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Abstract: In this paper, we take up the problem of axiomat-
ically characterizing what we have referred to in the paper as the
additive choice function on the classical domaiu for choice problems.
Apart from an impossibility result for the additive choice function,
there is an axiomatic characterization, which as a by-product. pro-
vides a counterexample to a conjecture for the egalitarian choice
function. In an appendix, we provide a proof of an axiomatic char-
acterization of the egalitarian choice function using a superadditivity
axiom.

In this paper, we also provide proofs of axiomatic characteriza-
tions of the family of non-symimetric Nash choice functions and the
family of weighted lierarchies of choice functions. Our conclnsion is
that carlier axiomatizations are essentially preserved on the classi-
cal domain for choice problems. The proofs are siguificant in being
non-trivial and very dissimilar to existing proofs for other domains.

Keywords: choice problem, choice function, egalitarian choice
function, Nash choice function, additive choice hnction.

1. Introduction

Choice theory, which dawned with the seminal paper of Nash written in 1950,
lias by now developed into a well defined body of mathematics, concerned with
choosing a point from a compact, convex, comprehensive feasible subset of the
non-negative orthant of a finite dimensional Enclidean space, cachi sich feasible
set admitting a strictly positive vector. Axiomatic choice theory is concerned
with the axiomatic characterization of rules which assigu an alternative to ecach
such choice problem in a given family of choice problems. We shall here be
concerned with two-dimensional choice probles.

Following the choice function suggested by Nash, the other well known choice
functions are the relative egalitarian due to Kalai and Smorodinsky (1975), ega-
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(1988), equal loss due to Clmm (1988), lexicographic cqual loss dne to Chnu
and Peters (1991), and the cqual area due to Anbarci and Bigelow (1994).
Soe of the other choice fuuctions have been studied on more relevant domains
in Lahiri (1996b). However, the simplest of all solntions, i.c.. the one which
maximizes the sum of the coordinates from amongst all feasible vectors has
been a rather mute spectator of a spectacular pageantry in which all these other
choice functions participate. Except for a significant axiomatic characterization
by Myerson (1981), very little attention Las been devoted to this choice function:
the utilitarian choice function. The reason is that this choice fuuction (as asingle
valued mapping) is not well defined for a very large class of meauinginl and nou
pathological choice probleins. The purpose of this paper is to suggest a way ont
of this difficulty, so that mmch of applied rescarch which nses maximization of
the sum of the coordinates of vectors in a feasible set of vectors will now have
a theoretical nnderpinning. Some remarks abont related results dne to Peters
(1986a) are given, to put carlier results in proper perspective. In an appendix
to this paper we prove a variant of a result in Peters (1986a), whicl is valid on
our domain.

The family of non-symmetric Nash choice functions, whicli was proposed
for the first tine in the seminal work of Harsanyi awd Selten (1972), has been
axiomatically characterized in almost the saine way that Nash himsell char-
acterized its symmetric ancestor in lis by now listoric 1950 paper. A wore
recent. and thorough investigation of the fanily of choice huetions character-
ized by a weighted hierarchy (and containing the fanily of nou-svinetric Nash
choice functions) is the work of Peters (198Gh). There, an additional axiom
called the consistency axiom is used, which, however, is not regnired for two-
dimensional choice problems. All the above mentioned characterizations of the
non-symmetric family under disenssion, rely heavily on an assumption whicl
has often been questioned fromn varions quarters, namely: Nash's Independence
of Irrelevant Alternatives Assmnption (NITA).

There have been several attempts to free the characterization of the Nash
choice function from the grip of NITA, Of iuterest in the present paper is a
characterization for two dimensional choice problems preseuted in Thomson
(1981), where instead of NIIA an asswnption called Independence of Trrelevant
Expansions (IEE) has been used. Our Theoremn 5.1 in the present paper is
an easy and valid extension of Thomson’s original result to the non-syimmnetric
cases.

In Peters (1986h) a characterization of a family of choice functions can be
found determined by a weighted hicrarchy for two-dimensional choice prob-
lens using a slightly weakened version of Thomson'’s Independence of Irrelevant
Expansions assumption. However, the domain chosen for the result deviates
considerably from the conventional domain used by Thomson (1981), in that
it assumes that every choice problem adnits infinite free disposability. Now,
this is an assumption whose worth or meaningfulness depends on the context.
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planuing problem, for iustance (i.e., dividing a dollar between several sectors,
the returns being measured by concave, nou-decreasing, non-constant and con-
tinuons revenne functions), then the kiud of domain assmned iu Peters (1986h)
for the present purpose is not quite meaniugful. That the set of nvestinent
planning problemns is isomorphic to the domain of choice problems assiuned in
this paper, is however a result established in Laliri (1996Ga). So. the natural
question that crops up is whether the result established by Peters is valid when
the domain (as in the present paper) cousists of now-cmpty, compact, convex,
comprehensive subsets of two dimensional Euclidean spaces, cacli such set ad-
mitting a strictly positive vector. A cursory look af, the proof of the result in
Peters (198Gh), shows that it is very dependent on his choice of domain. T fact,
a couple of lemmas siinply do not have any meaning in our framework. What is
Lhowever noteworthy, is our Theorem 5.1: the original result continnes to hold.
The choice functions determined by weighted Lierarchies, are the oulv choice
functions which satisfv the assuwptions suggested by Peters.

