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Abstract: To program an autonomous robot so that it acts re
liably in a dynamic environment is a very harcl task. Towards a 
promising approach to this problem, we have developed a genetic 
fuzzy controller for a mobile robot, and showed the possibility by 
applying it to a simulated robot called Khepera. The robot gets 
input from eight infrared sensors and operates two motors accord
ing to the fm:zy inference based 011 the seusory input. This paper 
attempts to analyze the adaptive behaviors of the controller by us
ing automata, which indicates the emergem:e of several strategies 
to make the robot to navigate the complex space without bumping 
agains the walls and obstac:les. 
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1. Introduction 

It is quite difficult to construct the optimal coutroller that appropriately adapts 
to the ever-changing cnviromnents. This is becanse of missing necessary infor
mation at design stage, the unpredictability of the enviromnent dyuamics , ami 
t he inherent noise of the sensors aml actnators (Dorigo, 109G) . Clearly, au an
touomous robot that can acquire knowledge by interaction with the environment 
ami subsequently adapt and change its behavior in the run time could greatly 
simplify the work of its designer. As a promising approach to the learning of an
tonomous robot, behavior-basecl robotics has receutly appeared (Brooks, 108G; 
Dorigo and Sc:lmepf, 1993). 

One of the key points of this approach is not to give the robot information 
abont the environment but to let the robot fincl the knowlcclge by itself. vVith 
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Figure 1. Khepera robot and the simulated representation. 

this a pproach , a number of researchers have successfully employed evolut ion
ary procedures to develop the control ::;ystem of simulated robots (Beer and 
Gallagher, 1992; Cliff, Harvey and Husbands , 1993; Parisi , Cecc:oni and Nolfi , 
1990). The rich variety of stmctures, which have appeared dmiug evolution 
and the large number of evolved behaviors, have empirically demoustrated t he 
power and generality of the evolutionary algorithms. However, this approach 
suffers from the difficulty of analy~ing the control system evolved , which pro
hibits the designer from making use of some domain knowledge to design the 
co11trol system by an evolutiona ry approach. 

To work out this problem, we proposed a fuzzy system for a behavior-based 
robot , and presented an evolutionary approach to clct.ennine t he structure a11d 
parameters of t he fuz~y controller ( Cho and Lee, 1998). In this paper, we at
tempt to analyze the genetic fuzzy controller developed to control the simulated 
robot called Khepera. We also show that the adaptive behaviors result from 
the interaction of several primitive low-level strategies acquired through the 
evolutionary process. 

2. Autonomous robot 

For the simulation, we have used the Kltepera robot that is circular, compact 
and robust as shown in F igure 1. This is a miniatme robot that has diameter 
of 55nl.m., height of 30Tn:m. , and weight of 70g. The robot is supported by two 
wheels and two small Teflon balls placed under it::; platform. The wheels are 
co11trollcd by two DC motors with an i11cremental encoder (12 pulses p er m:m. of 
robot advancement) and can rotate in both clirectio11s. The geometrical shape 
and the motor layout of Khepera make the robot to navigate in sophisticated 
environment eveu when its control ::;ystcm i:o; immature. 

It is provided with eight infrared proximity sensors placed around its body 
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which are based on emission and reception of infrared light. Each receptor can 
measure both the ambient infrared light and the reflected infrared light emitted 
by the robot itself. Several new single sensors and complete module::;, such as 
a stereo-vision module and a gripper module, can be ca::;ily added , due to t l!C 
hardware and software modularity of the system. 

Dedicated to Khcpera, t he simulated mobile robot (Iviichel, 1090) includes 
eight infrared sensors (small rcctaugles) allowiug it to detect by reflection the 
proximity of objects in front of it, behind it, and to the right ami left sides of it. 
Each sensor returns a value ranging between 0 aud 1023 represented in gradual 
color levels. 0 means that no object is perceived whereas 1023 means that an 
object is very close to the sensor (almost touching the sensor). Intermediate 
values may give an approximate idea of the distance between the sensor and the 
object. Each motor can take a speed value ranging between -10 and + 10. The 
size of arrows on the motors in Figure 1 indicates the amount of speed. 

3. Genetic fuzzy controller 

In order to operate the robot introduced at t he previous section, we have de
veloped a fuzzy controller of which the internal parameters arc adapted with 
genetic: algorithms. A fuzzy inference system provides a computing framework 
based on the concepts of fuzzy sets, fuzzy if-then mles, and fuzzy rcasouing. The 
basic structure consists of a fuzzy rulcbasc, reasoniug mechauism , and dcfuzzi
fication mechanism. A fuzzy rulebase is a set of fuzzy mlcs that are expressed 
as follows: 

Rule 1: If (:~: 1 is At) and (x2 is A§) and . . . and (xn is A;,), then y is B 1 

Rule 2: If (x1 is Ai) and (x2 is A~) and . . . and (:1:11 is A;,), then y is B 2 

Rule ·rn.: If (.r,l is Al."·) and (xz is A2') and .. . and (x, is A;), then y is E rn. 

where x.i (1 ::::; j ::::; n) arc input variables, y is output variable, awl A~ and B; 
(1 ::::; i ::::; ·m.) are fuzzy sets which arc characterized by membership funct ions. 
In our simulation, the numbers of input and output variables arc eight aml two, 
respectively. 

