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Abstract: The problem of time- optimal control of linear hy­
perbolic systems is equivalent to the cornpntation of the root of tlw 
optimal value function of a time- parametric program, whose feasible 
set is described by a countable system of moment equations. 

To compute this root, discretiL";ed problems with a fiuite nt11uber 
of eqt1ality constraints can be used. In this paper, we show that 011 a 
certain time- interval, the optimal value functions of the discrctized 
problems converge uniformly to the optimal value function of the 
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We also give sufficient conditions for Lipi:ichitz aud Holder conti­
nuity of the optimal value function of the original problem. 
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1. Introduction 

Consider the problem of damping of vibrations of a one- dimensional medium , 
where the elastic behaviour of the medium is modelled by a hyperbolic partial 
differential equation. In Krabs (1982), it is shown that the set of controls 
steering the medium from a given initial position to a desired tcnniual state 
can be described as the solution set of a certain momeut problem. Originally, 
this approach is due to Russel (1967). 

In the problem of time- minimal control, an iuequality constra.iut for the con­
trol function is added. Often an upper bound for the L2- norm of the co11trol is 
introduced. In this paper, we consider the more general case of an upper bound 
for the L2- norm of the image of the control under an afiine linear operator. 
This type of constraint is motivated by a control problem for a rotating Eulcr­
Bernoulli beam considered in Krabs (1093), (1996), where an upper bound for 
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the L2 -norm of the torque corresponding to the angular acceleration is intro­
duced as an inequality constraint. The torque is given by a. Voltcrra -operator 
applied to the angular acceleration which is the control function. 

In the minimal controlling time, this inequality constraint is active (Krabs, 
1981). In Rolewicz (1987), it is shown how problems of time miuilllal control 
can be reduced to problems of norm-minimal control. To cornpnte the minimal 
controlling time, a time-parametric control problem can be nsecl. !<or a fixed 
time-parameter, the function defining the inequality constraint is taken as the 
objective function, that is minimized subject to the countable system of moment 
equations. 

In this way, a convex time--parametric auxiliary problem is defiucd. The 
minimal time, where the optimal value function of this time-panunetric problem 
attains the value zero is the minimal controlling time. For a fixed parameter, 
the problem has a countable number of equality constraints that arc given by 
the moment problem. 

For numerical computations, a. cliscretized auxiliary problem lms to be used 
where the countable system of equality constraints is replaced by the first N 
equality constraints i.e. the first N moment equations. For each fixed time­
parameter, the problems are uniquely solvable. In this way a sequence of optimal 
value functions is defined. 

In the present paper, we show the following properties of the optimal value 
functions: 

For each fixed N, the corresponding optimal value function is continuous. 
The optimal value function corresponding to the original problem is continuous. 
Our main result is that on a given time-· interval, the seqm~m:c of optimal value 
functions corresponding to the discretized problems converges 11imfo'l"rnly to the 
optimal value function of the original problem. 

This result is important for the stability of the numerical approach via the 
moment equations. It guarantees that for a given accuracy, a discretization 
level exists that allows to approximate the optimal value function of the original 
problem with that accuracy, independently of the parameter. If the seqnence 
did not converge uniformly, this would mean that for a certain accnracy, for all 
discretization levels we could find a point in the tirne-·intcrval, where this level 
would not be sufficient. Hence the uniform convergence is essential to guarantee 
that the approach be useful for numerical computations. 

In this paper, we investigate the problem from the point of view of parametric 
optimization. The known sensitivity results from parametric optimization (see 
e.g. Lempio and Ma.urer, 1980; Gugat, 1994; Bonnans and Shapiro, 1998, and 
the references therein) cannot be applied since for our problem, not only one 
fixed space containing the control functions but for each controlling~-time a 
different space occurs. 

Our parametric auxiliary problem is different from the standard miuirmun 
norm problem since we allow for a more general objective fnnction. A trausfor­
mation of our objective function to the norm as the standard objective function 



Time-parametri c control 

yields a problem that differs form the stawlard minimum norm problem because 
the right hand sides of the moment equations depend Oll the controllillg time. 
Also the functions that appear in the scalar products depend in a llontrivial way 
on the controlling time. This means that neither the resnlts llor the correspolld­
ing methods of proof that are given in Krahs (1992) for the standard minimum 
norm problem are applicable. For example, for om problew the optimal value 
function need not be decreasing. 

Our main assumption is a chain of illcqualities for tlH') functions defining 
the moment problem. For the problem of time- optimal control of an Euler­
Bemoulli beam, we have a trigonometric mmmmt problem (sec~ Krahs, 1982). 
For these problems, the validity of our assumptions follows fro111 a n~sult of 
Ingham (see Ingham, 1936). 

For the standard- minimum norm problem, we examine t he regularity of t he 
optimal value functions. We give conclitiolls ill terms of the regnlarity of the 
optimal solutions that guarantee the validity of Lipschitz and Holder collditions 
with exponent 1/ 2 for the optimal value fnnction. We give a similar resnlt for 
the stability of the optimal solutions. 

2. Notation and assumptions 

Let 12 denote the space of square summable sequences of real nm11hcrs. 

For c E 12
, let ll clltz = (2::::1 en 112

. 
Let T > 0 be given. For all T1, T2 E [0, T], T1 =f. T2 let 

the space of real-valued square integrable fund ions on the interval 
[rnin{T1,T2},max{T1,T2 }]. The usual scalar product ill Z(T1 ,T2) is denoted 
by (-, ·) cr 1 ,r 2 ) and the corresponding norm by 11 · llcr 1 ,T2 )· Let (-, ·)cr1 ,Tl) = 
11 . llcrt ,Tl) = 0. 

For v. E Z(O, T) , instead of llv·l [min{T1 ,T2 },max{T1 ,T2 }JIIcr1 ,T2 ) we write llullcr1 ,T2 )i 

analogously, for u , v E Z(O,T) we use the llotation (u,v)cr1 ,r 2 )· 

For our analysis it is essential that we do not work ill mdy Ollc space, lmt 
use a whole (time- )parametric: family of spaces. 

For all T E (0, T], let Sr : Z(O, T) ---> Z(O, T ) be a continnons lillcar map 
that is bijec:tive and for which t he following erptatioll holds for all ·u. E Z(O, T): 

(1) 

As an example fo r Sr consider the Volterra operator with a collstallt K. > 0 
and kernel K E C(O, T ) used in Krabs (1996): 

!
·t 

(Srv.)(t) = ~>.u(t) - K(t- s)v.(s ) ds. 
'0 

(2) 
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The adjoint operators of Sr, S::;, 1 arc denoted by S}, (S"T 1 )* respectively. 
In example (2) the adjoint operator is 

j'T 
(SJ:u)(t) = K.v.(t)- .ft K(s- t)n(s) rls. 

