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Abstract: The problem of time-optimal control of linear hy-
perbolic systems is equivalent to the computation of the root of the
optimal value function of a time-paractric prograin, whose feasible
set is described by a countable systemn of moment equations.

To compute this root, discretized problems with a finite munber
of equality constraints can be used. Iu this paper, we show that on a
certain time-interval, the optimal value functions of the discretized
problems converge uniformly to the optimal value function of the
original problem.

We also give sufficient conditions for Lipschitz and Holder conti-
nuity of the optimal value function of the original problem.
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1. Introduction

Consider the problem of damping of vibrations of a one-dimensional medium,
where the elastic behaviour of the medinm is modelled by a hyperbolic partial
differential equation. In Krabs (1982), it is shown that the set of controls
steering the medium from a given initial posifion to a desired tenninal state
can be described as the solution set of a certain moment problem. Originally,
this approach is due to Russel (1967).

In the problem of time-minimal control, an inequality constraiut for the con-
trol function is added. Often an upper bound for the L>-norm of the control is
introduced. In this paper, we consider the more general case of an upper bound
for the L?-norm of the image of the control wnder an affine lincar operator.
This type of constraint is motivated by a control problem for a rotating Euler-
Bernoulli beam considered in Krabs (1993), (1996), where an upper bouud for
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the L?-norm of the torque corresponding to the angular acceleration is intro-
duced as an inequality constraint. The torque is given by a Volterra-operator
applied to the angular acceleration which is the control function.

In the minimal controlling time, this inequality constraint is active (Krabs,
1981). In Rolewicz (1987), it is shown how problems of time 1miuimal control
can be reduced to problems of norm-minimal control. To compute the minimal
controlling time, a time-parametric control problem can be used. For a fixed
time-parameter, the function defining the inequality constraiut is taken as the
objective function, that is minimized subject fo the countable svstemn of moment
equations. .

In this way, a convex time-parametric auxiliary problem is defined. The
minimal time, where the optimal value function of this time-parametric problem
attains the value zero is the minimal controlling time. For a fixed parameter,
the problem has a countable number of equality constraints that are given by
the moment problem.

For numerical computations, a discretized auxiliary problem has to be used
where the countable system of equality constraints is replaced by the first N
equality constraints i.e. the first N moment equations. For each fixed time
parameter, the problems are uniquely solvable. I this way a sequence of optimal
value functions is defined.

In the present paper, we show the following properties of the optimal value
functions:

For each fixed N, the corresponding optimal value function is continuous.
The optimal value function corresponding to the original problem is continuons.
Our main result is that on a given time-interval, the sequence of optimal value
functions corresponding to the discretized problems couverges uniformly to the
optimal value function of the original problem.

This result is important for the stability of the numerical approach via the
moment equations. It guarantees that for a given accuracy, a discretization
level exists that allows to approximate the optimal value function of the original
problem with that accuracy, independently of the parameter. If the sequence
did not converge uniformly, this would mean that for a certain acenracy, for all
discretization levels we could find a point in the time-interval, where this level
would not be sufficient. Hence the uniforin convergence is essential to guarantee
that the approach be useful for numerical computations.

In this paper, we investigate the problem from the point of view of parametric
optimization. The known sensitivity results from parametric optimization (see
e.g. Lempio and Maurer, 1980; Gugat, 1994; Bonnans and Shapiro, 1998, and
the references therein) cannot be applied since for our problem, not only one
fixed space containing the control functions but for each controlling-time a
different space occurs.

Our parametric auxiliary problem is different from the standard minimum
norm problem since we allow for a more general objective function. A transfor-
mation of our objective function to the norm as the standard objective function
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yields a problem that differs form the standard mininmun norm problem because
the right hand sides of the moment equations depend on the controlling time.
Also the functions that appear in the scalar products depend in a noutrivial way
on the controlling time. This means that neither the results nor the correspond-
ing methods of proof that are given in Krabs (1992) for the standard minimnmm
norm problem are applicable. For example, for onr problem the optimmal value
function need not be decreasing.

Our main assumption is a chain of inequalities for the functions defining
the moment problem. For the problem of time-optimal control of an Euler-
Bernoulli beam, we have a trigonometric moment problem (sce Krabs, 1982).
For these problems, the validity of our assnuptions follows from a result of
Ingham (see Ingham, 1936).

For the standard-ininimumn norm problemn, we examine the regularity of the
optimal value functions. We give conditions in terms of the regnlarity of the
optimal solutions that guarantee the validity of Lipschitz and Hoélder conditions
with exponent 1/2 for the optimal valne function. We give a similar result for
the stability of the optimal solutions.

2. Notation and assumptions

Let 12 denote the space of square sumable sequences of real muubers.
For c € I2, let ||¢]lj2 = (iey c?)lm.
Let T > 0 be given. For all T, Ts € [0,T), Ty # 15 let

Z(T1,Ts) = Z(To, Th) = L*([min{Ty, To}, max{T1, T>}]),

the space of real-valued square integrable functions on the inferval
[min{Ty, 7>}, max{7},T>}]. The usual scalar product in Z(T37,T5) is denoted
by (-,-)(ry, ) and the corresponding norm by || - [z m). Let () =
I lezymy =0

Foru € Z(0,T), instead of ||w|{min{1;, 75} max{Ty 72} (7 1) We write [Jull(zy m);
analogously, for u, v € Z(0,T) we use the notation (u,v)r, 1,

For our analysis it is essential that we do not work in only one space, but
use a whole (time-)parametric family of spaces.

