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1. Introduction

This paper is concerned with the relaxation by Young measures of Divielilet
boundary control problems for senilinear parabolic equations.  For problemns
with pointwise state coustraints, it is now well known that properuess of the
relaxation by Young measures is closely related to some stability property of the
original problem, with respect to perturbations of the state constraints (Arada,
Raymond, 1998, Casas, 1996, Roubicek, 1990, 1997, Dontchev, Mordukhovich,
1983). More preciscly, cousider the following abstract control problem

nf{J(y,7) | (y,7) € Y x Iaa. Gly.7) =0, g(y) € C}, (P) (1)

where Y is the space of state variables, I1,4 is the set of adinissible controls,
G is a nonlincar operator and G(y,7) = 0 stands for the state cquation, g
is a mapping from Y into a Banach space Z, and C is a nonempty set in 2.
Typically, for problems cousidered here ¥V = Cy(Q), where @ = Qx]0, 7], 2 is a
bounded domain in IRY. The relaxed problem corresponding to (P) is defined
by Young measures, and it may be written in the form

wf{J(y,r) | (y,7) €Y X Reg, G(y.7) =0, g(y) € C}, (RP)(2)
where Rqq is the set of relaxed controls. For & > 0, we also consider the problem

inf{J(y,m) | (y,7) € Y x Iy, Gy, 7) =0,
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In Arada, Raymond (1998), Casas (1996), it is proven that the relaxation is
proper (that is inf(P) = inf(RP)) if, and ouly if,

inf(P) = Jim inf(Ps).

This result is based on the contiimity of the mapping v — (y,.. .J(y,., 7)) from
(Rad, || - [lw) into ¥ x IR, where ||+ || is the norm associated with the weak-star
topology, Warga (1972) (y, is the relaxed trajectory correspouding to r, that,
is the solution of G(y,r) = 0). For Dirichilet control problems considered here,
the mapping r — ¥, is not coutinmous from (Raa, || - ||e) uto Y = Cy(Q),
but is continnous for topologics weaker than the one of Y. We exploit this
behavior in the following manner. Consider a family of seminorins (] - |/+)rso0
defined on Y. For cachi 7 > 0, we define the sanidistance to C: der 1 ¢ —
de () = inf.ec ||z — @||-. Suppose that the family (|| - ||7)r>0 satisfies the
following properties:

- The mapping 7 — 7, is continnous from (Rea, || - |le) iuto (Y]] ]+),
for all T > (0,
- 1}_{?0 de - (@) = de(¢) for all ¢ € Y.

We introduce a family of perturbed problems

inf{J(y,7) | (y,7) € Y xIloq, G(y,7) = 0,dc +(g(y)) < 6}. (Ps.+)(4)

In our case, ||-||- = || ||¢(gry, where QT is a subeylinder strictly contained into
the full cylinder @ = 2x]0, T (see the precise definition in Section 2.1). We
prove (in Theorem 7.2) that the relaxation of (P) is proper if, and ouly if, one
of the two following equivalent propertics are satisfied

f(P) = él{f{l} 11_1\1\:'[1] inf(Ps.7), inf(P) = 11\26 Alﬂa inf(Ps.7).

The idea of the proof is the following. We first prove the compactuess of the
sets of relaxed trajectories and admissible relaxed trajectories, for the topology
of C(Q7), for every 7 > 0 (Propositions 5.2 and 5.3). With this compactuess
property, we prove that the relaxed control problem (RP) adiits solutions
(Theorem 5.5) and satisfies some interesting stability couditions (Theorein 5.6
and Theorem 5.7).

Next, we prove that the set of classical trajectories is deuse in the set of
relaxed trajectories, for the topology of C(Q7), for every 7 > 0 (Proposition 6.1).
We establish that the set of adinissible relaxed trajectories for (RP) is included
in the closure in C(Q") of the sct of classical acdimissible trajectories for (Ps.,),
for every t > 0 (Proposition (.2). The councction of these compactuess and
denseness results pives the necessary and sufficient couditions for the properuess



ags . a_ ry
Stability analysis of relaxed Dirichlet boundary control problems 37

2. Setting of the control problem

Consider the semilinear parabolic equation:

