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Abstract: Iu this paper we study some properties of infinite
models of the controlled evolution of drmg resistance. We combine
asynmiptotic techniques used in previons stndies of shmnilar models
with methods of control theory and of seinigronp theory. It enables
us to find conditions for stability of the model both when the sen-
sitive population is aunihilated and when there exists a permanent
influx from the sensitive compartinent into the drug resistant one.
The conditions are expressed in terms of relationships hetween am-
plification and deamplification ratios as well as average life times of
cells and intensity of anticancer drng action.

Keywords: stability, infinite dimensional systems, biomedical
models, branching processes

1. Introduction
1.1. Biological background

The amount of DNA per cell remains coustaut from one generation to another
because during cach cell cvele the entire content of DNA is duplicated and then
at cach mitotic cell division the DNA is evenly apportioned to two danghter
cells. However, recent experimental evidence shows that for a fraction of DNA,
its amount per cell and its strncture undergo contimous change. Oue way in
which the genome of cancer cells may rapidly evolve is by inereasing the copy
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can be enhanced by conditions that interfere with DNA syuthesis and is in-
creased in some mutant and tumor cells. Inercased munber of gene copies may
produce an inereased amonnt of gene prodnets and, in timor cells, confer resis-
tance to chemotherapentic drmgs. Amplification of oncogenes has been observed
in many human twnor cells and also may coufer a growth advantage on cells
which overprodnce the oncogene products (for au overview sce survevs by Stark,
1993, and Windle and Wahl, 1992). In the classical experiments of Schimke
and his coworkers, Brown, Beverly, Schimke (1981), Kanfinan, Brown, Schimke
(1981), the auticancer drugs served to select cells with amplified genes. T some
of cell lines, when the selective agent was removed, the cells with amplified genes
gradually disappeared from the population. The stochastic mechanism leading
to this reversal is diseussed in more detail further in this section. It was ob-
served that in such cases the amplified geues were located on extrachromosomal
fragments of DNA called Double Minute Chromosomes (DM’s). Tu other cases,
the amplification was stable, i.c. persisted after the selective agent had heen
removed. In such cases, the amplified genes usnally are located on clongated
clhiromosome arms. The most regular of these clongated arms exhibit a regular
band structure (the so called Homogeneously Staining Regions or [HSR's), but
other less regular structures are also observed. They are either cansed by rein-
tegration of extrachromosomal genes as proposed by Windle and Wahl (1992),
or they arise by a separate mechanisi as proposed by Stark (1993). Mathemat-
ical models show that depending on circmstances cach of the two variants of
stable amplification is plansible, Axelrod, Baggerly, Kimmnel (1993), (see also a
critique by Harnevo, Agur, 1992).

1.2. Probabilistic modeling of unstable and stable gene amplification
1.2.1. Unstable gene amplification

Summary of observations. In somce populations of cells with donble minnte
chromosomes, both the increased dimg resistance and the increase in munber of
gene copies are reversible. The classical experiment, Browu, Beverly, Schimke
(1981), Kaufman, Brown, Schimke (1981), condirming this, inchides trausfering
the resistant cell line into drug-free medimn, where cells gradually lose resistance
to the drug by losing extra gene copies. In these experiments, the dilivdrofolate
reductase (DHEFR) gene was amplified after exposing murine 3T6 cells or monse
sarcoma S-180 cells to methotrexate (MTX). The population distribution of
munbers of gene copies per cell can be estimated by flow eytometry after staining
gene products. Tn the experiments mentioned, two features of these distributions
arc notable. (1) As expected, the proportious of resistant cells (with amplified
genes) decrease with time. (2) Less obvious, the shape of the distribution of
the munber of gene copies limited to the resistant cell subpopulation seeins to
remain stable during the loss of resistance.
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tance should take into account (1) stochastic changes in muuber of gene copies
from one generation to another and (2) the stochastic variability iu cell lifetimes.
One stochastic process which accomodates hoth (1) and (2) is a random walk
superimposed on the time-continunous branching process of cell proliferation, ie.
a branching random walk. We consider a population of abstract particles of
types 7 =0,1,2,...:

1. At the moment of death, a particle of type j > 1 produces two progeny
particles each belonging to type j + 1 with probability b. to tvpe j — 1
with probability d, and to type j with probability 1 — 0 —d. A particle of
type j = 0 produces two progeny of type 0.