For all T € (0,T), let Sr : Z(0,T) — Z(0,T) be a continnous lincar wmap
that is bijective and for which the following equation holds for all w € Z(0,T):

St(uljo, 1)) = (ST‘”-)HO.T]- (1)

As an example for St consider the Volterra operator with a coustant £ > ()

and kernel K € C(0,T) used in Krabs (1996):

(Bru)(t) = nult) = /O Kib=s)ulsyds, (2)
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The adjoint operators of St, S.;l are denoted by S7, (S:._-l)‘ respectively.
In example (2) the adjoint operator is

¥ g
(St)(t) = ku(t) = K K(s — tyu(s) ds.

LEMMA 2.1 For all T € [0,T) and y € Z(0,T) the following equation. is valid:
St (ylom) = (S%I?I)I[O.T]-

Moreover |3l = ISzl < ISzl and [(S7)*)l = IS71 < S

Proof. Let y € Z(0,T), T € [0,T). Let uy = (SF;:I Y)ljo, 1) and 1y = S;l(ylin‘ﬂ).

Then Spug = yljo,r) and (1) implies

Sruy = ST((S%]'?)')“O,T]) = (ST(S%I?}')N[O,T] = yljo,1) = Stua.
Hence u; = us. _

For w € Z(0,T), define @ € Z(0,T) by iilpr = 4, ﬁ'l(’I‘T] := (. Then
llullo,ry = llall 77, Hence (1) implies ||Srullo,ry = |S7tlior) < IS0l o 7 <
ISl o 7, = ISzl lullory: Thus IS21] < ISzl The icquality |17 <
I S%l || follows analogously.

The equation ||Sr|| = ||S7|| is always valid (see Pedersen, 1988, p. 90). O
We assume that forallu € Z(0,T) and T; € (0,T] (§ € IN) with lim; oo Tj =
T the following statement holds:

_ =0 (3)
.7

For the example of the Volterra operator in (2) for all u € Z(0,T) and t € [0, T)
the equation

a2 o2 - (ssme-In 6D
‘( T} ) iE T /g

lim

T
(S}(H(T/T))) (t) = ku(tT)T) — /r K (s —t)u(sT/T)ds

T
= ku(tT/T) — %/@ﬁ K(xT/T — t)u(z) dx

is valid, hence we conclude that for all 3 € [0,T] we have

o

T
(St T/T) WI/T) = wus) ~ 7 [ Kl =)

=

Julx) da,

S0 it is easy to verify that (3) is valid.
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Let (zj)jen € (Z(0,T))M be a sequence of functions, b € Z(0,T) aud ¢ € 12,
For a € IRU {oo} and e € I2 we define the set

U(T,a,e) ={ue Z(0,T):
||ST‘-‘J— — b”?O,T) i (12 and (’(L, zj)((l,T) = €5 for all j € })‘V}

We make the following assunptions:

(A0) A number 8 € IR is given such that the set U(T, 3, ¢) is nonempty.

(A1) There exist constants I, M, P > O such that forall N € IV, (a4, ...,an) €
RN we have

N

N
/MY e < | Z aizill 0.1

i=1

N
< |l Z ﬂ-,-:zall(o T)
i=1 :
N
= By P
i=1

For trigonometric moment problems, the validity of the inequality in (A1) can
sometimes be verified with the help of a result of Inghaimn (see Inghaimn, 1936).
Usually (e.g. in Vasin and Ageev, 1995, Lomma 4.1, p.120, and Krabs, 1982,
I1.2.11) in the theory of moment problems a similar inequality for oue fixed
space is considered; in coutrast to the present paper the parametric aspect is
not taken into account. Condition (Al) is equivalent to the statement that for
all T € [T, T, the functions z; form a Riesz basis of the closure of their linear
span. Condition (A1) is also equivalent to the statement that for all T € [T, T},
the Gram-matrix

({21, 240 0,7)) ) jo1

generates a linear bounded invertible operator on 12, Riesz bases can also be
characterized in terms of biorthogonal sequences (see Youug (1980), Theorem
9, p. 32).

Using Lemma 2.1, it is easy to prove that Assnmption (A1) hmplies the
following Lemma.

LEMMA 2.2 Let M = M |15, P = P||s§1 |. For T e [T,T), j € IN define

H;(T) = (SPHIz;. Then for all N € IN, (ay,..,any) € RY, T € [L,T] the
following inequality holds:

N

N N
(/M) ad)* <1 Y asti(T)lor) < PR )™
i=1

i=1 i=1
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3. The problem

We are interested in the minimal controlling time
T*=inf{T € [T,T): U(T,B,¢) # 0}.

The number T* is the infimum of the set of points T € [, T] for which there
exists a control u € Z(0,7") that satisfies the moment equations, i.c. such that
{u, 2j) 0,1y = ¢; for all j € IN and for which ||Sru — ?J"%O‘T) < 2

The lower bound T is introduced since only for T > T, (A1) nuplies that
U(T,co,c) is nonempty (see Guerre-Delabriere, 1992, Lemna 1.6.2, where a
result for the more general case of reflexive spaces is given).

For T € [T, T) define the parametric optimization problem Poo(T):

min || Spu — b"(zo,T) — % s, (u, 2} 01 =¢; forall j € N.

Let w(T') denote the value of Py (T').

Note that in the theory of moment problemns (e.g. in Vasiu aud Ageev, 1995),
usually instead of ||Syu — bii?ﬂ,’f) the objective function ”“”?D,T) is considered
that yields so called normal solutions. For the special case of the coutrol of
a rotating beam with St as in (2), Krabs cousiders an objective function of
the form [|S7 - —bl|% 1 (see Krabs, 1993), that is equal to the L*-uorm of the
momentum at the axis of the beam.

In problem Py (T), the controlling time is fixed and the constraint function
that is used to define the problem of time-minimal control is taken as the
objective function.

4. The discretized problem

Since Poo(T') has an infinite number of equality coustraints, for munerical pur-
poses it is necessary to examine a discretized problem Py (T), where ouly the
first N equality constraints of problemn P (T') are considered.