% + Ay + @(,y,u)=0in Q, y=von X, y(0) =y in Q, (5)
where Q = Qx]0,T], Q is a bounded domain in BN, £ = Ix]0, 7], T is
the boundary of §2. The distributed control w belongs to Lo(Q). the hound-
ary control v belongs to L*=(X), the initial condition o is fixed and belougs
to L(Q), and A is a second order clliptic operator of the form Ay(a) =
- Zfﬂ:l Di(aij(z)D;y(x)) (where D; denotes the partial derivative with re-
spect to x;). Set the following state and coutrol coustraints

9(y) €C, (6)

€ Upg = {u € L=(Q) | ufx,t) € Ky (. 1) C U for almost all (o, 1) € Q},

vV E Vag = {v € LX) | v(s,t) € Ky (s.t) CV for alnost all (s,#) € L},
where g is a wapping from Cy(Q U Qp) into CH(Q U Qp), C C Cp(Q U Q) is a
closed convex subset with a nonempty iuterior in Cy(QU ), Ky (+) and KNy (-)
arc measurable multimappings with noncmpty and closed valnes in P(IR), U
and V' are compact subsets in IR. The paper is concerned with the following
control problemn

mf{J(y,u,v) | (y,1,v) belongs to Cy(Q U Qp) X Uy ¥ Vi,

and satisfies (5) and (6)}, (P) (7)

where the cost functional is defined by

J(y,uv) = [F(m‘t,?;(:;-r‘f.)"u.(m,.-‘.))darrh‘.—|— / G(s, t,v(s.t)) dsdt
Jg Js

4 /ﬂ Lz, y(x,T)) da.

The set Uy, of distributed relaxed controls cousists of weak-star measwrable
functions from @ into the space of Radon probability measures ou U (see the
precise definition in Section 3). The set V), of bonudary relaxed controls cousists
of weak-star measurable functions from ¥ iuto the space of Radon probability
measures on V. The relaxed state equation is given by

dy

ot
where ®(z, t,y,0™") = [, ®(z,t,y, \)do ™D (X), and Iy (1) = [, MdwlD(N).
The relaxed control problemn is defined in the following way

inf{J(y,0,0) | (y,0,w) € Cp(QU Qr) x Usy X Vyy, (9)

+ Ay + @(,y,0) =0in Q, y = Iy (w") on £, y(0) = yo in 2, (8)



38 N. ARADA and J.P. RAYMOND

where the relaxed cost functional is
J(y,0,w) =
[ F(z,t,y, 0™ dv dt + / G(s,t,w) ds dt + / L(z,y(T)) da,
Jo Jx )

=/ /F(:r:,t‘y(:r_.t),,\}da("’"}(f\)d:rdt+/ / G5t N de' S (X) ds dt
Jglu Je v

+ /n L(z,y(z,T)) dx.

2.1. Assumptions

Throughout, the sequel,  is a bounded open and connected subset in IRN (N >
2) of class C**7, for some 0 < 4 < 1. The coefficients a;; of the operator A
belong to C17(€2) and satisfy the condition:

N
G,J(Tt) = ﬁj,i(.'l.') for overy ?,J € {l,u.,_-’\"}, ‘.'Hu|£|.2 S Z (14 (.’]“){,‘{_?‘,
i,j=1

for every € € IRN and every = € Q, with mg > 0. The conormal derivative of y
with respect to A is denoted by a—?%.- that is

Jdy e
E)?A(-‘n‘, t) = %4 Qij (H)Djy(s, f.)n,-(,-q)’

where n = (ny, -+, ny) is the unit normal to I outward €. We set Qg = Qx {0},
Qp = Ox (T}, Qrr = OX|7,T|, U = {2 € Q| d(x,T) > 7} (d is the Enclidean
distance), Q" = Q. x|, T, for every 7 > (0. Denote by #uy (resp. wou) the
solution of (5) corresponding to (w, ) (resp. the solution of (8) correspondiug
to (o,w)), and let

Y= {yﬂu | (‘IL, ”) € Mad x Vad} and yr = {?,"rrw i (Jv u)} € M:gd X Vr:n‘}
be the sets of classical and relaxed trajectories. For 7 €]0,T[, & > 0 and
¢ € Cp(Q U Qp), set

de(¢) = ilelg 16 = zllcyQuar), der(9) = L [lé = zllcgr).

and denote by

yad(ﬁ) = {?hw l d‘(.'(g(yuu)) S 6'. ('“'7 T") e urr.d X va{f}\

yﬂd(6| T) — {yu.‘u | ”T(.'.'r (q(Tfrxv)) S 61 ('”'-s T") € Had X Vﬂd}e

the sets of admissible classical trajectories for (Ps) and for (Ps7). In the sane
manner. V.08 (resn. V706, 7)) stands for the set of admissible relaxed trajee-
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in place of Yoq(0) (resp. Y2,4(0)). As usually. we define the set of solutions for
(P) by

Arginf(P) = {{y,1,0) € Vaa X Uaa X Vaa | J(y,u,v) = il (P)}.
The notation Arginf(RRP) stands for the set of solntions for (RP).