2. The process is initiated at time ¢ = 0 by a single particle of given type a.
The simplest models of gene amplification in Kimmel, Axelrod (1990) asswune
the above process. Cells with 2771 gene copies are said to belong to type j
(with 0 gene copies, to type 0). The parameters b and d are the probabilitics
of gene amplification and dearnplification, respectively. The mowent of death
mentioned in point 1. represents in this case the moment of cell division. Oue
of the properties of Markov processes with absorbing states is the possibility
of existence of the quasi-stationary distributions. In intuitive terms, the unab-
sorbed part of the probability mass of the process, while constautly shriuking,
approaches a limit if it is properly normed. The Yaglom theoremn for suberit-
ical branching processes, Athreya, Ney (1972), can be quoted as an example.
It is this property that explains the apparent stability of distributions of gene
copy number per cell in the resistant subpopulation, placed iu the nou-selective
mediwm.

Model versus data. The munerical values of the probabilities of geue ampli-
fication and deamplification can be estimated based on data in Browu, Beverly,
Schimke (1981), Kaufinan, Brown, Schimke (1981). The probabilities of deai-
plification (d) arc of the order of 0.10 in both cases, while the probabilities
of amplification (b) are about 5 times lower. The process is strougly suberiti-
cal. This means, in particular; that in the absence of selection, the amplified
phenotype disappears from the population. It can be revived by rave primary
events, such as amplification of extrachromosomal genes following a deletion of
the target gene from the chromosome arm (see further on).

The classical explanation for the loss of resistance in cells with amplified
DNA in extrachromosomal clements is that in the absence of sclective pressure
cells with extra gene copies grow slower and are outgrown by the sensitive cells.
Our model assumnes a purely stochastic mechanisin.

1.2.2. Stable amplification

Summary of observations. In the experiimental system of Windle, Wahl
(1993), the amplification of the DHFR. gene was observed in a Chinese Hamster
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challenged by MTX. Amplified genes residing on extrachromosomal elements
were observed in cell eultures 8-9 gencratious later, while predominantly chro-
mosomally amplified genes were seen after abont 30 gencerations (only these two
time points were investigated). This can be interpreted as an indication that
some extrachromosomal elements containing amplificd gene copy mmmbers are
eventually reintegrated into chiromosomnes.

Mathematical model and its predictions. In the model devised to repro-
duce these observations, Kimmel, Axelrod, Wall (1992), the basic indivisible
unit which serves as the template for the production of additional geue copies
is the amplicon, which contains at least one copy of the target gene. The size
of such structures could range from subimicroscopic to an entire arn of a chiro-
mosonie and they may be circular or lincar. The acentric (replicating) element
(ARE) is understood to be an extrachromosomal molecular structure containing
one or more amplicons but no centromere. A centromere is required for regular
segregation to daughter cells. The reintegrated element (RE) is the ARE after it
has reintegrated into a chromosome. The following processes are considered in
the model: (a) change in the wunber of AREs per cell, (b) change in the mun-
ber of amplicons per ARE, and (¢) reintegration of AREs into cliromosomes.
Types of elements: AREs containing 7 = 1,2, ... amplicons, and REs containing
i=1,2,... amplicons. In cach cell generation, with probability a, the ARE con-
taining 7 amplicons replicates to yvield a prodnct with 27 amplicon copies. The
catenated replication product then dissociates producing two acentric iolecnles.
This process results in a pair of moleenles containing, respectively, j and 22— 3
amplicons, where 7 = 1,...,2i — 1. It is assmmed that the probability of cach
pair (j,2i — j) is the same, equal to 1/{22 — 1). The molecnles segregate so
that they both go to the same danghter cell with probability 6, and go to dif-
ferent daughter cells with probability 1 — 6. With probability b the ARE with 7
amplicon copies replicates to yield a product with 27 amplicon copies, but this
replication product does not dissociate. It then goes with equal probability to
one of the two daughters. With probability ¢ = 1 — (@ + ), per cell generation,
the ARE containing 7 copies of the amplicow, integrates into a chromosome with
a centromere and then replicates and segregates with the chromosome. This re-
sults in cach daughter cell containing au equal munber of RE copies. Thus ¢ is
the probability of reintegration.