LEMMA 2.1 Fo·r all T E [0 , T] and y E Z(O, T ) the followin_q equation. is valid: 

S"T 1 (YI[o,rj) = (Sj;1Y)I[o,TJ· 

MoTeoveT IISH = IISrll :S IISrll and II(S"T1 )*11 = IIS"T1 II :S IIS-f;1 ll-

- - -1 -1 
Proof. Let yE Z(O, T), T E [0, T] . Let n1 = (ST y)i[o,T) and u2 = Sr (Yi[o,r j) -

Then Srv·2 = Yl[o,T) and (1) implies 

Srv.l = Sr((Sj;1Y)i[o,rj) = (ST(Sj;1Y))i[o,r) = Yi[o,r ) = Srv·2· 

Hence v.1 = v.2 . 

For v. E Z(O , T), define ii. E Z(O, T) by ·ii.l[o,r) := n, ·ii.I(T,T ) := 0. Then 

llv.llco,r) = llii- ll [o,'f)· Hence (1) implies IISrullco,r) = IISrD·IIco,r):::; IISriill(o,T):::; 
IISrllllii·llco,T) = IISrllllv.llco,r) · Thus IISrll :::; IISrll - The iueqnality IIS"T1 II :::; 
11Sj;1 ll follows analogously. 

The equation IISrll =!ISH is always valid (see Pcdcrsen, 1988, p. 90). D 

We assume that for all v. E Z(O, T) and Ti E (0, T] (j E IN) with limi~oo Ti = 
T the following statement holds: 

_lirn ll(s:;,;(v.(-T)))(-'!2)-(s:;,(u(-=TT)))(-!) 11 _ = 0. (3) 
.1~00 T1 T T (O,T) 

For the example of the Volterra operator iu (2) for all u. E Z(O, T) alHl t E [0, T] 
the equation 

j'T 
(S}(v.(- T/T))) (t) = r;.v.(tTjT)- .ft K(s- t)u(8T/T) rls 

T i.T 
= Jw.(tT/T) - = _ K(xT/T- t)n(:r) rh: 

T. tT;r 

is valid, hence we conclude that for all y E [0, T] we have 

_ - T {T T 
(S:;,(v.(- T/T))) (yT/T) = r;.u(y)- T .l!l K((:r- y )T)u(:r ) rh:, 

so it is easy to verify that (3) is valid. 
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Let (z.i)iElN E (Z(O, T))JN be a sequence of func t ions , /J E Z(O, T) allC! (: E 12. 
For a E 1R U { oo} and e E 12 we define the set 

U(T, a, e) = {u E Z(O, T) : 

IISrv.- bll(o,T) :::; cY 2 and (v., z.i)(o,T) = e i for all j E IN}. 

We make the following a.''>Surnpt ions: 
(AO) A number fJ E IRis given such that the set U(T, (3, c) is 11oncmpty. 
(Al) There exist constants T_, M , P > 0 such that for all N E IN, ( a.1, ... , aN) E 

IRN we have 

N N 

(1/M)(l:::: a.r)l/2 < Il l: O.;Z; 11 (O,T_) 
i=l i=l 

N 

< 11 I>·izill(o,T) 
i=l 

N 

< P(z.:=a.;)l/2 . 
i= l 

For trigonometric moment problems, the validity of the i11equa1ity ill (A1) can 
sometimes be verified with the help of a result of Ingham (sec In).!;lmm, 193G). 
Usually (e.g. in Va...'iin and Agcev, 1990, Lemma 4.1 , p.120, and Krabs , 1982, 
II.2.11) in the theory of moment problems a similar inequality for o11c fixed 
space is considered; in contrast to the present paper the parametric aspect is 
not taken into account. Condition (A1) is equivalent to the statement that for 
all T E [T_, T], the functions z; form a. Rie:-;z--basis of the closure of their linear 
span. Condition (Al) is also equivalent to the statement that for all T E [I:, T], 
the Gram-matrix 

( (z;, Zj )(O,T)) ~j= l 

generates a linear bounded invertible operator on 12 . Riesz- b&'iCI'> C:Ctll also be 
characterized in terms of biorthogonal sequences (see You11g (1980), Tlworem 
9, p. 32) . 

Using Lemma. 2.1, it is easy to prove that Assumption (A1) implies the 
following Lemma. 

LEMMA 2.2 Let NI = M IISy ll, P = PIISf 11. Fo'f' T E [T_, T ], .i E IN define 

Hj(T) = (Sfl)flzi. Thenjo'f' allN E IN, (a.1 , ... , a.N) E IRN , T E [T_,T] the 
following ineqv.ality holds: 

i= l i=l i. = l 
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3. The problem 

We are interested in the minimal controlling time 

T* = inf{T E [;L, T] : U(T,/3, c) =1- 0}. 

The number T* is the infirnum of the set of points T E [;[, T] for which tlwre 
exists a control u E Z(O, T) that satisfies the moment equations, i.e. snch that 
(u,zi)(o,T) = ci for all j E IN and for which IISru- !JII~o,T)::; ;.P. 

The lower bound ;[ is introduced siuce only for T 2: ;[, (A1) implies that 
U(T, oo, c) is nonempty (see Guerre- Delabriere, 1992, Lemma I.G.2, where a 
result for the more general case of refiexi ve spaces is given) . 

For T E [;[, T] define the parametric optimization problem P 00 (T): 

min IISrv. - bll[o,T)- j'JZ s.t. (n, zi)(o,T) = ci for all j E IN. 

Let w(T) denote the value of P00 (T). 
Note that in the theory of moment problems (e.g. in Vasin awl Ag<~ev, 1995), 

usually instead of IISrv. - bll~o , T) the objective function llv.ll(o,T) is cousidercd 
that yields so called normal solutions. For the special case of the control of 
a rotating beam with Sr as in (2), Krabs considers an ohjcctivc function of 
the form IISr · -bll(o,T) (see Krabs, 1993), that is equal to the L2~ uonn of the 
momentum at the axis of the beam. 

In problem P 00 (T), the controlling time is fixed and the coustraint fmtction 
that is used to define the problem of time ~·minimal control is takcu as the 
objective function. 