Al - ® is a Carathéodory function from Q x IR? into IR. For almost cvery
(r,t) € Q and every u € IR, ®(x,t,-,u) is of class C'. The following estimates
Lold

|®(x, £,0,u)| < @1 (2, 1) + Calul, 0 < @, 1, y,u) < (B (1) + Ciluyn(ly]),

where ®; € L°°(Q), C; > 0, 5 is a nondecreasing fuuction from IR™ into R7.

A2 - F is a Carathéodory function from Q x IR? into IR. The following estimates
hold

|F(z,t,y,u)] < Fy(a, On(luln(ly)),
|F(m! ﬁ,y,‘h‘.) - F('T! t, 21”)' < Fl("‘": f)?l(l'”-|)??(|;U|)’ff(|z|)c(|;’! - z|)

where Fy € LY(Q), n is defined as in AL, and  is an increasing continons
function from IR™ into IR such that ¢(0) = 0.

A3 - G is a Carathéodory function from ¥ x IR into IR. The following estimate
holds

|G (s,t,0)| < Gyr(s,t)n(]v])
where
G, € L'(D).

A4 - L is a Carathéodory function from € x I into IR, The following estimate
holds

Lz, y)| < La(@)n(lyl),
where Ly € LY(Q), and 7 is as in A1.
A5 - The infimun of (P) is finite (that is, there exists at least one adnissible
triplet (y, u,v)).
3. Relaxed controls

Recall that U is a compact subset of IR. Lot M(U) be the space of Radon mea-
sures on U and LS(Q; M(U)) be the space of weak-star measurable himctions
Q from ¥ into M(U), satisfying

ess sun o™ < 0.
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where |o™!)| denotes the total variation of the mcasure o™, The space
L (Q; M(U)) is a Banach space for the norm ||a||g = esssupg, neq (in{"”l{{f))
and can be identified with the dual space of LYQ; C(I)) by associating with
cach 0 € L2(Q; M(U)) the continnons lincar form on LN(Q; C(U)) defined by:
a:¢— / o, 1,0 da dt = / / o, 1, Nda ™ (X) da: di,
Jo Jodu

The set of admissible distributed relaxed coutrols is defined by

U= {o € LE(QM* (V) | / do ™D () = 1,

supp o™ C Ky (a, t) ac. in @},

where supp o™ denotes the wpport of the measure a0 Observe that Uy
can be considered as a subset of U!,. Tndeed every v € Uyy can be identified
with the distributed relaxed control 6,,.y. where 6, denotes the Dirac measnre
concentrated at u. Since Ky @ Q@ — U i3 a measurable nndtimapping with
nonempty and compact values, U], is convex, compact and sequentially compact,
for the weak-star topology of L2(Q; M(U7)). Morcover, UL, is the closure of
Uga for this topology (sce Warga, 1972, aud Ball, 1989). Iu the same way, we
define the set of admissible boundary relaxed controls

Vi ={we LI(L; MT (V) | / dw'*D(A) = 1,

supp W € Ky (s,1) a.c. in $}.

The set VI, is convex, sequentially compact for the weak-star topology of
L (3, M(V)), and is the closnre of Vg for this topology. We also set

[lw|]s; = ess sup (|w[s’)|( ))

(s, 1)ET

4. Relaxed state equation

I this section, we recall some existence, nniqueness aud regulariiy results for
the relaxed state.

DEFINITION 4.1 A function y € LI(Q) is @ weak solution of (8) if. and only if,
O(-,y,0) € LI(Q) ard

/ (_()_z + Az)dr dt + / O, t,y, 0 zdadt =
Q ol Q

/ Yoz(0)dx — / Iy (“”)d(i dsdt,
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The proofs of Theorem 4.2 and Theorem 4.3 can be adapted from the ones given
for Theorem 3.9 and Theorem 3.10 in Arada, Raymond (1997A, B).

