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Abstract: A novel fuzzy neural uctwork, called FulNN, is ap-
plied here for time-series modelling, FulNN models have several fea-
tures that make them well suited to a wide range of knowledge en-
eincering applications. These strengths include fast and accurate
learning, good generalisation capabilities, excellent explanation fa-
cilities in the form of semantically meaningful fuzzy rules, and the
ability to accommodate botli numnerical data and existing expert
knowledge about the problemn nuder consideration. We investigate
the effectiveness of the proposed newro-fuzzy hivbrid architectures for
manipulating the future behiavionr of noulinear dynamical systeins
and interpreting fuzzy if-then rmles. A well-known examnple of Box
and Jenkins is used as a benchimark time series in the proposed mod-
clling approach and the other modelling approach. Finally, experi-
mental results and comparisons with the other popular newro-fzsy
inference system, namely Adaptive Network-based Fuzay Tnference
System (ANFIS) are also presented.
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1. Introduction

Over the last decade, significant advances have been made in two distinet techi-
nological arcas: fuzzy logic aud computational neural networks. The theory of
fzy logic (Zadely, 1965) provides a wathematical framework to capture the
nucertaintios associated with lunnan cognitive processes, such as thi+king and
reasoning. Also, it provides a mathematical morphology to einulate certain per-
cepinal and lingnistic attributes associated with Inunan cognition. On the other
hand, the computational nenral network paradigins have evolved in the process
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of understanding the learning and adaptive features of neuronal mechanisms
inherent in certain biological species. The integration of two fields has given
birth to an emerging technological field—the fuzzy neural networks. The fuzzy
neural networks have the potential to capture the benefits of the two fascinating
ficlds, fuzzy logic and neural networks, into a single entity (Lin & Lee, 1991;
Yamakawa et. al., 1992; Jang, 1993; Ishibuchi ef. al., 1994; Hauptmann &
Heesche, 1995; Kasabov, 1996a; Kasabov, 1996b; Kasabov et. al., 1997). It is
also shown that neuro-fuzzy hybrid architecture is capable of modelling chaotic
time series data (Katayama ef. al., 1995).

The intent of this paper is to demonstrate how a novel fuzzy neural net-
work, called FuNN (FUzzy Neural Network) (Kasabov, 1996a; Kasabov, 1996b;
Kasabov et. al., 1998), can be used for time-series data modelling and for a
wide range of knowledge engineering applications. Experiments with a highly
irregular time series data arc used to illustrate the effectiveness of the suggested
type of fuzzy neural network for mmodelling, prediction, knowledge acquisition
and adaptation.

2. Time series data modelling and the case study problem

Time-series data modelling is a generic problem which permeates all fields of
science. The increased interest in nonlincar systems is also related to the dis-
covery of chaos, as chaos can readily oceur in all natural and living systems
where nonlinearity is present. Chaos is currently one of the most exciting topics
in nonlinear systems research.

The gas-furnace data set of Box-Jenkius is well known and is often used as
a standard test for the system identification (Box & Jenkins, 1970). The time
series used for identification purposes consists of 296 successive pairs of input-
output observations measured at a sampling rate of 9 sec from a gas furnace
system where the input is the gas flow rate into the furnace and a single output
is the concentration of COs in the exhanst gas.

The task of this process identification is to provide a prognosis for the carbon-
dioxide concentration at the moment (t) given the methane portion at a time
moment (t-4) and the carbon-dioxide concentration at a time moment (i-1) as
input variables. In our experiments, the data set consists of only 292 consecu-
tive values of methane (t-4) and the produced in a furnace COq (t-1) as input
variables and the produced COs at the moment (t) as an output variable. Fig. 1
shows the COs time series data, together with its various characteristic func-
tions. The power spectral density (PSD) has large statistical fluctuations. It
is rather constant at low frequencies and appropriates a constant slope at high
frequencies. The histograim is more flat than a Ganssian distribution, the auto
correlation function (ACF) indicates a decay constant of about & time lags. The
3-dimensional delay-coordinate plot indicates certain periodicities superimposed
upon an approximately higher regression behaviour.