4. The discretized problem 

Since P 00 (T) has an infinite number of equality coustraints, for umtwrical pur­
poses it is necessary to examine a clisc:retized problem PN(T), where only the 
first N equality constraints of problem P00 (T) are considered. 

ForTE [;[, T], NE IN define the parametric: optimizatiou problem PN(T): 

min IISru- bll(o,T) - !P s.t. 

(u,zj)(O,T) = Cj for all j E {1, ... ,N}. 

Let wN(T) denote the value of PN(T). Thcu for a ll T E [1:, T], the iucquality 
WN+l(T) 2: WN(T) is valid. 

In the following Lemma, the solutiou of problem PN(T) is dmractcrized. 

LEMMA 4.1 Let T E [;L,Tj, NE IN. Fo·r j E {1 , ... ,N}, define H1(T) = 

(S:T)- 1zj. Define 'TJN(T) = (TJf"(T))~ 1 E JRN as the solution of the li'11.eaT 
system 
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Then uN(T) = Sr 1 (2::~ 1 ryf(T)Hi(T) + /J ) i8 the 11.nique 8olntion of pmblem. 
PN(T). 

For the proof of Lemma 4.1, we need the followiug trivial statement. 

STATEMENT 4.1 Let S,T E [O,T]. Let v, wE Z(S,T) and (v -w,w)(S,T) = 0. 

Then llwllcs,T) ~ ll vllcs,T)· 
Proof of Lemma 4.1. Define the symmetric matrix 

Assumption (A1) implies that GN(T) is positive definite. 
Define 'IJN (T) as the solution of the liuear system given in Lemma 4.1 and 

vN(T) by the equation 

N 

VN(T) = L '17.f (T)Hi(T) . 
. i=l 

Then, for i E { 1, . , , N} the following equatiou holds: 

N 

L (H;.(T), Hi(T))co,r)'17.f (T) 
.i=l 

C;.- (b, H;.(T))(O ,T)· 

Define the set BN(T) = {v E Z(O,T): 

(v, Hi(T))(o ,T) = c;. - (b, H;.(T))co,T)> i E {1 , ... , N} }. 

Since VN(T) E span{H1 (T), ... , HN(T)}, for all v E BN(T) we lmvc 

(v- VN(T), VN(T))(o,T) = (), 

Thus, Statement 4.1 implies that VN(T) is tl!C element of B N(T) with llliuirnal 
norm. 

For a point u E Z(O, T) the statement (v., zi)(o ,T) = ci (j = 1, ... , N) holds if 
and only if Sru- bE BN(T). Hence nN(T) = Sr 1 (vN(T) + /1) is the solution 
of PN(T). The fac:t that the solution of PN(T) is uniquely determiued follows 
from the strict convexity of IISr · -IJIIco,T)· D 

5. Solvability of problem P00 (T) 

To analyse the solvability of problem P00 (T), we need an additioual a..'isumption. 
Assume that in the sequel, the following statement (A2) is valid: 

(A2) For all NE IN, SE [0, T], T E [I, T], S < T the functions zli [s ,r j, ... , ZNi[S,T) 
are linearly independent. 
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LEMMA 5.1 FaT all SE [0, T], T E [I:, T], S ::; T, '1/, E Z(S, T) !:he following 
ineqv.ality holds: 

i=l 

Proof. IfS= T, the assertion is trivial. 
Assume now that S < T. For N E IN we define the symmetric matrix 

GN(S,T) = ((H;_(T),Hj(T))(S,T)(j=l 0 

Due to Assumption (A2), the functions H1 (T) I [S,T], ... , H N (T) I [S',T] are liuearly 
independent. Hence the matrix G N (S, T) is positive definite. 

Let u E Z(S, T) . Define 

UN ( (v., Hi(T))(s,r)):1 , 

aN (GN(S, T ))- 1 UN and 
N 

uN L af H;(T). 
i=l 

Then we have (v.N - v.,uN)(S,T) = 0. Thus, Statement 4.1 implies 

llv·N 11 (S,T) ::; llull (S,T) · 

Lemma 2.2 implies that for all NE IN, (a 1 , ... ,aN) E IRN , tlw following 
inequality holds: 

N N 

11 LaiHi(T)II(s,T) < 11 L aiHi (T)II (o,T) 
i=l i=l 

< p (t,af' 
This implies that for all y E JRN, we have 

YT y::; F2 
YT (GN(S, T)) - 1 y . 

Thus the following statement is valid: 

N 

L ( (u, Hi(T))(s,r))
2 

i = l 

< P2
u'{;(GN(S,T)) - 1 UN 

A2 T 
P o'- NGN(S, T)oN 

A 2 ? 

P llvN ll (s,T) 
A2 ? 

< P ll vll(s,r )· 
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Since this inequality holds for all N E IN , tl1e &;sertion follows. 0 

LEMMA 5.2 FaT all T E [I , T] theTe exists an elernent v.(T) of the dos?J:re of 
span{ H; ( T) : i E IN} sv.ch that for all i E IN the eqv.ality 

(v.(T), H;(T))(O,T) = c;- (IJ, H;(T))(o ,T) (4) 

is valid. Mor-eoveT, u.(T) = Sy1(v.(T) + /1) is the nniq11.e sol11.tion of p ·roblem 
Poo(T). 

Proof. Let T E [I, T], N E IN be given and G N (T), v N (T) H.':i in t lw proof of 
Lemma 4.1. Define 

VN = (c;- (IJ ,H;(T))co,T))f:,1 E IRN . 

As in Lemma 4.1, let TJN(T ) be defined as 

TJN(T) = (GN(T))- 1VN. 

On account of Lemma 4.1 and Lemma 2.2 we have the inequality 

TJN(Tf GN(T)TJN(T) 

VJ'(GN(T))- 1VN 
,z T 

< M VNVN 
A 2 

< M 1(T), 
00 

i=l 

Due to Lemma 5.1, 1(T) is finite. Hence the sequence (vN(T))NEIN is bonwlecl, 
and thus contains a weakly convergent subseqnc~nce. Let v. (T) deuotc a weak 
cluster point of ( v N (T)) N EIN. · For all i , N E IN with i ::; N the following 
equation holds: 

(vN(T), H;(T))co,r) = c;- (b, H;(T))co,T)· 

Due to the definition of weak convergence , this implies for all i E IN the cqnation 

(v.(T), H; (T))co,T) = c; - (b, H;(T))co,r)· 

For all NE IN, the function vN(T) is in span{.fh(T), ... ,HN(T)} (see the proof 
of Lemma 4.1). Hence v.(T) is in the closure of span{H;(T),i E IN} . 