THEOREM 4.2 Ifo € L{(Q; M(U)) andw € L2(3; M(V)). then cquation (8)
admits a unique weak solution in L'(Q). This solution belongs to Ci(Q U Q)
and satisfies

l¥owlloo,@ < Clllall + [lwlls + 1),

where C = C(1',Q,N). Moreover, the mapping (o,w) — Ygu is continuous
from L (Q; M(U)) x LL(E; M(V)) (endowed with its strong topology) into
C[,(Q U er).

THEOREM 4.3 Let (o,w) be in L (Q; M(U))x L2 (E; M(V)) such that ||o]|o+
llwlls < M. For all 7 >0, the weak solution yo., of (8) corresponding to (o,w)
is Holder continuous on Q7 and satisfics

[Yowllovwrzgry < C(7),

where C(1) = C(T,Q,N, M, v, 7).

REMARK 4.4 If (o,w) belongs to UL, x VI ,. then ||o|lg = |lw||x = |. From
Theorem 4.2 and Theorem 4.3, it follows that the solution of (8). corresponding
to (o,w), satisfies

H'!/ow”oo,Q <G HyrwaC”-"/'-’(Q") < CQ(T)*

where Cy = C(T,Q,N) and Ca(7) = Ca3(1,Q, N, v, 7).

5. Compactness results
5.1. Compactness properties of the relaxed trajectories

In the following theorem, we state a continuity result which is fundamental for
the sequel.

#
ad:

THEOREM 5.1 The mapping (0,w) — Ygu is continuous from U., x

& en-

dowed with its weak-star topology, into C(Q7), for all T €]0,T.

Proof. Let (0,,w,), be a sequence of relaxed controls converging to (o,w) for
the weak-star topology of U7, x VI ,. Let y, and y,. be the solutions of (8),
corresponding to (o, w,) and (o,w). Due to Theorem 4.2 and Theorem 1.3, the
sequence (Y, )n is bounded in L®(Q) and in C**/2(Q7), for every 7 €]0,7[ and
for some v > 0. Since the imbedding from C"“’/Q(QT) into C(Q7) is compact.
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converges to y for the weak-star topology of L=(Q). and (y, ), converges to y
uniformly on @7, for every 7 > (. On the other hand, observe that y, satishies

[ 1;,1(--—- + Az) dadt + / S, by, 00z drdl =

[ Iy (wn) 5

for every z € C"Z(@) satisfying 2(T') = 0 aud zz = 0. From assmnptions on
® and due to Theorem 4.2, there exists € > 0 (independent of n) sneh that
1@, Y, 0n)2|loc.0 < C, for every n. Let z be in C?(Q) satisfyving z(7') = 0 and
zip = 0, and let € > 0. It follows that

dadr‘r / yoz(0)d,

, : : : s
’/(?}n(—g +Az)rff.':rlf+/ Oty 0,)zdrdt + / Ty (wy) _( dsddl
. Q d’ ) Q' JE }7

on 4
- / ygz((l)d:r:i
Ja
<| / @(a,1, Y, o) 2(x, 1) dadt| < CLVHQ\ Q') < Ce.
J\Q*

With the convergence of (0, w,)n to (7,w) for the weak-star topology of Uy %
T and the uniform convergence of (yn), to y ou QF, it follows that

l] (:-',-'(—5{)E + Az) dxdt + G(a,t,y,0)zdedt+
2" o Jo

'/E Iv(w) 0(:; dsdt — ‘/Q 'yg,:'([))d:]:ii < Ck.

By passing to the limit when € tends to zero, we finally obtain

/ ?;(—gi + Az) dxdt + / O, by, o) drdt =
Jo™ Ot Jq

- .
- | Iy{w)- dsdt + / yoz(0)da,
_/E (@) g st + [ 102(0)

for every z € CB(@) satisfying z(T') = 0 and 2y = 0. Therefore y is the solution
of (8) corresponding to (7,w). ]

The result stated below deseribes the dependence of the relaxed trajectories
with respect to the corresponding controls, and gives valnable inforiation abont,
the topological structure of the set of relaxed trajectories.

PROPOSITION 5.2 Y7 is sequentially compact for the usual topology of C(QT).
for all T €]0, 7.

Proof. Tet (). © V7 be a bounded sequence. It corresponds to a sequence
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there exists a subsequence, still indexed by n, and (o,w) € U, x Vi, such
that (@, wy ), weak-star converges to (7,w). Dne to Theorem 5.1, the sequence
(Yn)n converges to g uniformly in Q7, for every 7 €]0,77 . m

Now, we are interested in trajectories which are adinissible for the relaxed
control problem (RP). As shown below, the compactuess property for Y7, is
inherited from Y7.

