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Abstract: A novel fu zzy neural uetwork , called FuNN, is ap
plied here for time-series mocldliug. FttNN models have several fea
tures that make them well suited to a wide range of kuowlcdge eu
giueering applications. These strengths include fa::;t and accurate 
learning, good g;eneralisatiou capabilitic::; , excellent explauation fa
cilities iu the form of sentant ic:ally meauiugfnl fnzzy rnles, and the 
ability to accommodate both umnerical data awl cxi::; tiug t)xpert 
knowledge a bont the problem nncler cousideratiou. 'vVc investigate 
the effectivenc::;s of the proposed ne1J:I"o-.fuzzy hybrid architectnres for 
mauipnlatiug the future bcbwionr of uoulitwar dymunical systems 
a llC! interprctiug fnzzy if-t hcu mlcs . A wcll-kuowu example of Dox 
awl J eukins is used as a bew:hmark time series iu tlJC proposed mod
elliug; approach R-nd the other modellin g; il.pproach. Finally, expcri
meutal rest tl ts and comparisons with t lw other popnlar ncnro-fnzzy 
infereuce system, namely Adaptive Network-based Fuzzy Iufcreucc 
System (ANFIS) arc also presented . 

Keywords: fuzz y nenr<'tluet, time-series awl dytmmical systcttt , 
lmowlcdge acqnisi t imt, compntatioual uemal uct , fnzzy logic, a llCl 
adap tatiou 

1. Introduction 

Over the last decade , siguificant advauces have beeu made i11 two distinct tedt
nologica l areas: fuzzy logic aud compntatioual nenral uctworks. The theory of 
fuzzy logic (Zacleh, EJGS) provides a matlteJt mt ical frmuework to captme the 
tmcert ~tiuties associated with lmlllall cogui t ive processes , snclt as tlt;' ·king aud 
rca ... soniug. Also , it provides a lltatlwmaticalnJorplwlogy to emnlate u ·rca.in pcr
ccpLnal andliugni::;tic attrilmLes associated with llllmau cogni t ion. On the other 
ltaml, the computatioualnenral uctwork paradigms have evolved in the process 
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of understanding the learning and adaptive features of neuronal mechanisms 
inherent in certain biological species. The integration of two fields has given 
birth to an emerging technological field-the fuzzy neural networks . The fuzzy 
neural networks have the potential to capture the benefits of the two fascinatiug 
fi.elds, fuzzy logic and neural networks , into a single entity (Lin & Lee, 1991; 
Yamakawa et. al., 1992; Jang, 1093; Ishibuchi et. al., 1994; Hauptmann & 
Hee!::iche, 1095; Kasabov, 1906a; Kasabov, 199Gb; Kasabov et. al., 1907). It is 
also shown that neuro-fuzzy hybrid architecture is capable of modelling chaotic 
time series data (Katayama et . al., 1905) . 

The intent of this paper is to demonstrate how a novel fuzzy neural net
work, called FuNN (FUzzy Neural Network) (Kasabov, 109Ga; Kasabov, 109Gb; 
Kasabov et. al., 1098), can be used for time-series data modelling and for a 
wide range of knowledge engineering applications. Experiments with a highly 
irregular time series data arc used to illustrate the effectiveness of the suggested 
type of fuzzy neural network for modelling, prediction, knowledge acquisition 
and adaptation . 

2. Time series data modelling and the case study problem 

Time-series data modelling is a generic problem which permeates all fields of 
science. The increased interest in nonlinear systems is also related to the dis
covery of chaos, as chaos can readily occur in all natural and living systems 
where nonlineaTity is present. Chaos is currently one of the most exciting topics 
in nonlinear systems research. 

The ga!::i-furnace data set of Box-Jenkins is well known and is often used as 
a standard test for the system identification (Box & Jenkins, 1970). The time 
series used for identification purposes consists of 206 successive pairs of input
output ob:,;ervations measured at a sampling rate of 0 sec from a gas furnace 
system where the input is the gas flow rate into the furnace and a single output 
is the concentration of C02 in the exhaust gas. 