In the next section we discuss the qualitative modelling of a dynamic process
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Figure 1. Characterisation of gas-furnace time series: (a) Original time series;
(b) Power spectrum density; (¢) Histogram; (d) Auto correlation function; (e)
3-dimensional phase diagram.
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through a novel architecture for fuzzy newral network (FNN), called FulNIN,
which stands for Fuzzy Neural Network, ar investigate some learning and
adaptation strategics using the example of the gas furnace systemn identification.

3. FulNN-—A fuzzy neural network for modelling and knowl-
edge discovery

The fuzzy Neural network FuNN (ICasabov, 1996a; Kasabov, 1990h; Kasabov et.
al., 1098) uses a multi-layered perceptron (MLP) uectwork and a extended BP
training algorithm. In this conncctionist structure, the input and output nodes
represent the input states and output control/decision signals respectively, and
in the hidden layers, there are nodes functioning as meimbership functions (MFs)
and rules. This eliminates the disadvantage of a norinal feedforward multi-layer
net which is difficult for an ontside observer to understand or to modify.

The architecture facilitates learning from data and approximate reasoning,
as well as fuzzy rule extraction and insertioun. It allows for the combination of
both numnerical and fuzzy data and fuzzy rules to be used i one systeun, thus
producing the synergistic benefits associated with the two sources, In addifion,
it allows for adaptive learning in a dynamically changing cuviromnent.

Below a brief description of the components of the FuNN structure and
functionalitics, and the philosoply behind this architecture, are giveu.

3.1. The architecture of FulNIN

The general FuNN architecture cousists of 5 layers with partial feedforward
connections as shown in Fig. 2. In this connectionist structure a modified BP
training algoritlin was developed, The first and last layer act as the fuzzilier
and the defuzzifier, respectively. In the condition layer, uniformly distributed
triangular membership functions are used. Singletous are applied in between the
action and the output layer, as councetion weights, which represent the centre
of a membership functions. FuNN is also adaptable where the membership
functions of the fuzzy predicates, as well as the fnzzy rules inserted before
training or adaptation, may adapt and change according to new training data.

e Input Layer (Layer One): Nodes in layer one are input nodes which
represent input linguistic variables (Zadeh, 1973). The nodes in this layer
only transmit input values to the next laver, condition element layer.

e Condition Layer (Layer Two): Nodes in this layer acts as fuzzification
processors. The input valnes are fed to the condition clement layer which
performs fuzzification. This is implemented nsing three-point triangular
wmembership functions with centres represented as weights, The triangles
arc completed with the miniimmun and maxinnun points attached to adja-
cent centres, or shouldered in the case of the first and last membership
functions.
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The triangular membership functions are allowed to be non-symincetrical
and any input value will belong to maxiimun of two wmembership functions
with degrees differing from zero. It will always involve two unless the input
value falls exactly on a membership function ecentre in whiclh case the single
membership will be activated. These membership degrees for any given
input will always s up to one, cusuring that some rules will be given
the opportunity to fire for all points in the iuput space. This centre-hased
membership approach taken by FuNN avoids the problems of nncovered
regions in the input space. These do not always limit centres and widths
in such a way as to ensure complete coverage. While algorithims could
be formulated and used in such cases to force the memberships to cover
the input space, the siniple contre-based approach taken by FulNN sceins
both more efficient and more natural, with fewer arbitrary restrictions.
It should be noted that there are no bies connections necessary for this
representation in FuNN.

Initially the membership functions are spaced equally over the weight
space, although if any expert knowledge is available this can be used for
initialisation. In order to maintain the semantic meaning of the member-
ship functions some restrictions are introduced. When adaptation takes
place the centres are limited to remain within equally sized partifions of
the weight space. This avoids problems with violating the scmantic or-
dering of membership functions. Thercfore, nnder the FuNN architecture
labels can be attached to weights when the network is constructed and
these will remain valid for the Lifetime of the network. For example, a
membership function weight representing low always have a centre less
than medium, which will always be less than high.

