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Abstract: In this paper, we first show that the transfer fhne-
tion from the frout steering angle to vaw rate is strictly positive real,
irrespective of the uncertain mass and uncertain velocity. We then
show how to determine the positivity margin for this transfer fune-
fion. Some stabilization results are obtained. Finally, we show how
to check the positivity of a controller family.
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1. Introduction

Robust Vehicle Control has attracted mnch attention in control conmmuity over
the past few years. Achieving safe and commfortable travel by robnst control is
one of the most challenging problems in control and systens researcl, Recently,
great progress has been made in this field, c.g., practical driving tests Lave
shown essential safety advantages for a robust steering control law which is
based on feedback of yaw rate into active front wheel steering. By the control
law, robust unilateral decoupling of the lateral and vaw motions of the car is
achieved. Interested readers can find more comprehensive development in the
recent Bode Lecture presented at IEEE Confercuce on Decision and Control
(Kobe, Japan, December, 1996).

The aim of this paper is to establish some positivity results for driver sup-
port. systems, and use these results to solve some stabilization problems. The
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motivation of this research stems mainly from the munerous sinmlation results
performed at German Acrospace Research Establislnuent (DLR). The difficulty
in this theoretic study is that very complicated nonlincar nncertainty strne-
ture is involved, i.c., the nncertain paramcters enter iuto systeny equation in
a nonlincar fashion. Thus, most mathematically appealing robust stability
criteria, e.g., Kharitonov’s Theoremn, Edge Theorem. Convex Direction Crite-
rion, Tsypkin-Polyak Criterion, Garlofl-Waguer Theorem ete., see Ackerimann
(1993), Kharitonov (1978), Bartlett, Hollot and Hunang (1988), Tsypkin and
Polyak (1991), Garloff and Wagner (1996), simply do not apply. Griddiug or
overbounding is not desirable, and can lead to erroncons or very conscrvative
conclusions, Ackermann (1993).

Iu this paper, we first show that the transfer function from the front steering
angle to yaw rate is strictly positive real, irrespective of the nucertain mass and
uncertain velocity. We then show how to determine the positivity wargin for
this transfer function. Some stabilization results are obtained. Finally, we show
how to check the positivity of a conutroller famnily.

2. Strict positive realness

Cousider the driver support system, Ackermann (1993): the transfer muction
from the front steering angle é; to yaw rate r is

¥ (s + &)
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where the physical parameters are

¢pt cornering stiffuess for rear wheels

cps cornering stiffness for front wheels

I+ the distance fromn the center of gravity to the rear axle
lg: the distance from the center of gravity to the front axle
e virtual mass, unknown but fixed, i € [T
v: velocity, unknown but fixed, v € [p~v™]

l: =l + I, wheelbasc

J: = i%m, moment of inertia

i: inertial radius

=

DEFINITION 2.1 A proper transfer function % is said to be strictly positive
real (SPR), if

1) q(s) is Hurwitz stable

(2)
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For the city bus O 305, it was shown by Ackermann (1993) that the transfer
function from the front steering angle &7 to yaw rate r
c cpl
(s + &)
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(3)

is strictly positive real, irrespective of the wncertain virtual mass  and uneer-
tain velocity v. In what follows, we will show that this property is shared by all
vehicles.

LEMMA 2.1 The transfer function

a1s + ap
2 T (4)
$2 4+ bys+ by
with positive coefficients is strictly positive real, if and only if
23] bl 2 [15)] (5)

Proof: Obviously, 52 + by s + be is Hiurwitz stable. Morcover

a1 (Jw) + ag _aghy + (ayhy — ag)w?
(jw)? + bi(jw) + b2~ (b2 — w?)? + (hyw)?

(6)
Since

(b —w?)? + (hw)® >0, YweR (7)
and all cocfficients ag, ay, by, bs arc positive, the result obviously follows. O

THEOREM 2.1 The transfer function from the front steeving angle 65 to yaw
rate v

% 1y + 5
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(8)

is robustly strictly positive real.

Proof: By Lemnma 2.1, it suffices to show that

cel ¢+ f‘rz?: + (-'_f-r'! cronl

Sl Lyt L) > (9)
J L, Ju Jie

Since J = i2m = lLlpin, we only need to show that
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3. Robust exponential stabilization

LEMMA 3.1 (Ackermann, 1993) Under the unity negative feedback, the closed-
loop system with a strictly positive real controller and a strictly positive real
plant is Hurwitz stable,

DEFINITION 3.1 Given o > 0, a polynomial p(s) is said to be o-stable, if p(s —
a) is Hurwitz stable. A proper transfer function G(s) is said to be «-SPR, if
G(s — a) is SPR (strictly positive real).

THEOREM 3.1 Under the unity negative feedback, the closed-loop system with
an «-SPR controller and an «-SPR plant is v-stable.