The task of this process identification is to provide a prognosis for the carbon
dioxide concentration at the moment ( t) given the methane portion at a time 
moment (t-4) and the carbon-dioxide concentration at a time moment (t-1) as 
input variables . In our experiments , the data set consists of only 202 consecu
tive values of methane (t-4) and the produced in a furnace C02 (t-1) as input 
variables and the produced C02 at the moment (t) a._<; an output variable. Fig. 1 
shows the C02 time series data, together with its various characteristic func
tions. The power spectral density (PSD) has large statistical fluctuations. It 
is rather constant at low frequencies and appropriates a constant slope at high 
frequencies. The histogram is more fiat than a Ganssian distribution, the auto 
correlation function (ACF) indicates a decay constant of about 5 time lags. The 
3-dimensional delay-coordinate plot indicates certain periodicities superimposed 
upon an approximately higher regression behaviour. 

In the next section we discuss the qualitative modelling of a dynamic process 
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Figure 1. Characterisation of gas-furnace time series: (a) Original time series; 
(b) Power spectrum density; (c) Histogram; (d) Auto correlation function; (e) 
3-dimensional phase diagram. 



~. KASABOV , J. KIM, a nc! R.. I<OZ"1A 

throngh et novel architecture for fuzzy neuml nehlJO'rk (FNN), called FuNN, 
which stands for Fui~L~Y N eural Network, a1 investigate some lcaruing aud 
adap tation strategies usiug the cxmnple of the get;; fu ruace ;;ystem idcntiiicatiou. 

3. FuNN- A fuzzy neural network for modelling and knowl
edge discovery 

The fnL~L~Y Nem aluetwork FnNN (Kasahov, 199Ga; Kascthov , 199Gb; Kasctbov et. 

al., 1998) nses a multi-layered percep t rou (:r•ALP) uctwork and a extcudecl DP 
trainiug algorithm. In t his conucct.ionist strnctnrc, the iuput and ont pn t nodes 
represent the input states aml output control/decision signals respectively, and 
in the hiclclen laycrs, there arc nodes fu nctioniug as membership fum:tious (IviFs) 
aucl rnlcs. This eliminates t he disadvantage of a uormal feed forwanl umlti-laycr 
uct which is difiicult for au outside observer to 1mdcrstaucl or to modify. 

The architecture facili tates lcaruiug from data and approximate reasouing, 
as well as fnL~L~Y rule extraction and iusertim1. It allows for the colllhincttiou of 
both llll!llerical allCl fuL~L~Y data all<l fnL~L~y rules to be used iu ouc system, thns 
producing the synergistic bcuefi ts associated with the two sources. Iu addition, 
it allows for adaptive learniug iu a, dyuamically changing euviromneut. 

Below a brief description of the cmnponeuts of the FuNN strnctme allCl 
fnnctionalit ics, and the philosophy behind this m c:hi tcc:tmc, arc given . 

3.1. The architecture of FuNN 

The gcueml FuNN arc:hitcct.mc consists of G la,ycrs with partial fccdforward 
connect io11s as showu in Fig. 2. Iu this cmmec:t ionist structmc a modified BP 
trainiug <~. l gori tlu n was developed . The first and last layer act as the fuzz ificr 
and the dcfuL~zificr, respectively. I11 the condition layer , uniformly dis t ributed 
triangular membership functions a,rc nsed . Singletons <trc applied in between the 
ctction and the ontput layer , as comwctiou weights , which reprcsfmt t he centre 
of a, mcmbersl1ip functions . FuNN is also adaptable where the membership 
functions of the fuzL~y predica,tcs, a..s well a..s the fnzL~y rules iuscrtcd before 
traiuing or adaptation, may adap t and chaug;c according to new trainiug data. 

• Input Layer (Layer One ): Node,; in layer oue are inpnt uodc" which 
rcprescut iupnt liuguist ic variables (Zctclch, 1973) . The uocles iu this layer 
ouly transmit iupnt values to tl1c ucxt layer , condition elem.ent la.yeT. 