In order to facilitate the clesigu of the controller, we adopt the following fom 
fuzzy sets for the input and output parameters: 
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Input : 8 values from infrared sensors (0 "' 1023) 
Fuzzy set : I= {VF, F, C, VC} 

VF (Very Far) 
F (Far) 
C (Close) 
VC (Very Close) 

Output: 2 values from motors (-10"' +10) 
Fuzzy set : 0 = {BH, B, F , FH} 

BH (Backward High) 
B (Backward) 
F (Forward) 
FH (Forward High) 

The fuzzy sets could be simplified if vve used partition of less number of fuzzy 
values , but the four values make the robot navigate smoothly. Even though the 
fnzzy sets consist of four fuzzy values, the exact partitiouing of input/ output 
spaces depends on membership functions which are determined by genetic al
gorithms in our approach. Triangular shapes specify the membership function. 
A parameter value divides the range (0 rv 1023 for input and -10"' +10 for 
output) by ten equidistance segments. 

For fuzzy inference we use corrclatiou minimum method, which truncates 
the consequent fuzzy region at the truth of the premise (Kosko, 1092). The 
firing strength, fl·i, of the ith rule is defined as follows. 

(1) 

where j is the number of input variables, and Ji.i is the fuzzy membership 
function defined at the jth input varia!Jle of the ith rnlc. 

Finally, centroid dcfuzzification method is adopted to yield the expected 
value, vr, of the solution fuzzy regiou, a,; follows. 

'\'m -
* 0;.=0 fl·;})i 

1'} -. l - "rn, . ' 
0i=0 fJ,_ 

(2) 

where '!Ji is the ith domain value. Figme 2 shows an example of t l1e fuzzy 
inference and defuzzific:at ion used in this paper. In this figure, rules G and 7 are 
activated and produce two output values: 3 and 4. 

In order to robustly determine the shape and wnnber of membership func
tions iu fuzzy rules, genetic: algorithm has been utilized. This approach reduces 
the burden of human operators to decide the structure of fnzzy rules. Genetic 
algorithm (GA) i::; considered as an effective method for optimization (Goldberg, 
1080), and several hybrid methods ·with fnzzy logic have been rcceutly proposed. 
Figure 3 shows the overall diagram of the proposed system. 

The parameters in the fu zzy system are repn~scnted as a gene, awl tl1e per
formance with the Khepera simulator decides whether it can produce offsprings 
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Figure 2. An example of the fuzzy inference and defuzzification. 
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Figure 3. Schematic: diagram of the genetic: fuzzy system. 
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8 input-vars 2 output-vars 10 rules 

INPUT OUTPUT RULES 

·- --- --- --· --------------------------- chromosome ---------------------------

Figure 4. Gene code for eucoding the fuzzy system. 

with the genetic operators. In the figure , four genes of munbers 1, 2, 4 and G 
arc selected as candidates for the next generation, and the crossover is applied 
to them. 

To get a success in the application of genetic algorithm, it is quite importaut 
to devise a gene coding scheme appropriate to t he problem. In this paper , we 
should incorporate the iuput all(! output membership functions ancl the rules as 
a gene code as shown in Figure 4 which em:oclcs the eight input parameters, two 
output parameters ancl maximum 10 rule::;. For details on the gene cncocliug 
::;chcme, sec the recent publication ( Cho aml Lee, HJ98). 

Auother important issue iu the genetic algorithm is to determine a proper 
fitnc::;::; mea..•mrc for the problem. In this paper we make the fitness function 
decrease as the robo t collides with the walls , and incrca..o;;c as it moves fartlwr 
from the start point. In addition, <1 couple of factors arc inc:ludcd to induce 
the compact fuzzy system by preferring to the ::;umller munber of rules and 
membership functions. The fitness funct.iou i::; a..-; follow::;. 

fitne::;::; a x no. of collisiou::; 

+ f3 x distance moved 

+ 1 x no. of rules 

+ 8 x no. of membership functious 

+ E x no. of check points reached, 

where a= -3, (3 = 1, 1 = -100 , 8 = -10, and E = 500. 