Simple activation huctions are used in the condition element nodes to
perform fuzzilication.

Rule Layer (Layer Three): Each node in this layer is a rule node which
represeuts a single fuzzy rule. Thus, all the nodes in this layer form a fuzzy
rule base.

The activation function is the sigmoid (logistic) fuuction with a variable
gain cocfficient (a default value of 1 is nsed). The connection weights fromn
the Condition Layer are initialised randomly with sinall values and fully
connected.

The semantic meaning of the activation of a node is that it represents
the degree to which input data matches the antecedent component of the
associated fuzzy rule. However the synergistic nature of rules in a fuzzy-
neural architecture must be remembered when interpreting such rules.
The councction weights fromn the Condition element Layer (also called the
membership functions layer) to the Rule Layer represent semantically the
degrees of importance (DI) of the corresponding condition clements for
the activation of this node.
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e Action Layer (Layer Four): In this layer links define the consequences
of the rules and a node represents a fuzzy label from the fuzzy quantisa-
tion space of an output variable. The activation of the node represents
the degree to which this membership function is supported by all fuzzy
rules together. So this is the level to which the membership function for
this fuzzy linguistic label is cut according to the rules and current facts.
The connections from the Rule Layer to the Action Element Layer rep-
resent, conceptually the confidence factors (CF) or certainties of the
corresponding rules when inferring fuzzy output values. They are sub-
ject to constraints that require them to remain in specified intervals as
for the condition element layer with the same advantages of semantic in-
terpretability. The activation function for the nodes of this layer is the
sigmoid (logistic) function with the same or variable gain factor, and con-
nection weights are initialised as in the previous layer. This gain factor
should be adjusted appropriately given the size of the weight boundary.

e Output Layer (Layer Five): It represents the outpuf variables of the
system. This node and links attached to them act as the defuzzifier. This
layer performs the centre of gravity (COG) defuzzification.

Singletons are used as membership functions for the output labels, which is
equivalent to having the centres ouly of triangular membership functions,
as it was the case of the input variables, and are attached as connection
weights to the corresponding links, Linear activation functions are used
here.

Adapting the output membership functions means moving the centres.
The requirement that the membership degrees to which a particular out-
put value belongs to the various fuzzy labels must always sum to one, is
always satisfied. For each centre, there is a constraining band (partition)
where this value can move to. This principle applies in the same way as
the input membership function centres restrictions are.

Details of the supervised learning algorithis of FuNN are given below.

3.2. Basic learning algorithm

This section explains the algorithm used for the FuNN system, both the forward
phase and the backward phase of errors.

3.2.1. Forward pass

This phase computes the activation values of all the nodes in the network from
the first to fifth layers. In this a superscript indicates the layer and a subscript
describes councction weights between layers.

e Input Layer: The nodes in this layer only transmit input values (crisp
values) to the next layer directly without modification.
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e Condition Layer: The output function of this node is the degree that
the input belongs to the given membership function. The input weight
represents the centre for that particular memmbership function, with the
minimumn and maxiimumn determined nsing the adjacent imembership’s cen-
tres.

In the case of the first and last mewmbership function for a particular
variable a shoulder is used instead. Hence, this layer acts as the fuzzifier.
Bach membership function is triangular and an input signal(x) activates
only two neighbouring membership functions siimultancously, the suin of
the grades of these two adjacent membership functions for any given input,
is always cqual to 1.