Resistance to antineoplastic drmgs has been a major impediment to the sne-
cessful treatiment of cancer. Recent studies suggest that several mechianisis are
responsible for the emergence of drug resistance and that high levels of resistance
and poor prognosis are strongly associated with gene or oncogene amplilication.

In our previous papers, Swierniak, Kinmnnel, Polaiiski (1996), and Kimmnel,
Swierniak, Polaiiski (1998), we have analyzed the time-coutimmons brauching
random walk models of gene amplification. The evolution of the dmyg resistance
of tumor cells is modeled, as in Kinnnel, Stivers (1994), using infinite systemn of
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tant subpopulation of tunor cells in the case when the sensitive population is
anihilated and the process has been initialized by the nonzero resistant subpop-
ulation of type 1. Morcover, the case of initial conditions with infinitely many
nonzero clements has been considered. It represents the situation in which a
significant subpopulation of resistant cells has reached a large munber of gene
copies and becomes a persistent source of proliferating malignant cells.

2. Model of drug resistance

We consider a population of ncoplastic cells stratified into subpopulations of
cells of different types, labeled by munbers 7 = 0,1,2,.... If the biological pro-
cess considered is gene amplification, then cells of different types are identified
with different numbers of copies of the drug resistance gene and differing levels
of resistance. Cells of type 0, with no copies of the gene, are sensitive to the
cytostatic agent. Due to the mutational event the scusitive cell of type 0 can
acquire a copy of gene that makes it resistaut to the agent. Likewise, the divi-
sion of resistant cells can result in the change of the unumber of gene copies. The
resistant subpopulation consists of cells of types i = 1,2,... . The probability
of mutational event in a sensitive cell is of several orders smmaller than the prob-
ability of the change in munber of gene copies in a resistant cell. Since we do
not limit the number of gene copics per cell, the munber of different cell types
is denumerably infinite. The hypotheses are as follows:

1. The lifespans of all cells are independent expoucentially distributed random
variables with mcans 1/X; for cells of type 7.

2. A cell of type 7 > 1 may mutate in a short time interval (1,1 + dt) into a
type 7 + 1 cell with probability b,dl + o(dt) and into type 7 — 1 cell with
probability d;dt + o(dt). A cell of type i = 0 may mmtate in a short thne
iuterval (t,t + dt) into a type 1 cell with probability «dt + o(dt), where «
is several orders of magnitude smaller thau any of b;s or d;s, i.c.

a << min(d;, b;), i>1. (1)

3. The chemotherapeutic agent affects cells of different types ditferently. Tt
is assumed that its action results in fraction wu; of ineffective divisions in
cells of type 1.

4. The process is initiated at time £ = 0 by a population of cells of different
types.

If we denote by N; (1) the expected munber of cells of type @ at thne £, and
we assume the simplest case, in which the resistant cells are insensitive to drmg'’s
action, and there arc no differences hetween parameters of cells of different type
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has the following form:

f

Ng(f) = [1 b 21:‘(?)]/\,3\"0(” — N’JP\‘{UU) + (;{N]_ (f),

Ny(t) = AN, (1) —(b+ d)Ny(t)+ dNa(t) + aNy(t),

Ni(t) = AN;(t) —(b+ d)N;(t) +dNi sy (1) +ON; 1 (1).3 > 2,

\

It is worth noting that parameters b and d in this wodel denote probability
intensities and not the probabilitics as in subsection 1.2, but we use the same
notation since that their mcaning is relevant.

3. Stability of simplified model

Systems of the type (2) are not as straightforward as finite dimensional systems
of differential cquations. However, at least in simpler cases, their asviuptotic
behavior can be characterized quite precisely. As an example, let ns consider
the following system:

4

Ny(t) = AN1(t) = (b + d)Ny (1) + dNa(t),

(3)
Ni(t) = AN;(t) = (b + d)Ni(t) +dNi 1 (1) +DN;_1 (1),i > 2,

\

This is a model of a population in which the seusitive cells are iustantly an-
nihilated, and there is no influx of new resistant cells, Let us take N(f) =
> i1 Ni(t). Suppose that N;(0) = ;1 and d # b. Denote Laplace transforms
oﬁf Ni(t) and N(t) by Ni(p) and N(p), respectively, Ni(p) = ](;x N;i(t)e dt,
N(p) = [;° N(t)e~P'dt. Then we have (for i = 1):

me— At+thad— n=XX+th+d2=4hd
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and

p—-)\+b-+—d—\/(p—/\+1)+(1)'3—4b(l,+ 1 (5)
. 5

2b(p — A) p—A

This result can be found by considering the generating function of the Laplace

transforms of functions Nf(f):