For T € [T, T], N € IN define the parametric optimization problem Py (T):

min || S7u — hi[?o_,r) - % sit.
(u, z) 0,1y = ¢; forall je{l,..,N}.

Let wy(T) denote the value of Py (T). Then for all T € [T, T), the inequality
wy+1(T) = wn(T) is valid.
In the following Lemma, the solution of problem Py (T) is characterized.

LEMMA 4.1 LetT € [I,T), N € IN. For j € {1,..,N}, define H;(T) =
(S3)71z;. Define ny(T) = (¥ (T))X, € RN as the solution of the linear
system.

((Hi(T):Hj(T))(G,T))ngI nn(T) = (e — (b, Hi(T))(u_.r))jil :
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Then un(T) = Sp 1(2?;1 aN(T)H(T) + ) is the unique solution of problem
Py (T).

For the proof of Lemma 4.1, we need the following trivial statciment.
STATEMENT 4.1 Let S,T € [0,T). Letv, w € Z(S,T) and (v —w, w)s.r) = 0.
Then |lwlis,y < llvlleszy-

Proof of Lemuma 4.1. Define the svnnnetric matrix

Gn(T) = ((H(T), Hy(T))o.1)) s sy -

Assumption (A1) implies that G n(T') is positive definite.
Define nn(T") as the solution of the linear system given in Leunna 4.1 and
un(T') by the equation

N
on(T) =Y (T)H;(T).

i=1
Then, for i € {1,..., N} the following equation holds:

N
(Hi(T),on(T))ory = Y _(H:(T), Hi(T)) oy (T)

am=l
= ¢i— (b, Hi(T))o1)-
Define the set By(T) = {v € Z2(0,T) :

('U, Hg(T))(g'T) = — (!'1, Hi(T))(U._T): i € {l, N}}
Since vy (T") € span{Hy(T),..., Hn(T)}, for all v € By(T') we have
(v —on(T), vn(T))o,r) = 0.

Thus, Statement 4.1 implies that vy (T') is the element of By (7)) with minimal
norm.

For a point v € Z(0,T) the statement (u, z;)0.r) = ¢ (j = 1,..., N) holds if
and only if Sru — b € By(T). Hence un(T) = Sy (un(T) + b) is the solution
of Py(T). The fact that the solution of Py (T) is uniquely determined follows
from the strict convexity of ||.St - —b||(0,7). O

5. Solvability of problem P, (T)

To analyse the solvability of problem Py (T'), we need an additional assunption.
Assume that in the sequel, the following statement (A2) is valid:

(A2) Forall N € IN, S € [0,T), T € [T, T), S < T the functions 215,17, -+ 2N (8,1
are linearly independent.
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LEMMA 5.1 Forall S € [0,T), T € [L,T)|, S<T, ue Z(S,T) the following
inequality holds:

o0

5 .2
Z((u, Hi(T))sm))” < P llullfs.ry-

i=1
Proof. If S =T, the assertion is trivial.
Assume now that S < T. For N € IN we define the syimmnetric matrix
b s N
Gn(S,T) = ((Hi(T), H;i(T))(s.1))

ig=1"
Due to Assumption (A2), the functions Hy(T)|is.1y,.--s Hn(T)|1s,7) are lincarly
independent. Hence the matrix G (S, T) is positive definite.
Let u € Z(S,T). Define

N
Uv = ((wHi(T))(s1))izs >
any = (Gn(S,T))" ' Uy and
N
uy = Z(I?FH,;(T).
=1

Then we have (uy —u,un)(s,7) = 0. Thus, Statement 4.1 implies

lunllis,zy < llullsr-

Lemma 2.2 implies that for all N € IV, (ay,...,ay) € IRY, the following
inequality holds:

N N
1Y aH(Dlsry < 1D aHi(T)llory

i=1 i=1

i=1

1/2

This implies that for all y € RY, we have
T e
yTy < PyT (GN(S,T)) ' y.

Thus the following statement is valid:

N
3 ((u, B sm)® = UZUn
i=1
< PUL(GN(S,T)) Uy
= ngx}':rGN(S,T)(xN
-2
= P "'?"-NH?S,T)
- ¥
< Pulifs gy
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Since this inequality holds for all N € IN, the assertion follows. O

LEMMA 5.2  For all T € [T, T) there exists an element v,.(T) of the closure of
span{H;(T) : i € IN} such that for all i € IN the equality

(a(T), Hi(T)) 0,1y = i — (b, Hi(T))0,1) (4)

is valid. Moreover, u,(T) = S3* (v.(T) + ) is the unique solution of problem
PoalT).

Proof. Let T € [I,T), N € IN be given and Gn(T), vn(T) as iu the proof of
Lemma 4.1. Define

Vv = (i — (b, Hi(T))(0,1))iz1 € IRY.

As in Lemma 4.1, let gy (T) be defined as
v (T) = (G (T)) V.

On account of Lemma 4.1 and Lemima 2.2 we have the inequality
lon (D) fory = nn(T) Gy (T)n(T)

Vi (Gn(T) ™V

MVEIVN

NE(T),

(i — (b, Hi(T))om))*.

08 A a0

with v(T) =

i
L

Due to Lemma 5.1, y(7) is finite. Hence the sequence (vy (7)) vewv is bonuded,
and thus contains a weakly convergent subsequence. Let v, (T) denote a weak
cluster point of (v (T))new. For all 4, N € IN with ¢ < N the following
equation holds:

(on(T), Hi(T)) (0,1 = ¢i — (b, Hi(T)) 0,7)-
Due to the definition of weak couvergence, this implies for all i € IV the equation
(e(T), Hi(T))(0,r) = i — (b, Hi(T)) (0,7
For all N € IN, the function vy (7) is in span{Hq(T), ..., Hx(T)} (sce the proof
of Lemma 4.1). Hence v.(T) is in the closure of span{H;(T"),i € IN}.
Define the set B(T')
= {'U e Z(O, T) ; (TF,HQ(T))(G'T) = — (h, Hﬁ(T))(O,T), i = W}

Since v.(T') is in the closure of span{H;(T),i € IN}, for all w € B(T) we
have (w — v4(T),v.(T)) 0,7y = 0. Thus Statement 4.1 implies that v.(T) is the
element of B(T) with minimal norm.