PROPOSITION 5.3 Let 8 nfm in IRT. The set Y ,(8) is sequentially compact for
the usual topology of C(Q7), for all T in 0. T].

Proof. Suppose that § = 0 (the proof is the same for 6 > 0). Let (1,), be a
sequence in Y&y, Since Y7 is sequentially compact, for the topology of ((Q7) (for
all 7 €)0,T), there exists Yo € V" (associated with some (o,w) € UL, x VI,)
such that (y,), couverges to 4, uniformly in Q7, for all 7 > 0. Morcover,
since de(g(y,)) = 0, it follows that de - (gly,)) = 0, for all 7 > 0. By passing
to the limit when n tends to infinity, and then when 7 tends to zero, we obtain

de(Yow) = 0. Therefore yso, belongs to Y2, The proof is complete, [
5.2. Existence and stability

This section is devoted to the analysis of the relaxed control problen.

PROPOSITION 5.4 The mapping (0,w) — J(Ypw. 0.w) is sequeniially continu-

ous from UL, x VI, endowed with the weak-star topology, into IR (ysu is the

solution of (8) corresponding lo (o,w)).

S0 o1 : 3 . rOT I 2 v i - )
Proof. Let (0,,wn)n be a sequence in U, x Vi, converging to (o.w) for the

weak-star topology of U, x VI ,. Let g, and 5. be the solutions of (8), corre-
sponding to (o,,w, ) and (7,w). Notice that
J(”‘!I y T Wy ) ™ J(L"cwa a, W)

= / (F‘(nr, b Uil i),n‘(;""“'.') — F(x.t, ygulr. i},a(’”)}) da et
4 Q

+ / (G(.«,t,wf{q")) - G(s,f,w‘s"))) ds dil + / (L{;r: (1)) — L(.r,-_u[)"))) da
T Y]

+ / (F(:I.‘,Z,'_f},l(,’.".,f.),(}-'r[i-'ﬂ.r)) - F(:r.',f,;,:,,.*.(;r;!),rr,(,"""))) dadt.
Jo

From assmmptions on I and G, and since (0, wy ), converges to (o,w) for
the weak-star topology of U, x VI, we deduce that

el

lim [ Fla,tyou(n,1),0") dedl = / F(, b, Yo, 1),0'™0) da dt. (11)
n—eeJq JQ

 F- f('f..r (SN A e {/-.r. PR 54 & AN 1O 1 190
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On the other hand, due to Remark 4.4 aud Theorem 5.1, the sequence (i, ),
is bounded in @, and converges to 45, nniformly ou Q7, for all 7 > 0. From
assumptions on L, with Lebesgue’s theorem of dominated convergence applied
on §1,, we obtain

lim /n (L(m,y“(T))~L(.?.-,y(T))) dr = (). (13)

n—0c

Finally, observe that, with assmmption A2, we have

‘ [ (F{:r:,i,jf},,_(:r:‘f.)‘rrf;”}) F(a,t, ypula, t),ol™) )n’: n‘h

= } / / tym(x, 1), A) — F(:r,i’,_r,-,,._,.(nr,!)._z\}) da'™ () dr n’.:‘g
u |

< / max ‘F(:}:,{,y,,(nr, 1),A) = Fla,t, ygu(r, !).)\)|| da di

Jq AEU
< C/ Fy(z,t) nllyn (2, 1) 0(|yow (@, 1) CUyn = youl(a.1)) dudt
JQ

<€ [ (@) Clom - ool 1) drt,
Jq

where C = C([|yn|loo,@: [[Yow!|oo,0, U) is a positive constant independent of n.
Therefore, with Lebesgue's theorem of dominated convergence (applied on Q7),
it follows that

lim (F(:r,t,yﬂ(::r, £, ﬂff‘")) — F(r, b you (. !)_nfl'""'})) dadt = (). (14)

The conclusion follows from (11), (12), (13). and (14). ]

THEOREM 5.5 Let 6 be in IR*. The relazed problem (RPs) admits at least one
solution.