For a triangle-shaped membership hinction as in FulNN, the activation
functions for a node (i) are:

XN— a4
Act; = 1— ——, a; <a < 441,
Qi1 — 04
a; — @
Actf = 1— ————, a1 <7z <ay,
A — Q-1
Act! = 1, z=a, (1)

where a is the centre of the triangular membership function.

e Rule Layer: The conncctions from the condition to this layer are used
to perform pre-condition matching of fuzzy rules. The connection weights
may be set cither randomly and then trained or according to a sct of mles,
namely rules insertion. The net inputs and activations are respectively,

Net" = z-w,.c/l(:!c,
[+

At = ﬁ, (2)
where g is a gain factor.
e Action Layer: The nodes and connection weights in this layver function
as those in the Rule Layer for Net input and activation:
Net® = Zmﬂ.,,fl(:i’."',
=
a 1 .
e Output Layer: This layer performs defuzzification to produce a crisp
output valne. Among the commmonly nsed defuzzification strategies, the
Centre of Gravity (COG) method was nsed:

Net® = Z‘HJMA(:I.“,

[
Net®
Act? = @ —/———. 4
. 5T At )




A fuzzy neural net for knowledge acquisition 601

3.2.2. Backward pass

The goal of the system is to minimise the following function:

E= % >t -y°)? (5)

where y¢ is the desired output and ¥° is the current output. Hence the general
learning rule (gradient descent) used is

oE

Aw = =5
oF ;
Awypyy = n(-—d—ﬁ)-!-qu;, (6)

where 7 is the learning rate and o is the momentum coefficient, and using chain
rule we have

E _ OE ONet
Ow ~ ONet Ow

Hence the weight update rule is:

= —§Act, (7)

Ay = ndAct + alwy. (8)
e Output Layer: The error signal §° is derived as in the following:
o — e A —
e dNete
_ OF 0Act®
" OQAct® ONeto
= y'—y° (9)

e Action Layer: The error for nodes in this layer is caleulated based on
fuzzification of desired outputs and activation of cach node. The fuzzi-
fication of desired output for this layer is same as Eq. (1). Hence we
have

6(1.

Il

f (Net®) x E®

Act®(1 — Act®) Y (d* — Act®) (10)
e Rule Layer: Asin the Action layer, the error signals need to be computed
and this error signal can be derived as
"= Act"(1 — Act") Z('mm(‘i“) (11)
e Condition Layer: If inputs lies in the fuzzy segment, then the corre-
sponding weight should be increased directly proportional to the propa-
pated error from the previous layer, becanse the error is caused by the
weight. This proposition can be represented by the following equation:

DAt
6¢ = B Z(mmér). (12)
Using Eq. (1) , the adaptive rule of the centre a;, is derived as

O‘A.H‘c afi‘;:l if  a; < x < a4,
da;

(13)

otherwise
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Hence the adaptive rule of connection weights becomes
Awyyq = nés + aAwy. (14)

3.3. Training and adaptation in FulNN

Several methods have been developed for training and adaptation in a FulNN
structure, namely,

1. A partially adaptive training, where the membership functions (MF) of
the input and the ontput variables do not change during training (fixed
or frozen mode) and a modificd backpropagation algorithm is used for the
purpose of rule adaptation only. This adaptation mode can be suitable for
systems where the membership functions to be used are known in advance
or where the implementation is constructed by the problem in some way.

2. A fully adaptive training with an extended backpropagation algorithmn.
This version allows changes to be made to both rules and membership
functions, subject to constraints necessary for retaining semantic meaning.

3. A partially adaptive version as in (1) but a special type of network pruning
is applied, which is a modified backpropagation learning algorithm with
forgetting introduced fo the connection weights. This method belongs
to the class of structural learning algorithms. By applying learning with
forgetting, the weights decrease continuously, unless they are reinforced
by the backpropagation rule. At the end of the training, only the essential
weights deviate significantly from zero. By pruning the weights which are
close to zero, a skeleton network is obtained (Kozma etf. al., 1998).

4. An adaptive training with the use of the other special type of network
pruning, so called Method of Training and Zeroing. This is practically im-
plemented by zeroing the small connection weights using a variable thresh-
old. This connections can be left in the structure for further change or
can be pruned. The used mnethod is in contrast to the structural learning
with forgetting method where the connections having small weights are
gradually removed during the training process.