Define the set B(T) 

= {v E Z(O,T): (v, H;(T))co,T) = r:;- (IJ , H;(T))co,r), i E IN}. 

Since v.(T) is in the closure of span{H;(T),i E IN} , for allw E B(T) we 
have (w- v.(T),v.(T))co,T) = 0. Thus Statement 4.1 implies that v.(T) is the 
element of B(T) with minimal norm. 

For a point 11. E Z(O, T) the equatiou (11., z1)co,T) = r:1 (j E IN) holds if and 
only if Syv. - bE B(T). Hence H.(T) = Sy 1 (v + /;) is the solutiou of P00 (T). 
The uniqueness follows from the strict couvexity of 11 Sr · -bll (O,T) . 0 
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6. Continuity of the value function for the original prob­
lem 

In this section, we demonstrate the continuity of the optimal valnc function w. 

First we prove that the solutions of P 00 (T) for T E [;[, T] arc nniformly 
bounded. Then we use this fa<.:t to show that w is lower semicontiunons. 

We introduce a dual problem for P oo (T) and show that the corrcspouding 
dual solutions arc also uniformly bounded on [1:, T]. We ust) this fact to show 
that w is upper semicontinuous. 

LEMMA 6.1 (UNIFORM BOUNDEDNESS OF PRIMAL SOLUTIONS) 

The solutions of P 00 (T) are u:niformJy bo7!.nded on [1:, T], that is the·,.e eJ:ist.-; 
r E JR, such that joT all T E [1:, T] 

Proof. Let T E [;[, T] . Let !(T) and v. (T) be defined as in the proof of Lemma 
5.2. Then due to Lemma 5.1 we have 

h(T) = 

< 

< 

(~(<,- (b, JJ,(T))(o,r))') 'i' 

IHIP + (~(b, II,(T))[o,T)) 'i' 

llcll1 2 + Pllbll(o,T) =: R. 

The fact that v. (T) is a weak duster point of the sequence ( VN (T)) NEIN implies 

According to Lemma 5.2, we have v .• (T) = SY, 1 (v.(T) +li). By Lcmnm 2.1 , this 
yields the inequality 

llv .• (T)II(o,T) < IISY.1 II (llv.(T)II(o,T) + llbll(o,r)) 
< IIS;f?ll (iiiR+ lll>l l(o,T)) =: r, 

and the assertion follows. 0 

LEMMA 6.2 (LOWER SEMICONTINUITY) The jv:nction w is lowe·,. sem.icontinu,­
ov.s on [1:, T]. 

Proof. Let T E [1:, T] and a sequence (Tl)lEIN E [1:, T]JN couvcq.;iug to T be 
given. Fork E IN, let Hk = v .• (Tk)· Due to Lemma 6.1 there is rE IR such that 
for all k we have: llv·k 11 (O,T,J ::::; r. 



Time-parametric control 17 

Define ii."'(-) = u"'(- Tk/"T) E Z(O, T). Then 

llii·k ll(o,T) = (T/Tk) 112 iiv·kli(o ,Tk) ::; (T/Tk) 1
1

2
T. 

Hence the sequence (1i.k)kEJN is bounded . Thus there exists a snbscqneuce that 
converges weakly to a point ii .• E Z(O, T). Assnme withont rcstrictiou that the 
whole sequence ( ii.k)kEJN is weakly convergent. 

The definition of ii.j implies 11'i ( ·) = 711 ( ·T /T1). Define w. ( ·) = 11 . ( ·T /T). Let 

zl.i = Zl(-Ti/T). For alll E IN we lmve Cl= (v.j, Z!)(o T ) = (T1· / T )("ii.1·, zl·i) -T ' 
' . . ' 1 . . . (0, ) 

Let zt(-) = Zl(-T/T). Then 

lim llzf- ztll -Tl = o. 
J-00 (0, 

Therefore for all l E IN the following equation holds: 

(ii .• , zt)< -T) = lirn (11.i, zt) -T) 
0 , .1 -->00 (0 , 

= lim (1/ .. i,z()( -T) = lim (T/Ti)cl = (T/T)cl . 
. 7-----~oOO 0 , J----!oOO 

Hence we get 

(w.,zl)(o ,T) = (T/T)(D .• ,zt)(o,T) = (T/T)(T/T)ct = c1. 

Thus we have w. E U(T,oo, c) and so w(T) ::; IISrw.- bll(o,T)- (.P . 

The function u f-> llv-ll(o,T), Z(O, T) --+ lR is sequentially weakly lower semi­
continuous (as the supremurn of scqnentially weakly continuous fnnctions, see 
Pedersen, 1988, Prop. 1.5.12). 

Let b(-) = b(·T/T) . Let vi= Sri v.1 - bE Z(O,T7) and ii7(-) = v7(-T7!T) E 
Z(O,T). Let v. = Srw.- band 1!.(-) = v.(-T/T) E Z(O,T). For f E Z(O,T), 
let ] 1(-) = f(- TjT7) E Z(O , Ti) and](-)= f(- T/T ) E Z(O , T). Tl1cll 

(!, vj) (o ,T) = (!, (Sr;v.i)(- Ti/T)\o ,T) - (!, b(- Ti/T)\o,Tf 

Our definitions imply the equation 

(f, (Sr v.1 )( · T7/T)) -T 
j ' . (0, ) (fi, (Sr;vi)) (O,T;)(T/Ti) 

(S:;.)7, v.i)(o,T;)(T / Ti) 

( (Sr; fi )( · Ti /T) , ii .. i) (o,T ). 