For a point v € Z(0,T) the equation (u,z;)o.7) = ¢ (j € IV) holds if and
only if Spu— b € B(T). Hence u.(T) = S7'(v+b) is the solution of Peo(T).
The uniqueness follows from the strict convexity of ||St - —bl|o,1y. O
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6. Continuity of the value function for the original prob-
lem

In this section, we demonstrate the continuity of the optimal valne function w.
First we prove that the solutions of Poo(T) for T' € [T, T] are wniformly
bounded. Then we use this fact to show that w is lower scmicontinnons.
We introduce a dual problem for Poo(T) and show that the corresponding
dual solutions are also uniformly bounded on [T, T] We use this fact to show

that w is upper semicontinuons.

LEMMA 6.1 (UNIFORM BOUNDEDNESS OF PRIMAL SOLUTIONS)

The solutions of Peo(T) are uniformly bounded on [L,T), that is there exists
r € IR, such that for all T € [T, T

lwe(T) 0,7y < 7

Proof. Let T € [T, T). Let v(T) and v,(T) be defined as in the proof of Lemma
5.2. Then due to Lemma 5.1 we have

o o
VAT) (_Z(c,- -, Hi('r))m)?)

2

]

i=1
2 1/2
< lefliz + (Z(b, H?-_(T))(EU‘T))
< ez + P|ol) .

©oT) =

The fact that v,(T') is a weak cluster point of the sequence (v (7)) vev hnplies
2 o2 o2 9
lve(T)Gory £ M v(T) < M R°.

According to Lemma 5.2, we have u.(T) = S7' (v, (T) +b). By Lemma 2.1, this
vields the inequality
lwe(Tllory < 187 (e (Tl 0,1y + 10l 0,7))

-1 i i
< IS (R + I o ) =+

and the assertion follows. O

LEMMA 6.2 (LOWER SEMICONTINUITY) The function w is lower semicontinu-
ous on [T, T.

Proof. Let T € [T, T] and a sequence (T))iew € [T, T)™ converging to T be
given. For k € IV, let 1y = 1. (7%). Due to Lemma 6.1 there is r € IR such that
for all k we have: |jug||,z) < 7.
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Define ﬁ;{.() = ‘U.k(' Tk/T) (= Z(U‘ T) Then

Il o7, = T/Te) el 0y < (T/Ti) V2.

Hence the sequence (@i )rev is bounded. Thus there exists a subsequence that
converges weakly to a point @, € Z(0,T). Assume without restriction that the
whole sequence (i )remv is weakly convergent. N
The definition of i; implies u;(-) = ;(-T/T};). Define w,(-) = @, (-T/T). Let
z = z(-T3/T). For all L € IN we have ¢; = (uj, z1)0.1y) = (Tj/T)('ﬁ-:j,gf)(o Ty
Let 2} (-) = 2(-T/T). Then
. ~h — ~ i o
Jim 15 ~ 21l 7, = 0-
Therefore for all [ € IN the following equation holds:
(s 2 o7y = ,1m{03,30) o 7

= &) oT) = i

lim (T/T;)e = (T/T)a.
Hence we get
(wa, 20,1y = (T/T) i, 27) o 75, = (T/T)(T/T) = .
Thus we havé w, € U(T,00,¢) and so w(T) < ||Srw. — b[F 1y — 7.

The function u — [[ullom), Z(0,T) — IR is sequentially weakly lower semi-
continuous (as the supremum of sequentially weakly continuous functions, see
Pedersen, 1988, Prop. 1.5.12). .

Let b(-) = b(-T/T). Let v; = Sp;u; — b € Z(0,T;) and 9;(-) = v;(-T;/T) €
Z(0,T). Let v, = Spw, — b and %,(-) = v,(-T/T) € Z(0,T). For f € Z(0,T),
let £;(-) = f(-T/T;) € 2(0,T;) and f(-) = f(-T/T) € 2Z(0,T). Then

(£,9) o 77, = (s (Smyws) (- T/T)) o 75, = (£ 0C T/ T)) o -

Our definitions imply the equation

S ST/ o, = s (S0 T/T)

(S1. f v oy (T/T5)

(S5, F)C T/, 8) o 7

Then, assumption (3) and the weak convergence of the sequence (1;);en imply
Jim (£, (S B/ o, = (SEACT/D) ) o,

(S'}f:"”*}(l),i") (T/T)

(f,Srws) o,y (T/T)

= {f, (Srw.)(- T/T))(G,T)'

Il
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Moreover, since ||b(-T;/T) — b(-)|| i T — 0 (j — o0) we have
Thus we can conclude that

i (£,5) o 7, = (s (Srws =0 T/T)) o 7 = (£52) 7

so the sequence (0;)jen converges weakly to 1.
So we obtain the statement
2
W)+ < edfon
= (T/Dv.||* =
(/DI 7

(T/T) iaminf 1512,

IA

= liminf(T;/T)|15;|? =
ion inf(T;/T) 51, 7,
o 9
= ljlfjjgof |l’”.f||(u,TJ-)
= liminf w(T}) + °,
J—00 E
which implies w(T") < liminfg_.o w(Tk), that is, w is lower sewicontimons in
T. 8
To show the upper semicontinuity of w, we use the cocfficients of v, (T')
written as a linear combination of the functions H;(T').

s .
These coefficients form a sequence in 7 and can be used to express the
optimal value w(T).