• Condition Layer (Layer Two): Nodes iu this layer acts as fnzL~ificatiou 
processors. The iupnt valncs arc fed to the coll<litiou clc!llent layer which 
performs fnzzificcttion. This is ilupkllleutcd nsing t hree-point triaugnlar 
!llemhership functions with centres represented as weights. The t riangles 
arc completed with the minimum and maximn!ll points a ttached to adja
ccut centres, or shoulclcrecl in the ca..-;c of t he first aud last membership 
functions. 
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The triangular membership functions arc allowed to be llOn-symmetrical 
and any input value will belollg to maxirmun of two mernbcrsl1ip functions 
with degrees differing from zero. It will alway:o involve two nlllc:os the input 
value falls exactly on a membership function ceniTe ill wl1ich case the single 
membership will be actiY2.!:cd. T hc!:'c member:ohip degrees for any given 
input will always sum up l.o one, Cllsuriug that some rules will be giveu 
the opportunity to fire for all poiut.s i11 l;he iupu t ::;pace. Tl1is ceutre-bascd 
membership approach taken by FuNN avoids the problems of uucovcrcd 
regions in the input space. These do not always limit centres a)l(l widths 
ill such a way as to ensme cmnplcte coverage. V/hilc algoritlnns could 
be formulated alld used in such cases to force the memberships to cover 
the input ::;pace, t he sinq>lc ,.,,nl.re-bascd approach taken by FnNN seems 
both more ef£cient and more natnral, with fewer arbitrary rcs trictiolls. 
It should be noted that there arc no bia.s conncctious necessary for t l1is 
rcpre:oentatiou in FuNN. 
l!titially the membership fuu c.:t ious arc spaced equally over the weight 
space, alt lwugh if any expert kuowlcdgc is available this can be used for 
initialisation . In order to maiutaiu the semantic uwaniug of the mclnhcr
ship functions some restrictions arc introduced. \'Vhen adaptation takes 
place the centre:; me limited to remaiu within equally sized partitions of 
the weight space. This avoids problems with viola ting the semantic or
dering of membership functim1s. Therefore, nmlcr the FuNN archi tecture 
labels can be attached to weight:; when the network is con::>tructcd and 
these will remain valid for the lifeti·me of the network. For example , a 
wcmbcr::>hip function weigl1 t rcprcseutiug low always have a centre less 
than rn.edimn, which will always be less than high. 
Simple activation fuuctious arc used in the coll<litiou clement nodes to 
perform fuL;zific:atimL 

• Rule Layer (Layer Three): Each node iu this layer is a rule node which 
represents a single fuzzy rule . Thus, all the nodes iu this layer form a fuzzy 
rule base. 
The activation function is t lw sigmoid (logistic) fum:tiou with a variable 
gain cocf£cient (a default value of 1 is used) . The connection ·.veights from 
the Condition Layer arc initialised randomly \vith small value:; and fully 
connected. 
The semautic meaning of the activation of a uode is that it represents 
t he degree to which input data nmtches the antecedent cmnpoucnt of the 
associated fuzzy rule. However the syncrgistic uature of rules in a fuzzy
neural architect ure must be remembered whcu interpreting such rules. 
The C:Ollnection weights from the Condil;ion elenwn.l; La.ye'f' (also called the 
·meTnbe'rship Ju:nctions la.ye'f') to the R11.le La.ye·r represent semantically tlw 
degrees of importance (DI) of the correspouding coudition clcmeuts for 
tlw activation of this uodc. 
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• Action Layer (Layer Four): In this layer links define the cousequences 
of the rules and a node represents a fuzzy label from the fuzzy quantisa
tion space of an output variable. The activation of the node represents 
the degree to which this membership function is supported by all fuzzy 
rules together. So t his is the level to which the membership function for 
this fuzzy linguistic: label is C7J.t according to the rules and current facts. 
The connec:tions from the Rule Layer to the Action Elernent Layer rep
resent conceptually the confidence factors ( CF) or certainties of the 
corresponding rules wheu inferring fuzzy output values. They are sub
ject to constraints that require them to remain in specified intervals as 
for the condition element layer with the same advantages of semantic iu
terpretability. The activation function for the nodes of this layer is the 
sigmoid (logistic) function with the same or variable gain factor, and con
nection weights are initialised as iu the previous layer. This gain factor 
should be adjusted appropriately given the size of t he weight boundary. 