N(p,s) =Y Nip)s', s €[0,1], (6)

il

N(p) = -

We also take

5) =Y N;(0)s". (7)

i>1

By performning necessary manipulations in the system (2), we obtain

N(p,s) (1) — A4 bt g by - %) = ol — (e, .
or
[ip,s) = 2 No(s) = AR p) 0

~bs2 4+ (p—A+b+d)s—d

From the analyticity of /\7(]},5), we conclude that the munerator of (9) has to
be equal to 0 if s = s1(p), where s1(p) is the root of the denominator which
satisfies s1(p) € (0,1] when p € [A, 00):

D—=AN+b4+d—/(p—AX+b+d)?>—4bd
s1(p) =1 \/(f)[ L= (10)
20
Therefore, we have
- Nolsi(p
Ni(p) = _Efdlfl] (11)

Taking No(s) = s as assiuned and substituting (11) into (9) we obtain, if 5 = 1,

p—A+b+d-— \/(1;—)\+I;+(l)2—41)d+ 1
20(p — \) p=A

N (p,1) is the Laplace transform of N(t) = 3.5, Ni(t). Note that

N(p,1) = - (12)

(p+b+d) —/(p+b+d)?—4bd
is the Laplace transforin of
(2Vbd/t) I, (2Vhdt) exp(—b — d)1],

where [ (¢) is the modified Bessel function of order 1
We have the following result from Kinunel, Swierniak, Polaski (1998) ob-
tained using the methods of Kinmnel, Stivers (1994), based on the iuverse
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THEOREM 3.1 Under previously made assunplions:

t
N(t) = e* — e*My\/d/b / {1(27—%&_“’4"””17‘ (13)
Jo

Moreover,
N@#) ~ {1 B mmib,d)} Y
/]
d - e
1 §=3/2 plA=(Vd=V)*]t 14
NI RV E 0%
as t — oo.

Let us note that the term at e in the asymptotic expansion disappears if
d > b. This separates the behavior in the supereritical case from that in the
subcritical case. In the former, the resistaut population grows expoucntially. In
the latter, it decays only if vVd— /b > v/A. If A is considered the only parameter
affected by control, this means that unless somchow accessed by eyvtostatics, the
resistant subpopulation may maintain itself even in the suberitical case. The
asymptotic behavior of the resistant subpopulation was analyzed for the case
where the initial condition contained only one nonzero element Ny(0) = 1, while
N;(0) =0, 2 > 1. Tt is possible to extend that approach to the case of two or
more non-zero elements. The number of nonzero initial conditions mmst be,
however, finite,

Now we will allow infinitely many eleents N;(0) not equal to (0. We will
formulate the stability analysis problem in the terms of spectral propertices of
an appropriate operator.

Let us assume the following conditions which gnarantee, based ou the previ-
ous results, that the solution starting from Ny (0) =1, N;(0) =0, i > 1 decays
exponentially to zero, as t — oo:

d > b, (15)
V- Vb > VA : (16)

It seems most appropriate to choose the initial condition from space ) of
the absolutely summable infinite sequences with the norm

IN| =) INi|. (17)

i>1

However, the [1-norm may grow to infiuity for some solutions.

This suggests formulating the problem in a different space, included in 1,
which imposes additional conditions on the rate of decay of N;'s. Let ns write
system (3) in the form
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where N(1) belongs to a Banach space B and A is now a lincar operator mapping
B into itself. The formn of A is implied by system of equations (3) aud may be
written as

A=(A=b—d)I+dF + P, (19)

where I, F, P are identity, left and right shifting operators respectively. We will
cousider B being the space lf of infinite sequences suunnable exponentially with
base R > 1, L.c.