Then, assumption ( ::l) and the weak convergence of the sequence ( 1/'.i) i E IN imply 

((S7:] )(- T /T), 11 .• ) -T 
(0 , ) 

(Sy ] , w.)(o,r)(T/T) 

(], Srw.)(o,T) (T / T) 

(!, ( Srw. )(- T /T )) -T . 
(0 , ) 



18 

Moreover , since llb(-Tj j T)- b(-) 11 -T ---+ 0 (j---+ oo) we have 
(0, ) 

.lim (f,b(·Ti/T))( -T) = (f,b)C -T) . 
. J--+00 0, 0 , 

Thus we can conclude that 

lim (f,v.i) -T = (!, (Srw*- b)( ·T /Y)) -T = (!,1!* ) -T , 
J--->00 (0, ) (0 , ) (0 , ) 

so the sequence (vJ)iEIN converges weakly to 1/;.. 
So we obtain the statement 

< (T jT) lirn inf ll1!.i 11 2 -T 
.7-00 (0 , ) 

liminf(Ti/Y) II1iill 2 -T 
J----->00 (0 , ) 

lirn inf llvi ll (o T) 
J--+00 J .1 

lim inf w(Ti) + (i2
, 

.J-----+00 

M. Gt.iGAT 

which implies w(T) ::; lim inf.,_..00 w(Tk), that is , w is lowc~r scmico11tirmous in 
T. o 

To show the upper semic:ontinuity of w , we nse the coefficients of v* (T) 
written as a linear combination of the functions H; (T). 

These coefficients form a sequence in 12 and can be mwd to <~xpress the 
optimal value w(T) . 

LEMMA 6. 3 Let T E [I:, T]. Th en theTe e;J;·ist ( u; (T) )iEIN E 12 S'll.r;h that 

00 

i=l 
00 

w(T) + {32 = L o:;(T)(c; - (b, H;(T ))(O,T))· 
i=l 

Moreover, joT all i E IN the following equation is valid: 

00 

L O:j(T)(Hi(T), Hj(T) )co,T) = c;. - (h, H;(T))co,T)· (5) 
.i=l 

Proof. Lemma 5.2 implies that the function v* (T) is c:outaiucd in the closure 
of spa.n{ H;(T) , i E IN} . Hence there exists a seqnenc:e ( o; (T) )iEIN snch that 

00 

v*(T) = L o:;(T)H;(T). 
i=l 



Time-parametric control 19 

Lemma 2.2 implies that the sequence ( 0!; (T) )iEJN is an elemcut of 12 . 

Since v. (T) = Sru. (T) - b, we have 

w(T) + (3 2 

00 

i=l 
00 

L 0'; (T) (H; (T)' v. (T)) (O,T) 
i=l 
00 

L n;(T)(c;- (1!, H;(T))(o,r), 
i=l 

where the last equality follows from equation (4), which also implies cquatiou 
(5). 0 

In the next Lemma, we introduce a maxirni:tation problem with value w(T) + 
(32

, i.e. a dual problem for Poo(T) . 

LEMMA 6.4 (DUAL PROBLEM) For all T E [I, T] the following equation holds: 

00 00 

00 

+2 I:o:.i (cj- (b,Hj(T))(o,T)) . 
.i=l 

Proof. For T E [I, T], n E 12 , defiue 

00 00 

h(T,o) = -- LLcl';o.i(H;(T),Hj(T))(o,T) 
i=l .i=l 

00 

+2 L o.i (cj - - (b,Hj(T))(o,r)) . 
.i=l 

Let o(T) = ( o; (T) )iEJN be as in Lemma G.3. Then, Lemma G.3 implies 

00 

.i=l 

-(w(T) + (P) + 2(w(T) + (1 2
) 

w(T) + (3 2
. 

This implies the inequality 

w(T) + (P s; sup h.(T, o) . 
cxE1 2 

(G) 
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For a E l2 , v E Z(O, T) define cp(T, v, a) 
00 

= ll vll~o,T) + 2 L ai (ci- (b, Hi(T))co ,T)- (v, Hi(T))(o ,r)) (7) 
.i=l 

Lemma 5.1 implies that cp(T, v, a) is well --defined . 
According to Lemma 5.2, we have 

llv* (T) ll~o ,T) = w(T) + (32 

and thus equation (5) implies that for all a E l2 

cp(T,v*(T),a) = llv*(T)II(o,r) = w(T) + (32
. 

For all a E l 2 , the map cp(T, ·,a) is coercive am! strictly convex, hence the set 

Mmin(T) = {v E Z(O,T): cp(T,v,a) = inf cp(T,w,o)} 
wEZ(O,T) 

is nonempty and consists of a single elcrrwnt. 
Let a E l 2 be fixed and Mmin(T) = {w. }. Since the map cp(T,·,ct) 

Z(O, T) ---+ IR is Frechet-differentiable, we can derive the equatiou 
00 

w* = L aiH.i(T) . 
. i=l 

Thus, the following equation holds: 

cp(T, w*, a) 
00 00 

= L L aiai (Hi(T), Hi(T))co,r) 

00 

j=l 

00 00 

i=l .i=l 

= h(T,a). 

Hence for all a E l2 we have 

h(T, a) 

This implies 

inf cp(T, v, a) 
vEZ(O,T) 

< cp(T, v*(T), a) 

w(T) + (32
. 

sup h(T, a) :::; w(T) + (32
, 

aE!2 

and the assertion follows. D 

(8) 
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LEMMA 6.5 (UNIQUENESS OF THE DUAL SOLUTIONS) For all T E [;[, T], the 
point (ai(T))iEJN E 12 as defined in Lem:rna 6.8 is v:niquely dete·l"rnined and the 
v:niqne solntion of the dv.al problem. stated in Lem:ma 6.4. 

Proof. Let a(T) = (ai(T))iEJN be as in Lemma 6.3 . Equation (6) implies that 
a(T) solves the dual problem. 

Lemma 2.2 implies that the function h(T, ·) : 12 -----+ IR is strictly concave, 
hence the dual solution is unique. 

Therefore a(T) is uniquely determined. 0 
- . ? 

Note that for all T E [I:, T], the dual solution is an clement of the space 1-
that is independent of T. This fact is very convenient for our analysis. 

LEMMA 6.6 (UNIFORM BOUNDEDNESS OF THE DUAL SOLUTIONS) Let T E [L, Tj 
and (ai(T))iEJN be as in Lemma 6.8. There e1:ists r E JR, snrh that for all 
TE [I:,T] 

00 

L (ai(T))
2 :Sr. 

i=l 

Proof. According to Lemma 2.2, for all T E [I:, T] we have 

00 

< M[[ l::ni(T)H;.(T)llco,r) 

NI[[v*(T) llco,r) 

< MR 
with R as defined in the proof of Lemma u.l. The assertion follows with r = 
MR. 0 

LEMMA 6. 7 Let v. E Z(O, T) . FaT T E [I:, T], i E IN define 

di(T) = (u, Hi(T))(o ,T)· 

Then joT all T E [I:, T], the following eq7l.ation holds: 

00 

lim _ L (di(t)- di(T))
2 = 0. 

t--->T,tE(L,T) i=l 

Proof. Due to Lemma 5.1, for all t E [I:, T], we have (di(t));EJN E 12 The 
definition of di(T) and Hi(T) imply 

di(T) = (u, (S~ 1-1 
zi)(o,T) = (Si 1v., zi)(o,T). 