Proof. The proof is stated for § = 0. Similar argiments may be used for 8 > 0.
We can casily prove that inf(RP) € IR. Let (y,,0,,w,, ), be a minimizing se-
quence for (RP). From Pruposil'iun 5.3 aud from the sequential compactuess
(for the weak-star topology) of U, x V!, we deduce the existence of a subse-
quence, still indexed by n, aud fr,-',r;r w) € Vi xUL, x Vi such that, (1, 00, wn)n
converges to (y,o,w) i th(‘ C(QT)x weak*- UL, x weak*-V!, topology, for all
7 > 0. Due to the sequential continnity of .J (sce Proposition 5.4), it follows
that

lim J(yn, on,wn) = J(y,0,w) = iuf(RP).

In other words, (y, o,w) is an optimal solution for (RP). The proof is complete.
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THEOREM 5.6 The relaxed problem (RP) is weakly stable on the vight. that us:

EIQB inf(RPs) = inf(RP). (15)

Proof. Let 6 > 0, and let (ys, 0, ws) be a solution of (RRPs). It is clear that
inf(RPs) < inf(RP).

Without loss of generality, we can suppose that the sequence (ag, wg)s converges
to some (o,w) for the weak-star topology of U, x Vi, It follows that (ys)s
converges t0 Yo in C(Q7) for every 7 €)0.T[. Siuce de+(g(ys)) < 6 for all
T > 0, by passing to the limit for § and then for 7, we obtain

df.‘,'r (.‘?(yaw)) <0 and df.'(ﬂ(ycw)) < (.
Therefore (iyy.,, 0, w) is adnissible for (RP), aud

min(RP) < J(lpw, 0, w) = lli\g(n}miu(ﬁpé) < min(RP).

B
The following result shows that (RP) is closely related to the velaxed control
problem (RPgs.;).

THEOREM 5.7 If A1-A5 are fulfilled, then

]i‘&l}iuf(RP&T) = inf(RPs) for all 5 > 0, (16)
ln\]j).}{% inf(RPs.) = gliiill 1I'I\]\],:) inf(RPs.) = inf(RP). (17)

Proof. Let 4 be positive and 7 be iu J0, 7. By arguients similar to those nsed
for Theorem 5.5, we can prove that the problem (RPs ) adnits at least one
' 1 | :

solution (¥s -, s+, @s+). Morcover, it is obvions that
min(RPs ) < min(2Ps).

e The sequence (0s.+, wWs.7 )70 18 sequentially compact for the weak-star topology
of U, x VI',. Then there exist a subsequence, still indexed by 7 for shuplicity,
and (os,ws) in UL, x VI, such that (G5-, @5+ )70 converges to (as,ws) for the
weak-star topology of Uy, x Vi,. It follows that the sequence (g1 )r>o0 converges
O s = Yoy wy fOr the nsnal topology of C(QF), for all € €]0,T[. Let us observe
that for € > 7, we have de (9(7s.7)) < de+(g(is.+)) < 6. By passiug to the limit
on 7, and next on €, we obtain

de «(9(ys)) < 6 and fli\ué de (9(ys)) = delg(ys)) < 6.

Therefore (ys,05) is admissible for (RPs) aud

v T T Y. = Tlhavs v ¥ Visan TS = b1 Yoons ssinse I TETY N 2 S TATEY
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e It remains to prove (17). By passing to the linit in (16), when 6 tends to
zero, and taking (15) into account, we obtain

lim lim inf(RPs ) = lim inf (R Ps) = inf(11).
N0 TN 5.0
Let us prove the equality ling o limg o Inf(1Ps ) = inf(2FP). Using the same
arguments as for (16), we have
dC,E(g(?}é,T)) < dC,r(g(ﬂé.r)) < 6 for all € > 7.

Since (G4, @s.r)s=0 converges (np to a subsequence) to somne (o-,w-) for the
weak-star topology of UL, x V7, we deduce that the sequence (fs.-)s converges
to Yr = Yo,w, uniformly ou Q°, for all ¢ €]0, 7. 1t follows that

lim de 1 =de (a(y:)) < 0.
Yim de.e(9(7.7)) = de.e(g(yr)) <
Since (07, wr )7 converges (up to a subsequence) to some (o,w) € UL, x V. for

the weak-star topology of U}, x Vi, and since (y7 )r converges to 4, nniformly
on Qf, we obtain

lim de «(9(gr)) = de e(9(Yow)) <0,
0
and thus
lim d w)) < 0.
Him de,e(9(yow)) <
Therefore the pair (Ysw,0,w) is admissible for (RP) and finally
; < W 0vw) = lim Tn J(Gsn. Fsm @50) = litn L mins(R
min(RP) < J(Youw,0,w) TIQ:E.!“\'E I(¥o.7 057, @s,7) ‘_ll\lihg.lg;,mm(h!’a,f)
< min(RP).