Nelf! < [Njp=) |N|R < 0. (20)

i>1

The Iff spaces are Banach spaces with norms given by (20). The clements of
sequences that belong to Z{? are, generally, complex munbers, It can be verified
that A maps cach of the If spaces into itsclf, and that it is a bounded lincar
operator.

It is well known that the asymptotic behavior of the norm of solution is
related to the spectral properties of the (bounded) operator A (sce c.g. Ben-
soussan, DaPrato, Delfour, Mitter, 1992),

IN(D)r =50 <= sup{R(p) : p€or(A)} <0, (21)

where ap(A) denotes the spectriim of A generally different in cach of the 1f
spaces and R(y) is a real part of complex umnber i,
To examine this spectrum, we write the following equation,

L= (ul - A)N, (22)

where L, N € If. Calenlating the generating functions for both sides of Equ.
(22) we obtain,

L(s)=[-bs+(—A+b+d) - %]N(.«) +dN,, (23)

or

sL(s) — sdNy [=bs® + (. — A+ b+ d)s — dIN ()

—b[s = sy (p)][s — sa(pn)]N (), (24)
where NV (s) and L(s) are generating functions of sequences N and L. The

location of the roots s;(p) and so(se) (compare with (10)) decides whether g
belongs to the spectrum or to the resolvent of operator A. We have:

THEOREM 3.2 Let us set, without loss of generality, |s ()] < |s2(p1)].
Then:
L If |s1(p)| < R and |sa(p)| > R, then o belongs to the resolvent sel of A.
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3. In the remaining cases, ;i belongs to the non-poinl part of the spectrum of
A

Carrying out appropriate evaluations, we obtain:

1. sup{R(p) : peop(A)} > 0iff R € [1.5(0),

2. sup{R(p) : p€or(A)} <0iff R € (51(0),s2(0)).

3. sup{R(p) : peor(A)} 2 0iff R € [s2(0),0).

The above three conditions classify the properties of the svstemn (3) in Ba-
nach spaces If with different values of R. The system is exponentially stable
(sup{R(p) : p € or(A)} < 0) for the values of the base parameter R iu the
range R € (51(0),52(0)). Then, the Banach spaces I with R € (s(0). 52(0))
are stable state spaces for the system (3). Clioosing initial couditions from
these spaces results in solutions converging to zevo. It might seem surprising
that further increase of the value R (1 € [s2(0),00)) results in the loss of the
exponential stability property. However, one should remember that exponential
stability is expressed “relative” to the norm in l‘lq which changes with 2.

The same result may be found using the theory of sewigroups. In this case it
is convenient to perform all considerations in /; space for the modified operator
A=(A=-b—-d)I+dF/R+ VPR. Morcover from the theorem dne to Sklyar-
Shirman-Lyubicli-Phong-Arendt-Batty (sce Arendt, Batty, 1988) it results that
in the case when

Vd— Vb=V (25)

the semigroup generated by A decays when time increases but not necessarily
exponentially as it was in the case when (16) held. Moreover, if (16) is satisfied
then for R = 51(0) the semigronp is asymptotically stable and for @ = s5(0) it
is not asymptotically stable.

4. Stability of the model of evolution of drug resistance

The analysis of the asymptotic behavior of the resistant subpopnlation was car-
ried out under the assumption that there was no external cell influx. However,
the techniques of Laplace trausformation cunable including such possibility. As-
suming that the initial condition for (1) is zero, N;(0) = 0,4 = 1,2..... and nsing
the calculations similar to those previonsly performed in Swicrniak. Kimmel,
Polaiiski (1996), we find that the function Ny(f) is a convolution of two functions:
aNg(t), and the free solution for the first state variable Ny(f) of equation (2)
(being also the impulse transfer function of the system) in the case analysed in

theorem 1. Equivalently, using the Laplace transforins No(p) = ](:0 No(t)e="dt,
M(p) = _];]oo Ny (t)e~Pldt, we have

. m—A4+bht+d—=Slo=X+b+d)2 —dbd - .
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In other words,

P=A+bAd- V= A+b+d)? = dbd
¢ 20

is the transfer function of the system with inpnt Ny and output, Ny,

The equations of the asvinptotic model without cell infiux have the sane
form as a part of the drug resistance model (1). Cousequently, we can “eat”
the model equations (1) into two parts. The first part is the single differential
equation that describes the population of sensitive cells. Taking into account the
cell flows between two parts of the model we couchude that we may cousider the
drug resistance evolution model as a feedback systemn. We confine onr analysis
to the case of the constant dosage of a cvtotoxic agent. Then we may treat
the value » that appears in the first equation of (1) as a constant parameter.
Analyzing the first equation of the model with iuput function Ny(1) and ontput
No(t) we can calenlate that

d -
1 (). 27
prg— {1~ 2“))\}\1(11} k)

No(p) =

With the transfer function of the sensitive subpopulation compartinent and the
transfer function of the resistant compartment one can represent the flow chart
of the system as the feedback loop .