3.4. Rules extraction methods in FulNIN

Several different methods for fuzzy rules extraction are applicable on the FulNN
system. Fuzzy facts may have certainty factors (CF) attached to the conclusion,
which show how certain is the fact and relative coefficicuts of importance (DI)
of the coundition elements in the antecedent, noise tolerance (NT) aud sensitivity
factor (SF) coefficients, have been infroduced in the generalised production rules
in addition to the confidence factors (CF) (Kasabov, 1996Ga, pp. 195). Simple
rules without degrees of importance (DI) and a weighted rules with their asso-
ciated weights representing degrees of importance (DI) and confidence factors
(CF) can be extracted as explained in Kasabov (1996a; 1996Gb; 1998). One rule
node is represented by several fuzzy rules cach of them representing a combina-
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tion of the input condition elements which would activate that node. These can
be interpreted later in a classical fuzzy inference method outside of the FuNN
systemn.

For interpreting a FulNN structure in terins of aggregated fuzzy rules an algo-
rithm is also implemented (Kasabov ef. al., 1998). Each rule node is represented
as one fuzzy rule. The strongest connection from a condition element node for
an input variable to the rule node, along with the neighbouring condition cle-
ment nodes, are represented in the associated rule. The connection weights of
these connections are interpreted as degrees of importance (DI) attached to the
corresponding condition elements.

The extracted rules from the FuNN can be inserted in the other FulNN
modules through the rule insertion module.

4. Modelling and prediction of time-series in FuNN and
in other fuzzy neural networks

4.1. Modelling of time-series in FulNN

In order to demonstrate the potential of the proposed FulNN to irregular time
series processing the case study problem of gas-furnace data is used. In addition
to the standard backpropagation, a structural learning algorithm with forgetting
has been used. For details of the method and practical implementation, sce
Ishikawa (1996) and Kozma et. al. (1996).

For this purpose, the following experiment was performed: a 2-10-7-5-1
FuNN (sce Fig. 3) was trained with the modified backpropagation algorithun
and fixed MFs. After the first 200 iterations with fized learning mode, forget-
ting was introduced with a forgetting factor of € = 1073 for more 1000 epochs. It
is observed that if the learning rate () is small, the gradient method will closely
approximate the gradient path, but convergence will be slow since the gradient
must be caleulated many times. On the other hand, if « is large, convergence
will initially be very fast, but the algorithm will oscillate about the optimun.
Based on these observations, o was variable during training and individually set
for each of the layers in the FulNN, while the momentum and gain factor in the
logistic activation function were 0.9 and 1, respectively, for layers 2 to 5. Fig. 4
shows the actual and the predicted values for the COs.

Using the aggregated rules extraction mode, seven rules were extracted from
the trained FuNN, as shown next. As explained in Section 2, the FulNN model
uses 2 inputs and one output. Five membership functions are attached to cach
inpuf and output lingunistic variable. Inputl and Input2 denote methane (t-4)
and COsy (t-1), respectively, and Outputl denotes COs concentration at the
moment (t). A, B, C, D, aud E show the fuzzy labels of five membership
functions such as very small, small, medium, large, and very large, respectively.
Extracted Rules for FulNN arc shown in Table 1.
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Figure 3. The FuNN architecture for gas-furnace.
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Fuzzy IF THEN

rules || @y as | DI [ @9is | DI yis | CF
1 D 6.290 E 12.071 A 2.76
2 A 5.390 B 6.025 E 1.979
3 B 0.687 D 5.96G9 D 1.574
4 B 1.839 D 4.138 B 1.248
i} D 2.4063 E 3.674 ] 2.12
G B 4.283 B 17.156 || B | 1.787
7 E | 2.654 A 4.082 C | 1795

Table 1. Fuzzy Rules generated from the FuNN: DI for degree of importance;
CF for certainty factor




605

A fuzzy neural net for knowledge acquisition

CO2 Concentration
o o o
- (=] o« -

o
o

time

0.15 T T T T T
0.1 : i : : -
0.05

-0.05

Prediclion Error

-0.1

=015 -

I L L L
0 50 100 150 200 250 300
time

-0.2
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4.2. Modelling time-series in ANFIS