LEMMA 6.3 Let T € [T,T). Then there exist («vi(T))ienv € I? such that

(1) = chi T) and

w(T)+ 02 = Zaz — (b, Hi(T))(0,1))-
Moreover, for all i € IN the following equation is valid:

Z a;(T yHi(T))o,ry = ¢ — (b, Hi(T)) 0,7 (5)

Proof. Lemma 5.2 implies that the function v, (7") is contained in the closure
of span{H;(T),7 € IN}. Hence there exists a sequence (e;(7T))ien such that

0.(T) = Z a;(T)Hy(T)
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Lemma 2.2 implies that the sequence (a;(T))ieav is an element of /2.
Since v, (T') = Spu.(T) — b, we have

w(T)+p? = ||-u*(T)||§0 T)

= (Z @i(T)Hi(T), v«(T))(0.1)
i=1

= Z a; (T)(Hi(T),ve(T)} 0,1

i=1
= > ai(T)(ci — (b, Hi(T)) 0.1y,
i=1

where the last equality follows from equation (4), which also hnplies equation
(5). O

In the next Lemina, we introduce a wmaximization problemn with valne w(77)+
£%, i.e. a dual problem for P (T).

LEMMA 6.4 (DUAL PROBLEM) For all T € [T,T) the following equation holds:

w(T) + A% = sup — ZZO o (Hi(T), Hi(T)) (0,1

aEl? =1 j=1
+23 e (¢ = (0, Hi(T)om) -
=1
Proof. For T € [T, T}, a € I?, define

(T, o) Zzaza (Hi(T), H;(T)) (0.1

=1 =1

+23 oy (¢~ (0, Hi(T))o.m)) -
Let a(T) = (@i(T))iew be as in Lemma 6.3. Then, Lemma 6.3 iinplies

WMT,a(T)) = =D +2) " ai(T) (¢ — (b, Hi(T)) o))

J=1
= —(W(T)+ %) +2(w(T) + %)
w(T) + B2 (6)
This implies the inequality

w(T) + B2 < sup W(T, a).
agl?
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For o € I, v € Z(0,T) define ¢(T, v, «)
= [[vllfo.y + 2 s (e — (b Hi(T)) 0.1y — (v, Hi (T))0,m)) (7)
i=1

Lemma 5.1 implies that ¢(T, v, e) is well-defiued.
According to Lemma 5.2, we have

e (D) 0,7y = w(T) + 4

and thus equation (5) implies that for all o € I?
BT, 02(T),) = [0 (D)o 1y = (T) + .

For all a € 12, the map ¢(T, -, @) is coercive aud strictly convex, hence the set
Mpin(T) = {v € Z(0,T) : ¢(T,v,cx) = WEmf O(T, w, )}

is nonempty and consists of a single element.

Let @ € 2 be fixed and Mpin(T) = {w.}. Since the map ¢(7T,-,a) :
Z(0,T) — IR is Fréchet-differentiable, we can derive the equation

Wy = ZOJHJ(T)

i=1
Thus, the following equation holds:

(T, w,, )
=Y oo (Hi(T), Hi(T)) 0,1)

i=1 j=1

+2) " o;(T) (¢ — (b, Hy(T))0,1))

j=1

—22201051 ), H;(T))0,1)

i=1 j=1
= h(T, ).

Hence for all & € 12 we have

hT,a) = ueg(lg’T)qﬁ(T, v, @) (8)

O(T,ve(T), @)
w(T) + B>

[A

This implies

sup h(T, ) < w(T) + A2,
agl?

and the assertion follows. O
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LEMMA 6.5 (UNIQUENESS OF THE DUAL SOLUTIONS) For all T € [I,T], the
point (a;(T))iev € I as defined in Lemma 6.3 is uniquely determined and the
unique solution of the dual problem stated in Lemma 6.4.

Proof. Let o(T) = (i (T))iev be as in Lemma 6.3. Equation (6) implies that
(T solves the dual problem.

Lemma 2.2 implies that the function A(T,-) : 1> — IR is strictly concave,
hence the dual solution is unique.

Therefore a(T) is uniquely determined. O

Note that for all T € [T, T, the dual solution is an element of the space [2
that is independent of T'. This fact is very convenient for onr analysis.

LEMMA 6.6 (UNIFORM BOUNDEDNESS OF THE DUAL SOLUTIONS) LetT € [T, T)
and (a;(T))ienv be as in Lemma 6.5. There exists v € IR, such that for all
Te[LT)

o0

D (D) <

i=1

Proof. According to Lemma 2.2, for all T' € [T, T] we have

o] 1/2 oo
(Z aa‘(T)z) < MH Z i (T)Hi(T)|(0,1)
i=1

f=1
M v (T)ll 0,1
< MR

with R as defined in the proof of Lemma G.1. The assertion follows with r =
MR. O

LEMMA 6.7 Letu € Z(0,T). For T € [I,T), i € IN define
di(T) = (u, Hi(T))(0,1)-
Then for all T € [T,T), the following equation holds:
lim (di(t) — ds(T))? =
t—T e[l T] ,Z:

Proof. Duc to Lemma 5.1, for all t € [T,T], we have (d;(t))iew € 1. The
definition of d;(T") and H;(T) imply

di(T) = (u, (S5) " 2:) 0,1 = (S5, 2i) (0,1)-
Let Ty, Ty € [T, T), Ty < T». Then Lemma 2.1 implies
di(Te) — di(Th) = (S3}u, 2i)0.1) — (ST, U 21 0,1y)

= (SE:“-, Zi) (T 1)
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Analogously to Lemma 5.1 we can prove (by replacing H;(T) by z;) that for all
v € Z(Ty,Ts) we have

oo

Z(’Ua Zi)%frhn) < PZ""””(leT.:)-

i=1

This implies

Z(dw;(Tz) —di(T))? = Z(Sf;gl?-‘u zi)?T;,Tz)
i=1 i=1
< 152"’“-"?1", T
On account of
lim _ |lullgm =0,

t—Tte(L,T)
the assertion follows. O

LEMMA 6.8 (UPPER SEMICONTINUITY) The funeclion w is upper semicontin-

ous on [T, T).