The proof is complete. m

6. Denseness results

In the sequel we state the results on conncction hetween the set of classical
trajectories Y and the set of relaxed trajectories Y.

PROPOSITION 6.1 Y is dense in V" with respect to the usual topology of C(Q7).
for all 7 €]0, 7.

Proof. Let (o,w) be in U, x VI, and 1 be the corresponding solution of (8).
Since UL, x V74 is the closure of Uag X Vaa (for the weak-star topology), it follows
that there exists a sequence (u,, v, )y C Ug % Vaa converging to (o,w) for the
weak-star topology. From Theorem 5.1, the sequence (i, )y (corresponding, to
(tn, 1)) converges to gy, nuiformly in Q7, for every 7 €)0,T[. The proof is
complete. ]

The next result links together the admissible relaxed trajectories and the
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PROPOSITION 6.2 Let € be in IRT and 7 be in |0, T|. Then,

Yiale,7) C Clc(Qt)de(ﬁ +€,7) forall 6 >0, and all 1 €]0,7T,

where CIC(Qt) denotes the closure for the usual topology of C(Q").

Proof. Obsecrve that Y,q(e,7) € VI (e,7) C Y". Let y € Yo (e.7). Dne to
Proposition 6.1, there exists (1, 1) € Una X Vaa such that (g, ), (1he solntion
of (5) corresponding to (u,, v, )) converges to y nmiformly in Q' for all 1 €)0, 7.
On the other hand. since lin, de - (g(yn)) = de ~(g(y)) < e. it follows that, for
every 6 > 0, there exists ng > 0 such that if n > ng, then we have

dC.T(g('.")'n)) < O+ €.
In other words, for n bigger than ng, we have
Yn € Yaa(0 + €, 7).

By the uniform convergence of (1, )y to ¥ in Q'. we deduce that
ll}:ln UYn =1 € cIC{Qt)yad(é +6,7),

and thus Y} (e, 7) C ch(Qt)yad(ﬁ +¢,7). The proof is complete. ]

7. Properness of the relaxation

Using stability results stated in Casas (1996), we have proved in Arada, Ray-
mond (1998), that the relaxation of coutrol problems (PY) with Robin boundary
condition gives some information ou the limit behiavior of the pertirbed problem

(P):

inf(RPV) = A%iuru{;“’).

A necessary condition to get such a result is that Y be dense in Y7 for the nsual
topology of L*(Q). A nceessary and sufficient condition to get properness of
the relaxation (i.c. to enswre that inf(PY) = inf(RPY)) is that the original
problem be weakly stable on the right, that is, inf(PY) = lims o inf{.-"{;\’}.

For problems with Diriclilet boundary conditions, this resnlt is not true.
However, other propertics enable us to give necessary and sulficient conditions
for properness of the relaxation,

LEMMA 7.1 For every 7 €]0,T] and every & > 0. we have
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Proof. We have to prove that inf(Ps.) < inf(RP). If (7.6.&) is a solntion of
(RP), then for every 7 €]0, T, 7 belongs to Yeq(0, 7). Due to Proposition 6.2, g
belongs to clegeyVaa(6, 7), for all 6 > 0 aud all £ €]0, T[. Iu other words, there
exists a sequence (Yn)n € Yaald 7) (yn 1s the solution of (5) corresponding to

some (Un, Un) € Uaa X Vaa), converging to g for the usual topology of C(Q"), for
all t €]0,T[. Hence,

inf(Ps) < J(yn,tn, vn) for n big enougls,
and thus

inf(Ps ) < Ii}ln.;'(y,,,n“.w,,_) = min(RP).
The proof is complete. ]
THEOREM 7.2 Consider the following statements:

(1) inf(RP) = inf(P),

(2)nf(P) = Jim i inf (P,

(8)inf(P) = lim Jimy inf(P.),

(4)(Arginf(RP)) N (Vaa X Ugad X Vea) = Arginf(P).

The statements (1), (2) and (3) are equivalent. If problem (P) admils a solution,
then (1), (2), (3) and (4) are equivalent.