• Output Layer (Layer Five): It represents the output variables of the 
system. This node and links attached to them act a..c; the defuzzifier. This 
layer performs the centre of gravity (COG) defuzzification. 
Singletons are used as membership functions for the output labels , which is 
equivalent to having the centres only of triangular membership functions, 
as it was the case of the input variables, and are attached as connection 
weights to the corresponding links. Linear activation functions are used 
here. 
Adapting the output membership functions means moving the centres. 
The requirement that the membership degrees to which a particular out
put value belongs to the various fuzzy labels must always sum to one, is 
always satisfied. For each centre, there is a constraining band (partition) 
where this value can move to. This principle applies in the same way as 
the input membership function centres restrictions are. 

Details of the supervised learning algorithms of FuNN arc given below. 

3.2. Basic learning algorithm 

This section explains the algorithm used for the FuNN system, both the forward 
phase and the backward pha..se of errors. 

3.2.1. Forward pass 

This pha8e computes the activation values of all the nodes in the network from 
the first to fifth layers . In this a superscript indicates the layer and a subscript 
describes connection weights between layers. 

• Input Layer: The nodes in this layer only transmit input values (crisp 
values) to the next layer directly without modification. 
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• Condition Layer: The outpnt fuw:t iou of this node is the degree that 
the input belongs to the given membership fuuc:tion. The iupnt weight 
represents the ceutre for that particular mmubership fnnctiou , with the 
miuimmn and maximum cletcnniucd using; the acljaceut membership's cen
tres. 
Iu the case of the first and last membership fuuction for a particular 
variable a shoulder is used instead. Hence, this layer acts as tlw fuzzificr. 
Each membership function is tr iaugnlar awl an iuput sigual(x) activates 
only two neighbonring membership fnuctious simnltaueously, the Slllll of 
the grades of these two acljac:cut membership fuw:tions for auy givcu iuput 
is always equal to 1. 
For a triangle-shaped membership function as iu FnNN , the activatiou 
fuuctions for a uoclc ( i) arc: 

A cl;~ 1-

Act~ 1 -

:l:- G.;, 

ll.i + 1- 0.;, 

a.; - ::r 

a.; - (/.i- 1 

a.;, < :r: < 0.;+1' 

a.;.-1 < :r; <a.;., 

Actf, 1, ::r = a.;, (1) 
where a is the c:eutre of the triangular membership functiou . 

• Rule Layer: The connections from the c:ouclitiou to this layer arc usccl 
to perform pre-c:ouclitimt matc:hiug of fnzzy rnles. The c:ouncc:tiou weights 
may be set either nmdomly aucl thcu traiuccl or ac:c:orcliug to a set of rnlcs, 
uanwly rules iuscrtiou. The net iuputs allC! ac:tivatious arc respectively, 

Net" L W,.cActc' 
c 

1 
1 + f-gNct'' ' 

where g is a gain factor. 

(2) 

• Action Layer: The nodes am! c:mmcc:tion weights iu this layer fnm:tiou 
as those in the Rule Layer for Net input and activa tiou: 

Neta L Wa·rAc{'· , 
,. 

1 
(::l) 1 + E-gNeta . 

• Output Layer: This layer performs ckfllzzificatiou to produce a c:nsp 
outpnt valnc. Among the cmuuwuly nsccl dduzzific:atiou stratcgic!s, the 
Cent·!'e of Gmvity (COG) method was nsccl: 

L ?l!oaAcl;a , 
a 

Net0 

'2::= Ad.a. 
(4) 
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3.2.2. Backward pass 

The goal of the system is to minimise the following function: 

E = ~ L)J/- J/) 2 (5) 

where yd is the desired output and J/ is the cmrent output. Hence the general 
lcaming rule (gradient descent) used is 

8E 
- Dw' 

DE 
ry( -;:)) + oJ:,.'Wt, 

u'W 
(G) 

where 7J is the learning rate and u is the momentum coefficient, and using chain 
Tv.le we have 

DE DE DNet 
- = ---- = -6Act 
Dw oN et 8w . 