Let T1, T2 E [I:,T], T1 < T2. Then Lemma 2.1 implies 

(Si
2

1
v., zi)(o,T2 ) - (Si

2

1
V., Zi)(o,Tl) 

(S;;,}v., zi)(r1 ,T2 )· 
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Analogously to Lemma 5.1 we can prove (by replacing H;(T) by z.;) that for all 
v E Z(T1 , T2) we have 

00 

i=l 

This implies 

00 

L(di(T2)- d;(TI)) 2 

i=l 

On account of 

lim _ llv.llu,r) = 0, 
t----->T,tE l[,T] 

the assertion follows. D 

00 

L (SY,2lu, z;. )~hT2) 
i=l 

LEMMA 6.8 (UPPER SEMICONTINUITY) The fu.nr:tion w is uppe·r .. wm.icontinu-
011.8 on [1:., T]. 

Proof. Let T E [£., T] and a sequence (T; )iEIN E [£., 'f]IN converging to T be 
given. Then for allv. E Z(O, T), the following statement holds: 

Moreover, Lemma 6.7 implies 

00 

,,~ooL ((b,H;(TJJ)co,T1J- (b,H;(T))co,r))
2 

0 al!d 
j=l 

00 

k~~ L ( (u, H;(Tk))co,TJ,,)- (u, H1(T))co,r))
2 

= 0. 
i=l 

Let (vi)iEIN E (l2 )JN be a weakly convergent sequence converging to the limit 
v*. 

Then for cp as defined in (7) we have 

k~~ cp(T!.c, v.l[o,T"]' 1/k) = k~~ llv.ll(o,Tk) 

i=l 

= cp(T, ·u.lco,r) , v*), 

i.e. the map 

(T, V) f-+ cp(T, v.l (O,T)' V)' [£., T] X 12 
---> IR 
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is sequentially weakly continuous. Statement (8) implies 

h(T,v) = inf_ cp(T,nlco,T),v). 
11.EZ(O,T) 

Hence h. is the infi.mum of sequentially weakly continuous maps. Thus Propo­
sition 1.5.12 in Pedersen (1988) implies that h. is sequeutially weakly upper 
semicontinuous, i.e. 

limsuph.(Ti ,vi)::::; h(T,v*) . 
.1-CXJ 

FortE [I:, T], let a(t) = (o;(t))iEIN· According to Lernrna G.G there exists 
r E IR such that for all k vve have 

00 

2: (ai(Tk)) 2 ::::; r. 
i=l 

Hence there exists a subsequence (ti).iEJN of (Ti).iEJN for which 

limsuph.(T~,,a(Tk)) = lirn h(t~, , u(t~,)) 
k-CXJ k--+CXJ 

and such that the sequence (o(tk))kEIN E (1 2 )JN converge::; weakly to a poi11t 
o* E 12 . Then, due to Lemma 6.4 we have 

lim sup w('TJJ + (P lim sup h(T,,, n(Tk)) 
k -oo J,; ---- c:x:> 

lirn h(tk, O'(t~,)) 
k~oo 

< h(T, o*) 

< w(T)+f12
. 

Hence limsup.,~00 w(Tk)::::; w(T), i.e. w is upper sernicontinnons ou [I:, T]. 0 

Now we state the main result of this section. · 

THEOREM 6.1 (CONTINUITY) The function w is contir1.1J.01LS on the inteTval 
[I:,T]. 

Proof. Lemma 6.2 and Lemma 6.8 together yield the assertio11 . 0 

LEMMA 6.9 IfT* > ;[, then w(T*) = 0. 

Proof. Assumption (AO) implies T* ::::; T. 
By Lemma 5.2 the set U(T, (1, c) is nouernpty if and only if 

w(T) = IISru.(T)- bl lto,T)- (32 = llv.(T)IIco,T)- (3
2

::::; 0. 

Hence the defi.nition of T* implies 

T* = inf{T E [I:, T] : w(T) ::::; 0}. 

Thus, if T* > ;[, the continuity of w implies w(T*) = 0. 0 

(9) 
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7. Continuity of the value function for the discretized 
problem 

LEMMA 7.1 FoT all N E IN, the fundion w N is continno?J..'; on the inteTval 
[I:,T]. 

Proof. The assertion follows analogously to Theorem G.1, hy replacing the 
infinite series by finite sums and the infinite systems of moment equations by 
the corresponding finite systems. The dual :;olutions of problem PN (T) are 
elements of IRN. D 

8. Uniform convergence of the value functions for the dis­
cretized problems 

In this section we present the result that is announced in the title of the pn~sent 
paper, a theorem about uniform convergence of the optimal value fuuction:; for 
the discretized problems. This theorem shov;,r:; that if the di:;crctization level is 
large enough, the discretized problem yields an arbitrarily good approximation 
for the optimal value function w, uniformly on the whole interval [I:, T]. 

THEOREM 8.1 (UNIFORM CONVERGENCE) The sequence (wN )NEIN ronve·tges 
uniformly and m.onotone to w on [I:, T]. 

Proof. The definitions of P 00 (T) and PN (T) imply that for all N E IN the 
following inequality holds: 

WN(T):::; WN+l(T):::; w(T). 

Hence for all T E [1:, T], the sequence (wN(T))NEJN iro convergcut and 

lim wN(T) :::; w(T). 
N--->oo 

The proof of Lemma 5.2 implies that 

lim wN(T)-{32 liminfl lvN(T) II 2cor) 
N~oo N--7oo 1 

> llv*(T)II(o,r) 

w(T)- (P, 

where we have used the fact that the function 11 · 11 (O,T) is sequentially weakly 
lower semicontinuous . Hence for all T E [I:, T], we have 

lim wN(T) = w(T). 
N--->oo 

Thus the sequence of functions (wN )NEIN converges pointwise to the function 
w. By Lemma 7.1, for all NE IN the functions WN are continuous. By Theorem 
6.1, the limit function w is also continuous. Hence Dini's Theorem (see Pedersen, 
1988) implies the uniform convergence. D. 