Proof. Let T € [T, T) and a sequence (Tj)jen € [T, TV couverging to T be
given. Then for all v € Z(0,T), the following statement holds:

j"li_r‘nw lullo1y) = llulio,1)-

Moreover, Lemma 6.7 implies

o0

. 2
 Jim (0 Hy (T — (0 Hi(D)omy)” = 0 and
3=1
kll_‘n:wz ({u, Hi (Tk)) 0.1) — (s H; (D)) o,ry)” = 0.
=1

Let (17)jev € (1) be a weakly convergent sequence converging to the limit

1,

Then for ¢ as defined in (7) we have

khjto &(Tk, vlio,7s) v*) = kli_lffw ||”-[[?o;rk)
+2°3 " vE (¢ — (0, Hi(Tk)) 0,10) — (s Hi(Te))0,m))
i=1 5

= ¢(T,ulo,1, V"),
i.e. the map

(T,v) — ¢(T,ulor),v), [T, TI x P — R
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is sequentially weakly continuous. Statement (8) implies

h(T, U) = inf o ¢(T, 1"‘[(0,'}")! !J') :
uEZ(O,iﬁ)

Hence h is the infimmun of sequentially weakly continuons maps. Thus Propo-
sition 1.5.12 in Pedersen (1988) implies that h is sequentially weakly upper
semicontinuous, i.c.

limsup h(T};, ") < h(T,v*).

j—o0 '

For t € [T, T), let a(t) = (o(t))ien. According to Lemma 6.6 there exists

r € IR such that for all & we have

oo

Y (as(Ti)* <.

i=1
Hence there exists a subsequence (£;);ew of (T});env for which

lim sup h(1%, a(T3)) = klim h(ty, ate))

k—so0
and such that the sequence ((tx))renw € (I2)T converges weakly to a point
a* € [2. Then, due to Lemma 6.4 we have

limsupw(T;) + A% = limsup (T, a(T}))

k—s 00 k—so00

lim h(tg,a(ty))

k—oo
h(T,a")
w(T) + B2

IA A

Hence limsupy__, ., w(Tk) < w(T), i.c. w is upper semicontinuous ou [T,T)]. O
Now we state the main result of this section.

THEOREM 6.1 (CoNnTINUITY) The funclion w is continuous on the interval
[T,

Proof. Lemma 6.2 and Lemma 6.8 together yield the assertion. O
LEMMA 6.9 If T* > T, then w(T*) = 0.

Proof. Assumption (A0) implies T* < T.
By Lemma 5.2 the set U(T, /3, ¢) is nonempty if and only if

w(T) = [|S7us(T) = bl% 1y — B = [[0a(D)ll 0,1y — A < 0.
Hence the definition of 7™ implies

T* = inf{T € [I,T) : w(T) < 0}. (9)
Thus, if T* > T, the continuity of w implies w(7T*) = 0. O
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7. Continuity of the value function for the discretized
problem

LEMMA 7.1 For all N € IN, the function wy is continuous on the interval
[Z, T).

Proof. The assertion follows analogously to Theorem 6.1, by replacing the
infinite series by finite sums and the infinite systems of moment equations by
the corresponding finite systems. The dual solutions of problem Py (T) are
elements of IRN. O

8. Uniform convergence of the value functions for the dis-
cretized problems

In this section we present the result that is announced in the title of the present
paper, a theorem about uniform convergence of the optimal value functions for
the discretized problems. This theorem shows that if the discretization level is
large enough, the discretized problem yields an arbitrarily good approximation
for the optimal value function w, uniformly on the whole interval [T, T].

THEOREM 8.1 (UNIFORM CONVERGENCE) The sequence (wy)ne converges
uniformly and monotone to w on [T, T).

Proof. The definitions of Poo(T) and Py (T) imply that for all N € IN the
following inequality holds:

wy(T) £ wn41(T) < w(T).
Hence for all T € [T, T), the sequence (wy(T))new is convergent and

lim wy(T) < w(T).
N—o0

The proof of Lemma 5.2 implies that

Il

s 2 L 2
N!E’Iﬁloo wn(T) - p }1\1;-12132 llon (7)1l 0.1y

> o (T)"?O,T)
e M(T) = ﬁgl
where we have used the fact that the function || - [|o7) is sequentially weakly

lower semicontinuous. Hence for all T' € [T, T, we have
lim wn(T) =w(T).
N—o0

Thus the sequence of functions (wy)yep couverges pointwise to the function
w. By Lemma 7.1, for all N € IN the functions wy are continuous. By Theorem
6.1, the limit function w is also continuous. Hence Dini’s Theorem (see Pedersen,
1988) implies the uniform convergence. O,

In the last theorem, we summarize our results.
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THEOREM 8.2 For all N € IN, the optimal value functions wy of the discrefized
problems are continuous. The value function w of the original problem. is also
conlinuous.

The sequence (wn)nen converges uniformly and monotone to w on [T, T

REMARK 8.1 For N € IN, T € [T, T) define (N, T) = wn (T) aud let (oo, T)
w(T). Then Theorem 8.2 inplies that for all sequences (Np)pepn with Ny €
IN U {oo}, (Tk)rew where Ty € [T, T] with

lim (N, Ti) = (M, 5) € (IV U {oo}) x [T,
the statement

lim QN Ty) = Q(M, 9), (10)

holds, that is the function € is continuous on (IN U {oo}) x [L,T]. For M € IN,
(10) is equivalent to the continmity of wys. If Ny = oo for all k € IV, (10) is
equivalent to the continuity of w. Using the compactuess of [T, T], we can also
deduce from (10) the equation

lim max_|Q(Ng,T) — Q(co, T)| =0,

i.e. the uniform convergence of the sequence (wy)yew to w.