Hence the weight update rule is: 

i'..wt+1 = T)bAct + ui'..wt. 

• Output Layer: Tl1e error signal 6° is derived as in the following: 
DE 

DNet0 

DE DAct0 

(7) 

(8) 

7/d _ 71o (D) 
• Action Layer: The error for nodes in this layer is calculatecl based on 

fuzzific:at ion of desired outputs alHl activation of each node. The fuzzi
fic:ation of desired output for this layer is same as Eq. (1) . Hence we 
lmve 

/ (Neta) X Ea 

Acta(1- Acta) L(da- Acta) (10) 
• Rule Layer: As in the Action layer, the error signals need to be cmnpnted 

and this error signal can Le derived as 

br = Actr(1 - Ad'") L(Warba) (11) 

• Condition Layer: If inputs lies in the fuzzy segment , then the corre
sponding weight slwnld Le iucreased direct ly proportioual to the propa
gated error from the previom; layer , Lec:ause the error is caused by the 
weight . This proposition can be represented by the following eqnation: 

,c _ DActf ""'( ,,.) 
u - "' L.., 'WrcU . 

ua;. 
Using Eq. (1), the adaptive rnlc of the ccutre ai , is derived as 

DA. ctc { oa; -x if 0. ;, ::; X ::; ai-L, 1 ' 
__ ' 7, = aai-ai+ l -' 

Da;. 0, otherwise 

(12) 

(13) 
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Hence the adaptive rule of connect ion weights become:; 
6.wt+l = ryocx + a 6.wt. (14) 

3.3. Training and adaptation in FuNN 

Several methods have been developed for training and adaptation in a FuNN 
structure, namely, 

1. A paTtially adaptive tmining, where t he membership functions (IviF) of 
the input and the output variable:; do not change during training (fixed 
or frozen mode) and a modified backpropagation algorithm is used for the 
purpose of rule adaptation only. This adaptation mode can be suitable for 
systems where the mem1Jersl1ip functions to be used arc known in advance 
or where the implementation is constructed by the problem in some way. 

2. A fv.lly adaptive tmining with an extended ba,c:kpropagation algorithm. 
This version allows change:; to be made to both rules and membership 
functions, subject to constraints necessary for retaining semantic meaning. 

3. A pa·rtially adaptive ve·rsion as iu (1) but a special type of netwo'lk pn1.ning 
is applied, which is a modified backpropagation learning algorithm with 
forgetting introduced to the connection weights. This method belongs 
to the class of structural learning algorithms. I3y applying leaming; with 
forgetting, the weights dec:rea.'ie continuously, unless they are reinforced 
by the backpropag;ation rule. At the end of the training, only the e:;sential 
weights deviate significantly from zero. By pruning the weights which are 
dose to zero, a skeleton network is obtained (Kozma et. al., Hl98). 

4. An adaptive training; with the use of the other special type of network 
pruning;, so called Method of Training and ZeToing. This is practically im
plemented by ze·roing the small connection weights using; a variable thresh
old. This c:onncctiom; can be left iu the :;tructure for further chaug;e or 
can be pruned. The used method is in contra..c;t to the structural lcaming; 
with forgetting; method where the cormcctions having small weights are 
gradually removed during; the training proces:;. 

3.4. Rules extraction methods in FuNN 

Several different methods for fuzzy rule:; extraction arc applicable on the FuNN 
sy:;tem. Fuzzy facts may have certainty factors (CF) attached to the conclusion, 
which show how certain i:; the fact and relative coefficients of importance (DI) 
of the condition elements in the antecedent, noise tolemnce (NT) ami sensitivity 
facto'!' (SF) coefficients, have been introduced in the genemlised pmdv.ction Tv.les 
in addition to t he confidence factors (CF ) (Kasabov, Hl9Ga, pp. 195). Simple 
rules without degrees of importance (DI) and a ·weighted rules with their asso
ciated weights representing degrees of importance (DI) and confidence factors 
(CF) can be extracted as explained in Kasabov (100Ga; 190Gb; 1998). One rule 
node is reprc:;entcd by several fuzzy rules each of them representing; a c:ombina-
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t ion of the input condition elements which would activate that node. These cau 
be interpreted later in a classical fuz;z;y inference method outside of the FuNN 
system. 