In the last theorem, we summarize our results. 
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THEOREM 8.2 FoT all NE IN, the optimal value fv:nctions WN of the di.,C'retized 
pmblerns aTe continuov.s. The valv.e function. w of the oTiginal pmblem. i8 also 
continv.ous. 

The sequence (wN )NEIN conve·1:ges 11.nifoT·m.ly and nwnotone tow on [I:, T]. 

REMARK 8.1 For NE IN , T E [I:, T] defind2(N, T) = wN(T) awl lc:U2(oo, T) = 
w(T). Then Theorem 8.2 implies that for all ::;equcnccs (Nk)i,EIN vvith Nk E 
IN U { oo }, (Tk)kEIN where Tk E [I:, T] with 

lim (Nk,Tk) = (M,S) E (INU {oo}) x [I:,T] 
k____.oo 

the statement 

lim D(Nk, T") =Cl( M, S) , 
k____.oo 

(10) 

holds, that is the function n is continuous 011 (IN u { 00}) X [I:, T]' For !VI E IN' 
(10) is equivalent to the continuity of WJ\1. If Nk = oo for all k E IN, (Hl) is 
equivalent to the continuity of w. Using the compactncs::; of [I:, T ], we can also 
deduce from (10) the equation 

lim max_ ID(Nk, T)- D(oo, T)l = 0, 
k~oo TE[l..:,TJ 

i.e. the uniform convergence of the sequence (wN )NEIN tow. 
Hence except for the statement about monotone converp;e!lcc, Theorem 8.2 

is equivalent to the statement that the functioll n is con tin nons on (IN u { 00}) X 
[I:, T]. Note, however, that in the proof of Theorem 8.1 Dini'::; Theorem can only 
be applied due to the fact that for fixed T E [1.:, T], the seqm:nce of nmnbcrs 
(wN(T))NEIN is increasing. Moreover, in tlw proof of the colltinnit~r of w, we 
have used the fact that for fixed T E [I:, T], P 00 (T) is a convex problem. 

Continuity results of the type of Theorem 8.2 arc well· known in different 
settings, for example Theorem 0.0 .1 from Rokwicz (1987). This theorem b"si­
cally states that with feasible sets that give a continuons set v"lncd map of the 
parameter, the corresponding optimal value function is continuous. 

To show that the feasible set map is contillnous, both lower a!ld nppcr smui­
continuity of the set- valued map has to be shown. This approach rcqnircs at 
least as much work as to show that the optimal value functi011 is both upper 
and lower semieontinuous, as we have done. 

The purpose of this paper is to examiue the bchaviom of optimal value 
functions that occur if the method of monH'mts is used so thRt the JnonHmt 
equations appear as constraints . This problem is important sill<:(~ tlw method 
of moments is suitable for a numerical treatmellt of problems of time opt imal 
control and in this approach the optimal valnc functiow; tlmt we cousidcr occnr 
in a natural way. 
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To computeT* numerically, we consider the sequence (T'N )NEIN defined as 
follows. For NE IN, let 

T!v = inf{T E [I:, T] : wN(T) :::; 0}. 

Since wN :::; WJV+l :::; w, for all N E IN we have T!v :::; TN+l :::; T*. Hem:c 
limN ___,oo TN :::; T*. 

Analogously to Lemma 6.9 we can prove the following: If T!v > I:, thcu the 
equation w N (TN) = 0 holds. Hence if there exists N 0 E IN such that T!v

0 
> I:, 

Theorem 8.1 yields 

w( lim T!v) = lim WN(TN) =Cl; 
N~oo N----too 

since limJV___, 00 TN:::; T*, by (9) this yields 

lim T!v = T*. 
JV___,oo 

This implies the following Lemma. 

LEMMA 8.1 If T* > I: the sequence (TN )NEIN conveTqes m.onotonimlly to T* 
and joT N large eno11,gh, we have wN(TN) =Cl. 

For the problem of time-minimal control of an Enler- Bernonlli beam, Lemma 
8.1 has been stated in Krabs (1996). 

9. Lipschitz and Holder conditions 

In this section, we consider the standard minimum norm probl<~m 

Q00 (T) : min llv·l lfo,T) s.t. 

(u,zj)(o,T) = ci (j E IN) 

forTE [I:, T] with optimal value cp(T): 

cp(T) = min{llv-11(0 ,T): u E Z(O,T), (u ,zi)(o,T) = ci (j E IN)}. 

We give an assumption that ensures that the optimal valnc fuuction sati:,;fies a 
certain Holder condition with exponent 1/2. We also present an assmnptiou that 
implies a certain Lipschitz condition. Our assumptions are regularity conditions 
for the solutions of problem Q00 (T). 

We need some additional notation. Let a sequence (.>- 1) iEIN of nnmbers 
greater than or equal to 1 be given. Assume that there is a nnmber s > () ::;uch 
that 

00 1 
"'- < 00 . 0,>_s 
i=l 1 
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For a sequence ( a1 ).iEIN of real numbers and r E 1R let 

Define the space of sequences 

z; = {(ai).iEIN: lla. llr < oo}. 

For t E [I:, T], define the linear operator A(t) 

A(t)a = (2::00

7-_1 ai(z;, zi)(o t)) . 
·- . . ' iEJN 

Up to now we have studied the optimal value function. The followiug lemma 
contains a result about the sensitivity of the optimal solutions with respect to 
the parameter t. 

LEMMA 9.1 Let c E 12 FaT t E [I:, T], let TJ(t) = A(t) - 1c. As befo·re, assv:me 
that A1 and A2 hold. Then fo ·r all t 1 , t 2 E [I:, T], the following ineqv.ality is 
valid: 

00 

IITJ(tl)- TJ (t2) lll 2 ::; M2 Pll L 'T/.i(tl) zillct ,h)· 
.i=l 

In paTticv.laT, this implies 

MoTeov er·, if the functions z; aTe continv.o11.s a:n.d 

ma~ lz;(t)l ::; 1, i E IN, 
tE [D,T] 

(11) 

and for some r 2 s the seq1J.ence c is in A( t 1 )( 1;), then the following ineq11.alities 
hold: 

(12) 

(13) 

Ineq1J.ality (1 3) shows that the opti·mal valv.e fv:n. ction r.p satisfies a Hold e·r con­
dition with exponent 1/ 2. 
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Proof. The definition of 'T)(t) implies 

A(t2)(77(t1) -77(t2)) 

A(t2)'T](tl) - c 

(A(t2)- A(tl))77(t1) 

( (zi, ~ 'T/.i(tl) zi)(t1 h)) 
.7 -1 i EJN 

Let v, = L:~ 1 77.7(t1)z7 E L2[0 , T]. Then Lemma G.1 implies 

00 

JJA(t2)(77(tl) -7)(t2))11?2 = L (z;.,n)rt1 ,t2)::::: P 2 llnllrt,h) · 
i=l 

Hence the following inequality holds: 

and the first assertion follows. Due to (11) we have 

00 00 

i= l .i=l 

:VI. GGGAT 

hence if 77(tl) E l;, (12) follows. Now (13) is a c:onseque!IC() of the equation 
<p(tl) - <p(t2) = cT(77(tl) - 77(t2)) and the Cauc:hy- Schwarz inequality. D 

The proof of Lemma 9.1 only works for t he standard rninirnnmllorm problem 
Q00 (T) and not for problem Poo(T). 