Proof. By taking (17) iuto acconnt, aud by passing to the limit in (18), when
T tends to zero and then when 6 tends to zero, we obtain

inf(RP) = lim lim inf(RPs ) < lim lin inf(Ps ) < inf(RP).
550 70 550 N0

In the same way, by passing to the liwit in (18), when 6 tends to zero and then
when 7 tends to zero, we obtain

inf(RP) = Tl_l\l:{l)f}l\l\lé' inf(tPs,) < il{é J!1\1}{1} inf(Ps-) < inl(RP).

Therefore,
inf(RP) = lim lim inf(Py,) = lim lin inf(Ps ).
ENOTN0 N0 70

and the equivalence between (1), (2), and (3) is direct. Let us prove the equiv-
alence between (1) and (4). Suppose that (1) is satisficd. First, observe that
Arginf(P) C (Arginf(RP)) N (Vad X Uag X Vaa) (in other words, a solntion for
(P) is also a solution for (RP)). Let (§7,1,0) € (Avgiuf(RP))N Vaa X Una X Vaa),
then J(y,%,7) = min(RP) = f(P) and (. 4,9) is admissible for (P). Thas
(4) is established,

Conversely, if (P) adinits a solution and if Arginf(P) = (Arginf(RP)) N
(Vad X Uaq % Vaa), then it is clear that inf(P) = win(P). The proof is complete.
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8. Strong stability conditions

We say that (P) is strongly stable on the right, if .
e There exist & > 0 and 7 > 0 such that for every 6 € [0, 6]. we have

inf(P) — inf(FPs) < 74.

The condition of strong stability on the right has been introdneed by Bonnans
(1991) to obtain necessary optimality conditions in qualified forin for some con-
trol problemns (sce also Burke, 1991, and Bonuans, Casas, 1995). In Arada,
Raymond (1998), for control problems with Robin houndary conditions, we
have proven that the strong stability condition on the right for the classical
problem is equivalent to the strong stability condition on the right for the re-
laxed problem paired with the properuess property.  More precisely, for the
problems considered in Arada, Rayimond (1998), Bounans, Casas (1995), Casas
(1996), the following assertions are equivalent:

e (P) is strongly stable on the right.

e (IRP) is strougly stable ou the right and inf(RP) = inf(P).
For the problemn we cousider here, we have the following result:

PrOPOSITION 8.1 The following statements are equivalent
(C1) (RP) is strongly stable on the right and inf(RP) = nf(P).
(C2) There exist 6 >} and 7 > 0 such that

inf(P) — li&l} inf(Ps.) <76 for every & € [0,4)].

Proof. (C1) implies (C2). From (C1) we obtain the existence of & > 0 and
7 > () such that:

min(RP) — min(RPs) < 76 for every 6 € [0,4].
Due to Theorem 5.7, with the previons inequality we obtain

min(RP) — Ii{bmiu(f?[’g,,) < 76 for every 6 € [0,4].

On the other hand, due to Lemma 7.1 and dne to (C1), we have

- < Tim inf(Ps.0) < i ] - every 8 > 0.
11_1{10 inf(RPsr) < ll\l:bmf(Pg‘ ) < inf(RP) = iuf(P) for every & >0

Thercfore, we can write
inf(P) - 711{::') inf(Ps+)
= (inf(P) — ln\lbnnu(ﬁ.f’a‘f}) + (TIQE:Jnnn{h Ps+)— rh\]\lél inf(FPs-))

- DN 1 i YT A\ CENL TS S S 1. O ]
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(C2) implies (C1). Conversely, if (C2) is satisfied, then

0 < inf(P) — Ih\z(l] inf(Ps ) < 76 for every 6 € [0, 5].

Therefore,
0 < inf(P) = lim lim inf(Ps ) < 0.
50 7\0
Since limg\ o limr\0inf(Ps-) = min(RP), we have inf(P) = wmin(RP). For

b€ [U,S[, consider the sequence (8,), defined by 6, = 6 + —‘5,'7‘5 € [0,4]. Since
6, > 6, the same argunents as in Lennma 7.1 give:

y < lim i ,
ln\‘ra inf(Ps, ») < Tll{l}) inf(RPs )

Since (C2) is satisfied, we have

. i < 7.
inf(P) 11\15 inf(Ps, ) £ 7oy,

Then,
i — lim i < 76y,
inf(P) 111\1(1} inf(RPs ) < 76,

By passing to the limit when n tends to infinity, we obtain:
inf(RP) — inf(RPs)
= inf(RP) — lim inf(RPs,) = inf(P) — liu inf(RPs,) < 7.
™0 ™0

The proof is complete. B
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