(3) 

The coefficients might be cletcnniuecl by auothcr optimization technique, 
but in this paper we have just ::;elected them empirically. The fitn ess would 
increase a::; the robot goes farther from the ::;tart point while passing by more 
check points. The fitne::;s wonld decrease a::; the robot collides wit h the walls or 
the nnmbers of rules and membership fuuctions get larger. In order to expedite 
the evolu tion, we put several check points along with the pathways which will 
be removed later. 
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4. Simulation 

585 

The Khepera simulator has been writteu in C++ (1viichel, 1990), and the sim
ulation was conducted in SUN Spare 10 workstation. We initiali,;ed 200 chro
mosomes at random , each of which was developed to a fuzz-;y controller for the 
robot. Each robot operates within 0000 sensor sampling time, and produces the 
pc~rformance value according to the fitness function. 

Figure 0 shows the best and average fitness changes in the course of simu
lation. As the figure depicts , the performance increases as the generation goes, 
and a robot navigated successfully at the given environment has been obtained 
at less than 100 generations. It eau he ::;<:~en that the fituess is radically increased 
at t he beginning stage , but there is nearly no chauge after 90 generations except 
some oscillation. This has occurred mainly because the eli te preserving strategy 
has not been incorporated in procluciug the next generation. The fitness jumps 
to a high value when the robot can escape from the closed corridor. Armmd the 
G7th generation the best individuals already perform a near optimal behavior. 
They navigate smoothly not to bump into walls and corners, and maintain a 
straight trajectory whenever it is possible. 

Figure G shows the trajectories that the robot has made during the simula
tion. These results arc h ighly reliable al!Cl have been replicated in many n .tllS 

of the experiment. In the beginniug of the evolution the individuals evolved a 
frontal clirection of motion, conespomliug to the sicle where more seusor::1 arc 
available. Those individuals that moved iu the other direction got stuck in a 
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Figure 6. Trajectories of the robot. 
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corner without being able to detect it , and soon disappeared from the popula
tion. The controller for this robot consists of only seven effective rules, which 
are generated through the evolutionary process as follows. 

Rule 1: If (x2 = C) and (:~; 5 = V F) and (.T7 = VC) 
Then (y0 = BH) and (y1 = B) 

Rule 2: If (x4 =V F) 
Then (yo = F H) and (y1 = F) 

Rule 3: If (:~; 1 =VC) and (:~:2 =F) and 
(x4 =C) and (x7 =VC) 

Then (JJo = BH) and (y1 = B) 
Rule 4: If (x2 =F) aud (:1:3 =F) and (:1:5 =VC) 

Then (JJo = F) and (711 = F H) 
Rule 5: If (:~:4 =VC) 

Then (yo = BH) and (711 = F) 
Rule 6: If (.1: 2 = VF) and (.1:4 =F) and (:1:5 =VC) 

Then (JJo = F) and (y1 = F H) 
Rule 7: If (xo = V F) and (:1:4 = F) and (x5 = C) 

Then (y0 = BH) and (y1 = F) 

Even though we did not give any hints to the system, several effective rules 
to control the mobile robot appropriately at a number of different cases have 
emerged through the evolution. The overall behavioral model can be depicted 
as Figure 7. 

The rule 2 triggers the state of "Obstade Avoidance," the rules 2 and 7 
cooperatively induce the state of "Wall Following," and the rule 5 act ivates 
the state of "Impact Avoidance." This result dictates that the evolutionary 
approach is quite useful to design a flexible and efficient fu,;zy systems to control 
mobile robot. 

For instam:e, Figure 8 shows the snapshots of the robot that escapes from 
the dosed corridor. When the robot arrives at the dosed corridor the internal 
state of the robot changes to "Impact Avoidance" which is governed Ly rule 5, 
while the usual "Wall Following;' state is activated by rules 2 and 7. Figme 9(a) 
depicts the speed of the two motors with respect to the activation levels of rule 
5. As can be seen from this figure , the robot turns left a._<; soon as the rule 5 is 
act ivated . Figure 9(b), (c) and (d) show the changes of the sensor values, the 
activation levels of the rules, and the speed of left and right motors , respectively. 

5. Concluding remarks 

Buildiug a genetic fuz,;y controller is by all means a consistent approach to the 
problem of automatically adapting the behavior of a mobile robot in a c:hangillg 
environment . This paper has presented a fuzzy system to control the Khepera 
robot, and utilized genetic algorithm to optimize the internal parameten; ill 
the system. A successful controller generated collsists of only seven effective 
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Figure 7. Behavior model for the robot evolved. 
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rules, which shows the evolution finds out the optimal set of rules to control 
the robot. The simula tion result shows that the evolutionary approach is quite 
useful to design a flexible and efficient fuzzy systems to control mobile robot. 
Nevertheless, further efforts are required to deal with the stability issue of the 
proposed controller. 
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