Note that the dual space of l; is f':_r· 

- ? 
LEMMA 9.2 FaT t E [I:, T], o El; , let 

00 

(D( t )o)i = L zi(t)zi(t)o_i· 
i=l 
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Assnme that (11) holds. Let r 2: .s. Then D(t) is a r:ontinnons linea:r m.ap from. 
1; into l?._r and for all a E 1; 

Proof. Let (3 E z;. Then 

00 00 

lf1T D(t)al = I L L f:liz;.(t)zi(t)oil 
i=l .i=l 

00 00 

i=l .i=l 

(~ lfi·l) (~ I ~. I) 
( ~ lfi, 1>-:1' >.;'

1
') (~I"' l>-j

1
' >.j' 

1
') 

< 11!311!; ( ~ -\-r) llc.v.llt;' ' 

(14) 

where for the last line we have applied the Cauc:hy- Schwarz inequality twic:e. 
Hence the inequality (14) follows. 0 

LEMMA 9.3 Ass1J.me that (A1) and {11) hold. Asswne that the j?J:n.r:.tions zi a·re 
contin:u.onsly differ-entiable with 

ma~ lz~(t)l :::; A, i E IN. 
tE[O,T] 

Let r ;::: 8 + 1. FoT t E [I:, T], (.Y. E l;! let 

A(t)u = (~ (zi, z.i )co,t)u.i) 
.1-l i EJN 

(15) 

Then A(t) is a bov:nded linear- opemtor- from. z;. into l?_,.. A(t) is Fd.chet­
di.fferentiable. with Tespect to. t, and 

00 

(:A'(t)a)i = Lzi(t)zi(t)a1 = (D(t)O')i. 
i=l 
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Proof. Due to (Al), for a E z; we have 

IIA(t)all12 ::; IIA(t)n iiF ::; P 2 lluiiP ::; P 2 llnll12 . 
-r r 

M. GUGAT 

Let h =f. 0 be such that t + h E [;I:, T]. The Taylor-expansion implies the 
existence of numbers ~ii E (0 , T) such that 

~~(zi,zi)(t,t+h)- zi(t)z.i(t)[ 

= l~l\zi(~i.i)z.j(~ij) + z;(~i.i)zi(~ii)\::; l~l (A+.;:>::;;). 

Let a E z;. Define ai = :L;:l (A+ JI})oi. Then for all (JEt;:, the following 
inequality holds: 

00 00 

i=l .1=1 

< (~ IPM~;) (~I<>; I) 
+ (~ lP• I) (~ la;IJAj) 

For q 2:: s, we define a positive number Cq hy the equation 

c, ~ (~ :r) 'I'< 00. (lG) 

For 1 E z;, we have 

00 

I: hilA 
i=l 

Moreover, 
00 

i=l 

Hence for all f3 E z; we have t he inequality 
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Thus we conclude that 

Then we obtain the statement 

11 [

A(t +h) - A(t) _ ( )] . ll , 
h D t o I:_,. 

11 (~ [ ~ (z,, z, )c<,<+hl - z,(t)z, (t) [a,) ' [[,,, 

< 11 ( ~ ~ (v''.\; + }>:;)n}ll<c, 

~~~l l(a.i )illl:r 
< lhl ll o'ill~Cr-lC, .. (17) 

So for h -----> 0 the assertion that A is Frechet- differentiable ill t follows. 0 
The following theorem contains a snffic:icnt condition for a kill(! of Lipschitz 

condition for cp. 

THEOREM 9.1 Let r 2 s + 1. Assv:rne that {A1) , {11) and {15) hold. Let 
t E [:L, T) be sv.ch that c E A(t) (l;). Then the·,.e eJ:ists a constant L(t) > 0 sv.ch 
that for all tz E (t, T], the following in.equality is valid: 

cp(t) 2 cp(t2) 2 cp(t) - L(t) (tz- t). 

Proof. Let t 2 E (t, T] and h = tz - t > 0. Let v.. be the solntion of Q00 (t). 
Define ii.(s) := v .• (s), ifs E [0, t], ii.(s) := 0 if .5 E (t, t 2 ]. Then for all i E IN we 
have 

hence 

Moreover, due to Lemma 6.4 we obtain the statement 

cp(t +h) - cp(t) 
h 
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> 
1 00 --,;, L 'T/i(t)TJ.i(t)(zi, z.i)(t ,t+h) 

i,.i=l 

( )rA(t +h)- A(t) ( ·) -TJ t 'T/ i 
h 

_ ( )T (A(t +h)- A(t) _ ( )) ( ) TJ t D t TJ t 
h 

-TJ(tf D(t)TJ(t) 

-TJ(tfD(t)TJ(t) -IITJ(t)IITzC'r-lC'rlhl , .,, > 

where the last line follows from ( 1 7) . 
Let L(t) = TJ(t)TD(t)TJ(t) + IITJ(t)llf2C'r-1C'r[T- I:]> 0. Thcu 

'r 

<p(t +h) :::0: <p(t)- L(t) h, 

and the assertion follows. D 

REMARK 9.1 The fact that <p is decreasing is well-kuown, but the lower bound 
for <p(t2) in Theorem 9.1 appears to be new. 

Conditions (11) and (15) hold for trigonometric moment problcllls of the 
form 

lT v.(t) sin( At) dt 

·T 

I u(t) cos(At) dt 
.o 

C2;, , i E IN 

that appear for example in the characterization of the set of feasible coutrols for 
the exact control of hyperbolic partial differential equations (sec, for example 
Krabs, 1982). 
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