The architectures and learning algorithing of ANFIS have been described in
Jang (1993). ANFIS architecture is depicted in Fig. 5. The structure of ANFIS
is a five-layer feedforward ncural network with supervised learning capability
which is functionally equivalent to fuzzy inference systems and is the same as
Type IT Fuzzy Neural Network in Horikawa ef.al. (1990). Note that the links in
the structure only indicated the flow direction of signal between layers. There
are no adjustable weights that are associated with the links. The used MFEFs
(p14,(2)) are bell-shaped with maximum equal to 1 and minimum equal to 0,
such as
1

L [ W)

Ha; (T) =
where (a, bi, ¢;) is the premise parameter set. As the values of these param-
eters change, the bell-shaped functions vary accordingly.

Let us briefly look at the architecture of ANFIS. Suppose that the we have
the following two implications of first-order Takagi and Sugeno’s type with two
inputs #; and @, and one output z (Takagi & Sugeno, 1983):

RY: If 2y is Ay and 2 is By, then 4 = p171 + quae + 13,

R?: If 2y is As and 2 is By, then yo = pam + qoan + ro.
This type of fuzzy reasoning and the corresponding equivalent ANFIS archi-
tecture is shown in Fig. 5.

A square node has parameters while a circle node has none. The node

functions in the same layer are of the same function family as described below:

e Layer 1: Every node 7in this layer is a squarc node with a node function

O} = pa,(z), (16)
where z is the input to node 4, and A; is the linguistic label. O} is the
membership function of A; and it specifies the degree to which the given
x satisfies the quantifier A;. pa,(x) can be bell-shaped with maximun
equal to 1 and minimum equal to 0.

e Layer 2: Every node in this layer is a circle node labelled [] which
multiplies the incoming signals and sends the product out. For instance,

w; = ﬂA;(ml) X ;.‘-B‘.(ﬂ‘ig), R 1,2 (17)
Each node output represents the firing strength of a rule. In fact T-norm
operators that perform generalised AND can be used as the node function
in this layer.

e Layer 3: Every node in this layer is a circle node labelled N. The #th
node calculates the ratio of the ith rule’s firing strength to the sum of all
rules’ firing stggugth:

1 .
_W1+W2’ =12 (18)
For convenience, outputs of this layer will be called normalised firing
strengths.

W =
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Figure 5. Takagi-Sugeno'’s type ANFIS

e Layer 4: Every node i in this layer is a square node with a node function
O:l = Tt_li?ﬁ
= TI_J,-_ (jr),-.’il'l + qiT2 - T’,;), (19)
where ; is the output of layer 3, and (p;,q:,7:) is the paramecter set.
Paramecters in this layer will be referred to as consequence parameters.
e Layer 5: The single node in this layer is a circle node labelled 3 that
wmputu the overall UuLput as the summation of all incoming signals, i.c.,

5 Wil
e Zfeuﬂh = Z TL’I : (20)

By using a hybrid l{}mnmg, rule (Jang, 1991) which combines the gradient
method and the least squares estimate (LSE), ANFIS can achieve a desired
input-output mapping in the form of Takagi-Sugeno’s type fuzzy if-then rules
(Takagi & Sugeno, 1983). The membership functions that form the premise part
as well as MF's that formn the consequence parts are parametrised. These premise
parameters are updated according to given training data and a gradient-based
learning procedure. Each element of outputs is a linear combination of input
variables plus a constant term, so the parameters in the consequent parts can
be identified by the least squares method.