The loop transfer function for the systewn is

alp=A+b+d— /(p=A+b+d)? - 4bd)
20[p + a — (1 = 2u)A

K(p) = (28)

The frequency respouse of (28) is:
K(jw) = K(p) lpmi - (29)

Note that the feedback loop is a positive one. Then the Nyquist tvpe theorem
for infinite dimensional systems states that the feedback loop is stable if both
systems defined by transfer fimetions are stable, and

sup | K(jw) | < 1. (30)

By the analysis of the relation (28), it can be verified that the supremmmn in (30)
is achieved for w = 0, with the condition that both transfer functions define
stable systems. As a result we can state the following conditions of exponential
stability of the drug resistance model (1):

Vd - Vb > VA (31)

(Stability condition for resistant population).

[$3
T Tl ool ) L faah
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(Stability condition for the feedback loop). The stability condition of the sensi-
tive compartment ( u > 0.5 — 3% ) is inclnded in the condition (32). Condition
(32) makes sensc only if (31) is satisfied. Inequality (32) gives the smallest valne
u which ensures climination of cancer cell population. This value inereases if
both d—b— X and vVd— Vb — VA are small, i.e. the denominator in (32) is close
to zero. The condition that both d — b — A and Vd — Vb — VX are close to zero
is satisfied if either b or A is small.

5. Discussion

In this paper we have studied the propertics of evolution of a model of drug
resistance in the framework of gene awmplification, although nmch of what is
written may apply to different mechanisins which are reversible and ocenr at
high frequencies. We have defined a mathematical model which can he nsed to
pose and solve a chemotherapy problemn under evolving resistance. Analysis of
the variants of this model should give iusight info possible schednling strategies
of chemotherapy in the situations when drug resistance is a siguificant. factor.
The model we analyzed is defined by infinite systems of linear differential equa-
tions. The solution to that system describes the expected munbers of cells of
different types. Assuming constant parameters, we obtained analytical closed-
form results. The study of the model of the resistant subpopulation withont, the
external influx reveals that suberiticality of the amplification process (b < d )
is not sufficient for extinction of the resistant cells. The population of resistant
cells becomes extinet only if stronger condition \/ﬁ - \/E > \//_\ is satished.
The further analysis leads to a conclusion that while being stable for auy fi-
nite initial condition, the solution can diverge if we allow initial conditions with
infinitely many nonzero clements. The factor that determines stability of the so-
lution in this case is the rate of decay of successive elements of the initial vector.
The rate of decrease must be faster than [b+d — A — /(b +d — A\)? — 4bd] L.
Morcover, the analysis of the case in which the resistant compartinent is persis-
tently supplied by the sensitive compartment Las enabled to find the minimal
intensity of the eytotoxic drug action which ensnres stability of svstem behaviour
providing that the drug resistant population satisfies previonsly discussed con-
ditions. Using a model with infinite mumber of cell types is a nseful idealization.
The number of gene copies which determines the possible munber of cell types,
can be very large in tumor cells. In view of this, onr approach is justified in
the way similar to that of many probabilistic models of cell populations where
infinite tails of distributions are assumed. For the infinite dimensional model
studied in this paper it was possible to obfain analytical results concerning sta-
bility of evolution of populations of cancer cells. The cmergence of resistant
clones is a nniversal problem of chemotherapy. However, it seems that its most
acute manifestation is the failure to treat metastasis. A part of this problem
is the imperfect effectiveness of adjuvant chemotherapy as the tool to cradicate




Qualitative analysis of controlled drug resistance morel 73

scheduling is potentially useful in iimproving these treatinents.
The rescarch has been partly supported by KBN grant n.8T11E 033 15.
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