix functions (15), (16) and (17) is secondary decorn-
position. Bach of them consists of n? elements which are nonlinear functions of
goneralived coordinates: F}_j = I—',}:j(ql, ‘). Matrix elements should be mod-
cled separately. For example, according to adopted sccondary decomposition,
vector function PH(g,n) may be expressed as follows:

1 1 1 O
Fglgl) F(i]‘g) P(llﬁ'-) "
Ff)l Iw”"’ F'Eﬂ. 773
R R G
"\1. E- . 1.
T Dhogy w0 I o in |
7 (18)
Pl + Tyt oo F%l:n-)% | 7
Py + gyt + Dy || P2
F-(ln.,l)??l + P%n,?‘)ﬁz ke 11%’%”)7}” = P:%
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Figure 2. Primary decomposition of isotropic target impedance on three sub-
models.

The other vector fuctions P2(q, eta) and Q(q, ) may be expressed on the same
way.

3.2. Adaptive fuzzy model

Mafrix clements may be modeled by adaptive fuzzy networle ANFIS Jang (1993)
(Fig. 3). This adaptive Muzy network is of feedforward type and consists of
scuare and circle nodes, placed in five layers. Links between nodes indicate the
flow direction of signals ouly and no weights are associated with links. Square
nodes have parameters and they are adaptive, while circle nodes are fixed and
they perfori basic functions of Sugeno-Takagi fuzzy inference Sugeno and Kaug
(1988). To achieve the required input-output wapping, the parameter sek of an
adaptive network is updated according to the given training data and adopted
learning algorithn.

The adaptive network (Fig. 3) works as the first order Sugeno-Takagi fuzzy
dynamic structure with inference in form of generalized modus ponens:

if (g is A') and (g2 is A?) then I''(i,5) = aqy + bgs + ¢, (19)

where: A and A? arce the fuzzy sets of antecedents (fuzzy labels), ¢ and ¢a are
the input crisp variables, ' (4, 7) is the ontput variable and a, b and ¢ are the
conscaquent parameters. The cousequent variables are fuzzy singleton sets whose
singleton output spikes may walk around the output space, in dependence on
the crisp iuput values. This fuzzy dyuamic structure has high representative
capabilitics and computational officiency, which is of particular importance to
thie problem in hand.
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Figure 3. An adaptive fuzzy network for modeling elements of matrix functions.

Learning algorithm is based on batch learning paradigm (on-line learning).
The paraimcters set of adaptive network is updated after the whole training data
set has been presented, Le., only after the cach traming epoch. Hybrid learning
rule which combines gradient decent method and the least squares estimate
(LSE) are used for identification of network parameter set. Each epoch of this
hybrid learning procedure is composed of a forward pass and a backward pass. In
the forward pass, input data and functional signals go forward to calculate each
node output and, with scquential LSE, identily a set of conscquent parameters.
In the backward pass, the error rates propagate from the output end toward the
input end, and the antecedent parameters are updated by the gradient decent
method. Applied hybrid learning rule not only can decrease the dimension of
the search space in the gradient method, but, in general, also speed up the
convergence of learning algorithim. Details may be found in Jang (1993).

Applying the same approach, it is possible to build up a super dynamic struc-
ture in the form of an adaptive fuzzy network for representing vector functions
Pl(q,m), P%(q,n) and Q(q,F). Aun example is shown in Fig. 4. Three layer
network represents the first element of vector function P1(q,%). Square nodes
have parameters too, but in that case, they are a five layer adaptive networks
shown in Fig. 3.
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Figure 4. Adaptive fuzzy network which represents the first element of vector
function P(q,7) according to the adopted secondary decomposition of isotropic
target impedance.

4. Simulation example

To verify the proposed fuzzy-impedance control law, computer simulation was
performed in MATLAB SIMULINK environment with the additional FUZZY
toolbox. Simple 2-d.o.f. SCARA robot in horizontal plane was used as an
example. For simplicity, all mass exists as a point mass af the distal end of
cach link. Dynamic equations of this robot may be found in Craig (19806).
Lengths of the robot links satisfy passive isotropy condition Iy /la = v/2/2 given
in Bourricres, Jeanuier and Lhote (1984).

As example, Fig. 4 shows four elements of matrix function I' which are
defined by equation (15). All matrix elements are nonlinear functions of the
robot generalized coordinates.

Joint angles arc adopted as antecedent lingnistic variables with the names
q1 " and ‘g2 *. The term sets of antecedent variables are based on the uniformn
erid partition of the input space on three fuzzy values only:

T(Ll) - T(fh) = {Iijfﬁ I, '"Center r, ’l?,’i_(]hfr}
T(L?) = T(g2) = {"Small’, 'Medium ', 'Large'}. (20)

I

Two types of membership functions are used for antecedent fuzzy sets: lincar,
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in the triangular forn, defined as:

0 g<a
-z <g<h
5 A e $=1=
["(qla‘:hi(’) - c—q IJ S q E ¢ (21)
c—=b
0 ¢ <q
and nonlinear, in the form of generalized hell fuetion, defined as:
;.'.(q;rl,b, (:) — ;?b {22)
L |2
For hoth cases wmembership functions are specified by three parameters.
r1(1,1) r1(1,2)
200 50 Vv
— = "'n‘!‘!‘?""’%
- ® 2 T | ARy
= Smue = o SRR
T e © | WS
-400 LB -50 “"‘«‘A‘\““ L
T s 0\
T T
g2(rad) 0 0 q1(rad) g2(rad) 0 0 q1(rad)

g2(rad) 0 0 q1({rad) a2(rad) 0 0 gi(rad)

Fipure 5. The noulincar clements of the matrix function Fél 1y, aunalytically
1%

formmulated by (15) - noulinear gaius in the speed feedback loop.