For interpreting a FuNN stmcture in terms of aggregated fuz;zy rules an algo
rithm is also implemented (Kasabov et. al. , Hl98). Each rule node~ is represented 
as one fuzzy rule. The strongest connection from a condition element node for 
an input variable to t he rule node, along with the neighbouring condition cle
ment nodes, are represented in the associated rule . The connection weights of 
these connections arc interpreted as degrees of importance (DI) attached to the 
corresponding condition elements. 

The extracted rules from the FuNN can be inserted in the other FuNN 
modules through the '1'7J.le inse·rtion rnod11.le . 

4. Modelling and prediction of time-series m FuNN and 
in other fuzzy neural networks 

4.1. Modelling of tin"Ie-series in FuNN 

In order to demonstrate the poteutial of the proposed FuNN to irregular time 
series processing t he case study problem of gas-furnace data is used . In addition 
to t he standard backpropagat iou, a structural learning algorithm with forgetting 
has been used. For details of the method and practical implementation , sec 
Ishikawa (1996) and Kozma et. al. (1996). 

For this purpose, t he following experiment was performed: a 2-10-7-5-1 
FuNN (sec Fig. 3) was trained with the modified backpropagation algorithm 
and fixed MFs. After the firs t 200 iterations with fixed leaTning nwde, forget
ting was introduced with a forget ting factor of E = 10- 5 for more 1000 epochs. It 
is observed that if the learning rate ( o) is small , the gradient method will c:loscly 
approximate the gradient path, but convergence will l>c slow since the gradient 
must be calculated many times. On the other hand , if Cl' is large, convergence 
will initially be very fast , but the algorithm will oscillate about the optimum. 
Based on these observations, a was variable during t raining and individually set 
for each of the layers in the FuNN, while the momentum and gain factor in the 
logistic activation function were 0.9 and 1, respect ively, for layers 2 to 5. Fig. 4 
shows the actual and the predicted values for the C02 . 

Using the aggregated rules extraction mode, seven rules were extracted from 
the t rained FuNN, as shown next . As explained in Section 2, the FuNN model 
uses 2 inputs and one output. Five membership functions are attached to each 
input and output linguistic variable. Input1 and Input2 denote methane (t-4) 
and C02 (t-1) , respectively, and Outputl denotes C02 concentration at the 
moment (t). A, B, C, D , and E show the fuz;z;y labels of five membership 
functions such as very small , small, medium , large, and very large, respectively. 
Extracted Rules for FuNN arc shown in Table 1. 
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FuNNModel 

Figure 3. The FuNN architecture for gas-furnace. 

Fuzzy 11 IF THEN 
rules 11 x 1 is DJ x2 is DJ y is CF 

1 D 6.290 E 12.071 A 2.76 
2 A 3.390 B 6.023 E 1.979 
3 B 0.687 D 3.969 D 1.374 
4 B 1.839 D 4.138 B 1.248 
3 D 2.463 E 3.674 B 2.12 
6 B 4.283 B 17.133 B 1.787 
7 E 2.654 A 4.082 c 1.793 

Table 1. Fuzzy Rules generated from the FuNN: DI for degr·ee of impoTtance; 
CF for ceTtainty factor 
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Figure 4. Model performance of FuNN with five linguistic: labels on the Box and 
J enkins gas furnace data. Actual data is shown by the solid line (--), model 
data by the dotted line. 
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4.2. Modelling time-series in ANFIS 

The architectures and learning algorithms of ANFIS have Leen desc:riLed in 
Jang (1993). ANFIS architecture iH depicted in Fig. [i. The Htructure of ANFIS 
is a five-layer feedforward neural network with Hupervisecl learning capability 
which is functionally equivalent to fuzz;y inference systems and is the same as 
Type II Fuzzy Neural Network in Horikawa et. al. (1990). Note that the links in 
the structure only indicated the flow direction of signal Letwcen layers . There 
are no adjustaLle weights that are associated with the links. The used MFH 
(/1-A; (:1;)) are Lcll-shaped with maximum equal to 1 and minimum equal to 0, 
such as 

(15) 

where (ai, /Ji, ci) is the pren"lise para1neter set . As the values of these param
eters change, the bell-shaped functions vary accordingly. 