Here the ANFIS has 5 membership functions on its input and batch learning
paradigm was adapted with a learning rate n = 0.1. Thus the ANFIS used
here contains 25 rules and the total number of fitting parameters is 105 which
arc composed of 30 premise paramcters and 75 consequent parameters. Fig. 6
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Fuzzy IF THEN
rules || @ 25 | 29 48 f=pri+qra+r
1 A A -20.7 16.33 | -4.594
2 A B 22.352 | -10.756 | 3.679
3 A C 5.905 1.223 | -0.399
4 A D 2.971 3.769 | -1.526
5 A E -0.165 8.319 | -6.363
G B A -1.551 | -8.058 | 3.575
7 B B 0.807 0.272 | -3.154
8 B C -0.647 1.05 0.113
9 B D (.482 -2.204 1.572
10 B E -0.288 | -3.915 | 4.556
11 C A -7.235 | -3.409 | 3.400
12 C B 6.535 1.901 -2.414
13 C C -0.643 1.799 | -0.777
14 C D 4.05642 | -3.452 | -0.126
15 C E -5.069 | -18.307 | 18.508
16 D A (0.548 2.441 -0.008
17 D B -1.397 | -2.819 | 0.979
18 D C -17.609 | 19.578 | -2.753
19 D D (0.7206 -3.154 | 2.466
20 D E (0.240 0.365 | 0.3905
21 E A 0.855 0.055 | -0.862
22 E B -0.999 | 2916 | 0.665
23 E C 8.529 | -16.93G | 6.358
24 I D -0.127 4.527 | -2.252
25 E B -0.017 0.950 0.073

Table 2. Fuzzy Rules generated from the ANFTS

demonstrates how ANFIS can model the gas-furnace time series.

The ANFIS structure after training can be interpreted as a set of Takagi-
Sugeno type of fuzzy rules. Extracted rules (25 if-then rules) for ANFIS (Takagi-
Sugeno Type) are described in Table 2.

FuNN and ANFIS use different inference fuzzy representations and different
inference techmiques. They have dilferent strengths and FuNN uses fuzzy rules
whichi are casy to be interpreted by the end users. It has a rich set of meth-
ods for training and adaptation. ANFIS uses Ganssian membership functions
which may result in a better approximation of complex non-linear time series.
Fig. 7 demonstrate how FulNN can effectively model a highly nonlinear surface
as compared to ANFIS, but we did not attempt an exhaustive scarch to find the
optimal settings for the ANFIS. The overall performance of FuNN and ANFIS
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Figure 6. RMSE curves for the FulNN and the ANFIS.

is not mmch different in this example (c. f. Fig. 4 and Fig. G), but the sets of
extracted fuzzy rules differ significantly. Apart from the several basic types of
fuzzy rules, i.e. Zadeh-Mamdani’s fuzzy rules and Takagi-Sugeno’s fuzzy rules,
fuzzy rules having coefficients of nncertainty have often been used in practice. A
fugzy rule that contains a confidence factor (CF) of the validity of the conclusion
has the form of:

if x is A, then y is B (CF or weight).

In addition, very offen the condition clements in the antecedent part of the
rule are not equally important for the rule to iufer an output value. In this
sense, we might see the rules extracted from FuNN (sce Table 1) have more
precise condition parts, allowing for degrees of importance (DI) to be extracted
and used. The conclusion part of the ANFIS rules (see Table 2) complicate for
the simple form of the condition parts.

5. Concluding remarks

Combined hybrid systeins between neural networks and fuzzy logic are rapidly
gaining popularity in the design of many complex systens, Experience shows
that this type of combined system yields results sometimes superior to those
obtained by the fuzzy control systeins. Morcover, fuzzy neural networks arc a
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promising paradigm in the arca of Soft Computing. They have strengths in both
learning from data and monitoring knowledge.

In this paper, the properties of FuNN and ANFIS arc compared. It has
been shown that FuNN is capable of extracting semantically meaningful rules,
whercas the rules from ANFIS are not easily interpretable because the systemn
was adapted Takagi-Sugeno type of an inference system. At the same time the
accuracy of the predicting of FuNN is comparable or even better that that of
ANFIS.

Future rescarch is anficipated in applying adaptive fuzzy-genetic, nenro-
genetic, and neuro-fuzsy-genetic systems. Such systems are likely to dominated
the arca of hybrid intelligent information systems in the near future. Oun-line
adaptation of fuzzy neural networks is still to be investigated. That may well be
the most important criterion fo compare different fuzzy neural network struc-
tures.
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