I accordance with (20), nonlinear clements of matrix fanetions T, T2 and
A arc described by linguistic models with nine Sugeno-Takagl rles of the form
(19). In the case of wmatrix clement I‘g] 1y the linguistic wodel is:
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Ry:  if (g1 is Left) and (g2 is Smaell) then (I'(1,1) is T(1,1)_1)

Ry o if (g is Left) and (g2 is Medinm) then (I (1,1) is T'(1,1).2)
Ry if (g is Left) and (g2 is Large) then (T'(1,1) is [(1,1)3)

Ry if (g is Center) and (g2 is Small) then (T7(1,1) is ['(1, 1))
Rs:  if (¢ is Cenier) and (ga is Medium) then (I (1,1) is T(1,1)_5)
Re:  if (qu is Center) and (g2 is Large) then (I'*(1,1) is I'(1,1)-6)
Ry . if (g1 is Right) and (g2 is Small) then (I (1,1) is I'(1,1)_7)
Rs:  if (g1 is Right) and (g2 is Medium) then (I'(1,1) is F(l 1).8)
Ro i if (g1 is Right) and (42 is Large) then (D'(1,1) is T'(1,1).9)

Identification of 45 paramncters is needed to model cach matrix element.
[sotropic fuzzy-iimpedance model for SCARA robot Liave 12 Sugeno-Takagi fuvzy
models of matrix cleients, giving a total wunber of 540 parameters. The set of
400 ifo data pairs for cach mabrix element is used for training the correspond-
ing fuzzy network. TFig. 6 shows initial awd optimized nonlinear wembership
functions after 100 training cpochs for malrix clement Fg“).

For the same watrix element, the error convergence graph is shown on Fig, 7
The form of antecedent menbership fuuctions has an huportant role. The fuzzy
model with nonlincar membership finetions (nonlinear fuzzy wodel) lias better
representative capabilitics and cuables faster learning. Relative RMS arvor of
value (.04 is obtained alter 300 cpochs of training. That may be accepted as a
very good approximation, cspecially il a rough iuput space partition on three
fizy values is considered.

The quality of thie proposed isotropic fuzgy-impedance control may be casily
tested by simple siimlasion experhnent. The mauipulating robot has a prede-
fined fixed posture in working space, delined by qj,(' ) = ap(to), and no motion of
robot end-point is programined. The robot excitation is perforined by external
force impulse applied oun the robot end-point. The force nnpulse is a known
fietion of time I = F(#), wilth specified acting direction and with nnit inten-
sity. The force nupulse duration is chiosen to be 200 ms, This experimment is a
very good approximation of real situations whicli Liappen iu part mating procoess.
Also, excitation is basically dynamic, which is important for analysis of infln-
ence of target iinpedaunce parameters ou dynanical behavior of manipulating
robot arm.

Fig. 8 shows thie robol end-point response in the case of rectangnlar form of
impulse force exeitation for robot posture defined by ¢ = [0,7/12]7 and force
acting angle 4 = 7/2. Despite the fact that the cliosen robot posture is very
close to the robot outer singularity, with preseuce of robot highly nonlinear
dynaiics, coutrel system is stable awd working very well. Fig. 9 shows robot,
end-point displacement for fonr cliaracteristic excitation angles for the same
robot posture and timpulse shape.

The best way to gel insight of the quality of proposed isotropic fuzzy-
impedance control is the complianee inap shown in the Fig. 10, The compliance
map represents the miscolincarity angle as a hinction of rohot posture defined
by generalized coordinate go and the excitation force angle 4. As it shown
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Figure 6. Initial and optimized membership muctions for matrix clement l—'(ll 1
after 100 epochs of training.

in Fig. 10, structural isotropy for SCARA robot exists only for the posture
defined by ¢z = 3m/4 Bowrieres, Jeannier awd Lhote (1984). The proposed
fuzzv-impedance control law cuables approximate isotropic behavior i the en-
tire working space, except in the zones close to the siugularities (note, thougly,
that the scales of the vertical axis used i 3-d graphs shown in the Fig. 10, arce
nof the sane).

5. Conclusion

The simmulation results clearly demonstrate that the proposed fuzzy-iinpedance
control law may produce isotropic behavior of manipulating robot althouglh this
isotropy does not exist in nechanical structure ouly. Isotropy is produced in
the way equivalent to mechanical actuation redundancy (one actnator siimulta-
neously actuate mwore than one joiut). This kind of redundancy is common in
biowiechanical systems. First order Sugeno-Takagi fuzgy model and iuput space
partition on three linguistic values are acceptable for isotropic target impedance
modaeling. The Lybrid learning algoritlun used is stable and has good conver-
gence. Antecedent linguistic valnes with nonlinear membership functions give
Ligher accuracy of fuzzy model and faster convergence of learning algorithon.
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