Let us briefly look at the architecture of ANFIS. Suppose that the we have 
the following two implications of first-order Takagi and Sugeno'H type with t>vo 
inputs x 1 and x2 and one output z (Takagi & Sugeno, Hl83): 

R 1: If x1 is A 1 and x2 is B1 , then Y1 = P1:1:1 + q1x2 + r1 , 

R 2: If x1 is A2 and x2 is B2, then Y2 = P2:1:1 + q2x2 + r2. 
This type of fuzzy reasoning and the corresponding equivalent ANFIS archi
tecture is shown in Fig. 5. 

A square node has parameters while a circle node has none. The node 
functions in the same layer are of the same function family as descriLed Lelow: 

• Layer 1: Every node i in this layer is a square node with a node function 
0} = fl·A; (x) , (1G) 

where :~; is the input to node i, and Ai is the linguistic label. Of is the 
membership function of Ai and it specifics the degree to which the given 
:~; satisfies the quantifier A i . fi·A; (x) can Le bell-shaped with maximum 
equal to 1 and minimum equal to 0. 

• Layer 2: Every node in this layer is a circle node labelled TI which 
multiplies the incoming signals and sends the product out. For instance, 

'Wi = fi.A ; (xl) X fl·B;(x2), i = 1,2. (17) 
Each node output represents the firing stTenqth of a rule. In fact T-nonn 
operators that perform generalised AND can Le uHed as the node function 
in this layer. 

• Layer 3: Every node in this layer is a circle node labelled N. The ith 
node calculates the ratio of the ith rule's firing strength to t he sum of all 
rules' firing strength: 

- 'Wi 
w- i=1,2. (18) 

- W1 + W2' 
For convenience, outputs of this layer will be called noTm.alised jiTing 
strengths. 
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Figure 5. Takagi-Sugeno 's type ANFIS 

• Layer 4: Every node i in this layer is a square node with a node function 
ot fv;y; 

tiJ; (p;1:1 + q;x2 + r;), (19) 
where w; is the output of layer 3, and (p;, q;, r;) is the parameter set . 
Parameters in this layer will be referred to as conseqv,ence pammeteTs. 

• Layer 5: The single node in this layer is a circ:lc node labelled 2: that 
computes the overall output as the summation of all incoming signals, i.e., 

0 5 = z = '"""'v!,·711· = 2:; w;y;. (20) 
'· L .,j . "'· w,· 

i 07, ' 

By using a hybrid learning rule (Jang, Hl91) which combines the gradient 
method and the least squares estimate (LSE), ANFIS can achieve a desired 
input-output mapping in the form of Takagi-Sugeno's type fuzzy if-then rules 
(Takagi & Sugeno, 1983). The membership functions that form the premise part 
as well as IviFs that form the consequence parts are parametrised. These premise 
parameters are updated according to given training data and a gradient-based 
learning procedure. Each element of outputs is a linear combination of input 
variables plus a constant term, so the parameters in the consequent parts can 
be identified by the least squares method. 

Here the ANFIS has 5 mernl>ership functions on its input and batch learning 
paradigm was adapted with a learning rate T) = 0.1. Thus the ANFIS used 
here contains 25 rules and the total number of fitting parameters is 105 which 
arc composed of 30 premise parameters and 75 consequent parameters. Fig. G 
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Fuzzy IF JL THEN 
rules :rr ?,8 :~:2 is 11 .f = JKD r + q.r.2 + r 