Hence except for the statement about monotone convergence, Theoremn 8.2
is equivalent to the statement that the function € is continnons on (IN U {oc}) x
[T, T). Note, however, that in the proof of Theorem 8.1 Dini’s Theorem can only
be applied due to the fact that for fixed T' € [T,T), the sequence of mumbers
(wn(T))newv is increasing. Moreover, in the proof of the contimmity of w, we
have used the fact that for fixed T € [T, T), Poo(T) is a convex probleni.

Continuity results of the type of Theorem 8.2 are well- known in different
settings, for example Theorem 5.5.1 from Rolewicz (1987). This theoremn basi-
cally states that with feasible sets thatf give a continnous set valued map of the
parameter, the corresponding optimal value function is contimous.

To show that the feasible set map is continnous, both lower and upper seini-
continuity of the set—valued map has to be shown. This approach requires at
least as much work as to show that the optimal value function is both npper
and lower semicontinuous, as we have doue.

The purpose of this paper is to examine the behaviour of optimal valne
functions that occur if the method of moments is used so that the moment
cquations appear as constraints. This problem is important since the method
of moments is suitable for a numerical treatiment of problems of time-optimal
control and in this approach the optimal valne fimctions that we consider ocenr
in a natural way.
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To compute T numerically, we consider the sequence (T5)ven defined as
follows. For N € IN, let

Ty =inf{T € [T,T): wn(T) < 0}.

Since wy < wy41 < w, for all N € IV we have Ty < TR, < T*. Hence
limy oo T < T,

Analogously to Lemma 6.9 we can prove the following: If T > T, then the
equation wy (Ty) = 0 holds. Hence if there exists No € IV such that T > T,
Theorem 8.1 yields

W(Nh_lf}mTN) = N“_l}'}mWN(TN) =0;
since limy oo Ty < T, by (9) this yields
This implies the following Lemma.

LeMMA 8.1 If T* > T the sequence (T%)vemn converges monotonically to T™*
and for N large enough, we have wy(Tx) = 0.

For the problem of time-minimal control of an Euler-Bernoulli beain, Lemma
8.1 has been stated in Krabs (1996).

9. Lipschitz and Holder conditions

In this section, we consider the standard minimum norm problem
Qoo(T) : min "'”'”(20,1“) s.t
(u, )0,y = ¢; (J € IN)

for T € [T, T] with optimal value o(T):

o(T) = min{"u]]?‘),ﬂ cu € Z(0,T), (u,2) 0,y = ¢ (j €N}

We give an assumption that ensures that the optimal value function satisfies a
certain Holder condition with exponent 1/2. We also present an assunption that
implies a certain Lipschitz condition. Our assunptions are regularity conditions
for the solutions of problem Qoo (T).

We need some additional notation. Let a sequence (Aj);ev of mumbers
greater than or equal to 1 be given. Assume that there is a munber s > 0 such
that

=% 1
2 55 <

Tt
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For a sequence (a;)jepv of real numbers and r € IR let

1/2

lelle = | Y lasP(A5)"
J=1

Define the space of sequences

12 = {(aj)jen : |lall» < oo}

For t € [I,T), define the linear operator A(t) : 1> — 7
Alt)a = (Z?L ;i {zi, z.f)(o,t)) .
Up to now we have studied the optimal value function. The following leinmma

contains a result about the sensitivity of the optimal solutions with respect to
the parameter 7.

LEMMA 9.1 Let ¢ € 2. Fort € [T,T), let n(t) = A(t)"'c. As before, assume
that Al and A2 hold. Then for all iy, t5 € [T,T], the following inequality is
valid:

ln(t) — n(t2) iz < M2P| Zﬂj(fl)zﬂhnl,tg)-

j=1
In particular, this implies
lim |n(t1) —n(t2)ll;z = 0.
ta—ty
Moreover, if the functions z; are continuous and

max |z(t)| <1, i€ IV, : (11)
tef0, 7]

and for some r > s the sequence ¢ is in A(t1)(12), then the following inequalities
hold:

&5 1/2
In(tx) = (k) < V/Fer = E2IM2Pln(to)li (Z ,\i) (12)
i=1 "1

o

oo 1/
lp(t1) — @(t2)| < VIt1 — ta| M2 P|lelliz|ln(ty) li2 (Z %) (13)

Inequality (13) shows that the optimel value function p setisfies o Hilder con-
dition with exponent 1/2.
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Proof. The definition of n(t) implies

A(ta2)(n(t1) —n(t2))
Alta)n(t) —c
(A(t2) — A(t1))n(t1)

- ((Z¢,Z”j(f1)zj)(tl,tz))

q=1

eV

Let u =322, n;(t1)z € L*[0, T). Then Lemma 5.1 implies

| ACt2)(n(t1) — W(t2))”§= = Z(Zisﬂ')r(ltl,tg) < 2 ”T":”ff.:,fg)'
i=]

Hence the following inequality holds:

In(t1) —n(t2)llie < M2||A(t2)(n(t1) — nt2)lliz < M2Pllul|y 10

and the first assertion follows. Due to (11) we have

ta
"u"?:hzz) = |/ 1.'.(.5‘)20’,.‘4
Jt;
< ZZ m(tl)(z""Z.T')(*-ls"-z)nj(tl)|
i=1 j=1
o0 oo
= (Zmi(*lﬂ) Y i)l | [t — ol
= (Zl"?ﬁ{tl”/\:ﬁ)\;rﬁ) [t = ta]
i=1

< Il (Z %) i~ tal
i=1 "

hence if n(t;) € 12, (12) follows. Now (13) is a consequence of the equation
@(t1) — @(ta) = T (n(t1) —n(t2)) and the Cauchy-Schwarz inequality. O

The proof of Lemma 9.1 only works for the standard minimum norm problem
Qoo(T) and not for problem P (T).