Proof: Since the coutroller C'(s) and the plant P(s) are a-SPR, by definition,
C(s — a) and P(s — a) are strictly positive real. Hence, by Lennua 3.1, under
the unity negative feedback, the closed-loop system with controller C'(s — o)
and plant P(s — «) is Hurwitz stable. Henceforee, the closed-loop system with
controller C'(s) and plant P(s) is a-stable.

Next, we will discuss the following problens: Given a SPR plant., how can
we determine the largest « such that the plant is o-SPR?

Consider the SPR transfer function

G(s) 7 et i) (1)
8) =
oy (e o S (B + )

For city bus O 305, we have the following data

o Iy =3.67

e [, =193

e ¢; = 198000

e ¢, = 470000

e i2=10.85

o v =20

e 1= 32000

Now, consider the shifted transfer function

<% (Iy(s — ) + &)
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For G(s — ) to be SPR, all coefficients of G(s— ) must be positive. This leads
to the following inequalities

|
R (14)
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With the given data for the city bus O 305, the above inequalitios lead to

—20a>10 (1

by )
—

o < 1.1206 (17)
o < 0.8400 (18)
0 — 1680 4+ 1.1764 > 0 = o < 0 (19)

Morcover, by Lennna 2.1, we mst, also Lhave

5. : f';~£;‘?+f’ 12 ) ?
I ("f'f+ : ”—2“) e S el (20)
mau Jn nu :
This leads to
a < 0.5594 (21)

Therefore, whenever o < 0.5594, the trausfer function G(s — o) is always SPR.
Namely, G(s) is a-SPR.
Note that the largest o was determined muder the assumption of maximal ve-
locity and maximal virtnal mmass. In other cases, siguificant improvement. ean
be achieved. For exawple, if

e v=10

e 11 = 16000
then the largest o is 2.2373; if

e =1

e 1t = 32000
then the largest o is 11.1868.

Cousider the lead-lag controller

o ke
Cls)=K P

(22)

with K > 0.k, > 0, kg > 0. It is casy to verify that C(s) is strictly positive real,
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COROLLARY 3.1 For any lead-lag controller, the closed-loop systenn with the
plant transfer function G(s) is robustly stable.

From the above discussion, we see that the transfer fnuction G(s) from the
front steering angle 6 to yaw rate » is not ouly SPR, but also a-SPR. for some
@ € [0, maz] - Suppose by, > a, kg > o Then, it is casy to sce that ((s) is also
a-SPR. Hence, by Theorem 3.1, we have

COROLLARY 3.2 For any lead-lag controller

5+ kn

C(s)= Ks The

(23)

with K > 0,k, > a,kg > «, the closed-loop system with the plant transfer
function G(s) is robustly a-stable.

In what follows, we will discuss the following problem, see Wang (1994):
Given a family of controllers, how can we check whether every coutroller is
a-SPR?

Consider the controller of the following forin

1 N oo G IR o
C(b) oh AmS " + Op—_18 + + 15+ ag {24}
bps™ +by_qs™14.0onn + bys + g
with 0 < a7 < a; < a,i = 0,1,---- ymeand 0 < b7 < by < h;'; =
U’ 1, ...... ,N.
For notational simplicity, denote
T={C(s) | a; € [a7,a]],b; € (b7, 07 ]} (25)
O = {C(s) | as € (a7 ,af 1y € {0505 }) (26)

THEOREM 3.2 Ewvery controller in I' is a-SPR if and ouly if every controller in
I'* is a-SPR.

Proof: Necessity: Obvious.
Sufficiency: Since for every controller C'(s) in I'*, we have
RC(jw — ) > 0,Vw € R (27)
For any a; € [a] ,af],b; € (7,07}, C(jw — a) can be expressed as the convex
combination of {C(jw — o) | C(s) € I'}. Thus, we Lave
RC(jw—a) >0,Yw e R (28)

Moreover, for any a; € [a],a]],b; € [.’J;,b;r], since
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similar arguments lead to the same conclusion. Henee, for every controller C(s)
in I, we have

RC(jw—0) > 0,Vw € R (30

This also shows that the set of denominators of I evaluated along jw — o always
exclndes zero. By zero exclnsion principle. we know that every denominator of
I' is a-stable. Hence, every controller C'(s) in I' is a-SPR. This completes the
proof.

From the above results, we have the following conclusion: Given an a-SPR
plant and a family ' of coutrollers, suppose all the corner controllers in T are
a-SPR. Then, every controller in I' a-stabilizes the plaut. Namely, the resnlt-
ing closed-loop system is a-stable. In other words, the closed-loop svstewr not,
only is stable, but also meets some performance specifications, see Wang and

Ackermann (1997).

4. Conclusions

We have shown that the transfer function from the front steering angle to vaw
rate is strictly positive real, irrespective of the nneertain mass and nneertain
velocity, We have also shown how to deterine the positivity margin for this
transfer function. Some stabilization results have been obtained. Finally, we
have shown how to check the positivity of a controller fanily.
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