1 A A -20.7 1G.33 -4.504 
2 A B 22.352 -10. 75G 3.G70 
3 A c 5.005 1.223 -0.300 
4 A D 2.071 3.7G0 -1.52G 
5 A E -G.1 G5 8.310 -G.3G3 
G I3 A -1. 551 -8. 058 3.575 
7 B I3 0.807 0.272 -3 .154 
8 I3 c -O.G47 1.05 0. 113 
a B D 0.482 -2.204 1.572 
10 B E -0.288 -3.015 4.55G 
11 c A -7.2~)5 -3.400 3.400 
12 c I3 G.535 1.001 -2 .414 
13 c c -0.GL13 1.700 -0 .777 
14 c D 4.0542 -3.452 -0. 12G 
15 c E -5. 0G0 -18.307 18.508 
1G D A 0.548 2.441 -0.008 
17 D I3 -1.307 -2.810 0.070 
18 D c -17.G00 10.578 -2.753 
10 D D 0.72G -3.154 2.4GG 
20 D E 0.240 0.3G5 0.3005 
21 E A 0.855 0.055 -0.8G2 
22 E I3 -0.000 2.01G O.GG5 
23 E c 8.520 -1G.03G G.358 
24 E D -0 .127 4.527 -2.252 
2G E E -().()1 7 0.%0 0.073 

TaHe 2. Fuzzy Rules gmwratcd from the ANFTS 

dcmoustratcs how ANFIS eau model the gas-furuacc t ime series. 

The ANFIS stmctme after traiuing eau Le iutcrpreted a..c; a set of Takagi
Sugeuo type offuzzy rnlcs . Extracted rules (25 if-theu rules) for ANFIS (Takagi
Sugcno Type) arc described iu Table 2. 

FuNN alHI ANFIS nse diffcrcut iufercuce fnzzy represcutations all(] cl iffcrcut 
inference tedmiqncs. T hey lmvc differeut strcugths all(] FnNN nscs fuzzy rules 
which arc easy to Le iutcrprctccl by the cud nsers. It has a rid1 set of meth
ods for training aud adaptation. ANFIS nses Gaussian membership fuuctions 
which may rc,;u]t in a Letter approxirnatiou of complex uon-lincar time series . 
F ig. 7 demonstrate how FuNN can effectively model a highly uonliuear surface 
as compared to ANFIS, but we did not attempt an cxlmnstive search to find the 
optimal settings for the ANFIS. The overall perfonnaucc) of FnNN alHl ANFIS 
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is not much different in this example (c. f. Fig. 4 and Fig. G), but the sets of 
extracted fuzzy rules differ significantly. Apart from the several basic types of 
fnzzy rules, i.e. Zacleh-TVIamclani's fnzzy rules and Takagi-Sugeno's fuzzy rules, 
fuzzy rules haviug coefficients of mH:ertainty have often been used in practice. A 
fuzzy rule that contains a confidence factor ( CF) of the validity of the conclusion 
has the form of: 

if x is A, then y is B (CF or weight). 
In addition, very often the c:onclitiou elements in the antecedent part of the 

rule are not equally important for the rule to iufer an outpnt value. In this 
sense, we might sec the rules extracted from FuNN (sec Table 1) have more 
precise condition parts, allowing for degrees of importance (DI) to be extracted 
and used. The conclusion part of the ANFIS rules (sec Table 2) complicate for 
the simple form of the condition parts. 

5. Concluding remarks 

Combined hybrid systems bctwccu ucnral networks aml fuzzy logic arc rapidly 
gaining popularity in the design of many complex systems. Experience shows 
that this type of combiuecl system yields results sometimes superior to those 
obtained by the fuzzy control systems. Moreover, fuzzy neural networks arc a 
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promising paradigm in the area of Soft Computing. They have strcugths in both 
learning from data and monitoring knowledge. 

In this paper , the properties of FuNN and ANFIS arc compared. It has 
been shown that FuNN is capable of extract ing semantically meaningful rules , 
whereas the rules from ANFIS are not easily interpretable because the system 
was adapted Takagi-Sugeno type of an inference system. At the same time the 
accuracy of the predicting of FuNN is comparable or even better t hat that of 
ANFIS. 

Future research is anticipated in applying adaptive fuzzy-genetic, nemo
genetic, and nemo-fuzzy-genetic systems. Such systems a rc likely to dominated 
the a rea of hybrid intelligent information systems in the near fu ture. On-line 
adaptation of fuzzy neural networks is still to be investigated. That may well be 
the most important criterion to compare different fuzzy neural network struc
tures. 
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