Note that the dual space of 12 is I2 .

LEMMA 9.2 Fort e [T,T), a € I2, let

oo

(D(t)a)i = Y z(t)z(t)ey.

i=1
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Assume that (11) holds. Let v > s. Then D(t) is a continuous linear map from
12 into 12, and for all o € I2

oo

D@z, < lledz (Z/\f") : (14)
i=1

Proof. Let 3 € I2. Then

| Z Zﬂ (1) z; (L) ey |

=1 j=1

oo oo
z Z |Bicv;|

i=1 j=

B (Z BIX2AT ’"’2) (Z a7 2«\;?/2)
i=1

187 D(t)a

.,

IA

< 16l (ZA:’) ol
i=1

where for the last line we have applied the Cauchy-Schwarz inequality twice.
Hence the inequality (14) follows. O

LEMMA 9.3 Assume that (A1) and (11) hold. Assume that the functions z; are
continuously differentiable with

max_|Z(t)] < Vi, i€ IN. (15)
te[0,T)

Letr >s+1. Forte [L,T), a €l?, let
Alt)a= (Z(Zi:zj)(n,t)“j) -
= €N

Then A(t) is a bounded linear operator from 12 into 12,.. A(t) is Fréchet-
differentiable with respect to t, and

(E(t)a)i = 3" z(t)z(t)a; = (D)),

i=1
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Proof. Due to (A1), for a € I we have
[A®)allz, < [[AMale < P2l < P2llali.

Let h # 0 be such that t + h € [T, T]. The Taylor-expausion implies the
existence of numbers &; € (0,7) such that '

1
IE (2is 23) (1,040) — 2i(1) 25 (1)

h , h
= % |Z:'(§:',1')Zj(‘fi,f) + 2(&i3)2i(&is)| < |2—|(\//\_z + VA
Let a € I2. Define a; = Y77 (VA +1/A;);. Then for all 5 € I, the following
inequality holds:

Zaiﬁ:‘ < ZZ 1Bil(V i + V)|
=1 i=1 j=1
< (Zw@l\//\?) (Zlfm)
i=1 i=1
+ (ZWH) (Z |‘fj|\/)\_.i) ;
i=1 =1

For q > s, we define a positive number C, by the equation

o 1/2
Cy= (Z :@) < 0. (16)
i=1 i

For v € 12, we have

Zh(il\//\—z = Z|’Y€|/\:/2)\51—-1‘)/2
i i=1
= 1
< Il Z)‘r—ul‘ = [7llizCr-1-
i=1 "1

Moreover,
o0
> il < IlzCo
i=1

Hence for all # € I? we have the inequality

i a;f;

i=1

< 1Bl llellz2C -1 C.
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Thus we conclude that
l(@i)illiz < 2[|ellizCraaCy.

Then we obtain the statement

” [w . D(ﬂ] allez,

- Z % (2i,2;) (t,t+h) = zi(t)z; (1)) ) ”1~r

7

< ( Z(\/_Jr\/_rr?) llez,
@iz,
< |b] lefizCraaC. (17)

So for h — 0 the assertion that A is Fréchet-differentiable in f follows. O
The following theorem contains a sufficient condition for a kind of Lipschitz
condition for (.

THEOREM 9.1 Let r > s+ 1. Assume that (A1), (11) and (15) hold. Let
t € [T,T) be such that c € A(t)(I12). Then there exists a constant L(t) > 0 such
that for all ty € (t,T), the following inequality is valid:

o) > ltz) 2 plt) — L(t) (b2~ 1).
Proof. Let ty € (t,T] and h = t5 —t > 0. Let u, be the solution of Qoo(t).

Define @(s) := u.(s), if s € [0,], @(s) := 0 if s € (¢,12]. Then for all 7 € IV we
have

(a, zi)(o,tg) = (U, ’-’i)(u,:) = G4,
hence
o(t2) < 185 04ny = lluallo .y = #(2)-
Moreover, due to Lemma (.4 we obtain the statement

t+h)—t 1 o
{'f’(-‘-—i{"i_). = 3 (aup— Z il zi, %) 0,.+,,)+QZ”?,?

2
o€l = F=1

+ Z ni () () (2 2i) 0,0) — 221’?1 t)e; )

1;,7=1
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1 [+ =]
> — Z 0:(£)m; (£) (23, 2} 2 ,04+h)
Cigi=1

At +h) — A(t)

= ()T y n(t)
= =t (HEE=E ey ey
—n(t)" D(t)n(t)

> —n(t)"D()n(t) - In(t)l|ECr-1Cx|hl,

where the last line follows from (17). B
Let L(t) = n(t)TD(t)n(t) + |In(t)|7% Cr=1Cr[T — T] > 0. Then

o(t+h) 2 o(t) — L(t) b,
and the assertion follows. O

REMARK 9.1 The fact that ¢ is decreasing is well-known, but the lower bound
for ¢(t2) in Theorem 9.1 appears to be new.

Conditions (11) and (15) hold for trigonometric moment problems of the
form

/T u(t) sin( \/)\—J) dt
0
/IT u(t) cos( \/)\_J) dt
Jo

that appear for example in the characterization of the set of feasible coutrols for
the exact control of hyperbolic partial differential equations (see, for example
Krabs, 1982).

Il

€2i—1,

Cai, i e IN
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The focus is on the application of soft com-
puting to a new emerging discipline called
financial engineering. Financial Engineering
can be seen as a field emerging out of an
attempt to address the issues of concern in
finance with tools and perspectives of engi-
neering, especially electrical and systems
engineering.
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