2. The model

We consider two-ditmensional choice problems ouly. A (two-dimensioual) choice

problem is a non-cmpty subset § of RZ (¢ the non-negative quadrant. of two

dimensional Euclidean space), satisfving the following propertics:

i) S is compact (: closed and bounded), convex

ii) S is comprehensive ie. 0 <y<a2reS—yeS

iii) there exists 2 € § such that 2 > 0 (i.e. if 2 = (@, 22) then oy > 0, 9 > 0).
Let £2 be the class of all choice problems.

A choice function (or solution) is a function F: ¥* — RZ such that F(S) €
SVS e x?

Given S € X2, let w(S) = {x € S/z1 + 22 > 41 + 1Yy = (1. 12) € S}. u(S)
is non-empty for all § € ¥2. Further u(S) is a compact convex subset of
Ac = {x e RY/x = (x1,22) 71 + 73 = ¢} VS € E? for some ¢ > (. However,
u(S) is in general not a singleton.

Let a(S) = (a1, a2) where ag = max{xs|(xy,29) € u(S)}; let b(.S) = (b, ba)
where by = max{x[(x,22) € u(S)}; further a(S), h(S) € u(S).

Clearly, a(S) and b(S) are well defined for all S € £2 and

u(S) = {ta(S) + (1 = t)b(S)/t € [0,1]}.

We define the additive choice function A : ¥° — RZ as follows:

Al3) = rr(S) +1(8)) VS € ¥2.

We are basically interested in the axiomatic characterization of this choice
function, which is nothing but the expected value of the random veetor which
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3. Some axioms

Let F: £2 - R2 be a choice function.
1. Weak Pareto Optimality (WPO):
VS € 2, F(S) € W(S), where W(S) = {x € S/y > — y ¢ S}VS e &2
2. Parcto Optimality (PO):
VS € ¥2,F(S) € P(S), where P(S) = {zeS/y>a,y€ S —y=na}
VS e 52
3. Scale Translation Covariance (STC):
VS € 22,Ve € R2 , if ¢ = (e1,¢2) then F(eS) = (1 F1(S), caF5(S)), given
that ¢S = {(c1m1,am2) [ (21, 72) € S}
4. Homogeneity (HOM):
VS € T2Vt > 0, F(tS) = tF(S), where tx = (txy,tr) Va = (21,72) €
R? and tS = {tx/x € S}.
Additivity {Addi)
VSeZ2,TeX F(S+T)=F(S)+ F(T).
6. Super Additivity (S Addi):
VS, T € L2, F(S+T) > F(S) + F(T).
7. Partial Super Additivity (PS Addi):
VS, T € 82, F(S+T) > F(S).
8. Nasl's Independence of Irrelevant, Alternatives (NITA):
VS8, T € X%, 8 Cc T F(T) eS8 — F(S) = F(T).
9. Translation Covariance (TC):
vS € £2,c e R2 if S(¢) = {y e R¥y < 2+ ¢,z € S}, then F(§(c)) =
F(S)+c
10. Symunetry (SYM):
VS € T2 such that (21,72) € § & (22,71) € S, F1(S) = F»(S).
11. Convex Linecarity (C. Lin):
VS, T € L2, F(aS+ (1 —a)T)=aF(S)+ (1 -a)F(T) if a € [0,1].
12. Binary Additivity (B. Addi):
VS, T € £% with u(S) = {A(S)} and u (T) = {A(T)} if V = comprehen-
sive convex hull {S, T}, then F(V) = 3 LIF(S) + F(T)) if I1(S) + F»(S) =
Fy(T) + F5(T).
Let us first mention that A does not satisfy STC and NIIA.

o«

EXAMPLE 3.1 LetT = {.1: S R_“;_/ (x1,09) =2, 21+ 72 < 1}_.

3
S = Convex hull {{{], 0), (0,1), (%, %) s (5 l])} i

Clearly S C T and A(T) = (3,3) € S. However A(S) = (3.2). Thus A does

not satisfy NIIA.

Iul'_-

Observe that:
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ii) STC — HOM
iii) Addi — S Addi — PS Addi
iv) Addi + HOM — C. LIN

4. A result on the additive choice function

THEOREM 4.1 The only choice function on £° to satisfy PO, SYM, C' LIN and
B. Addi is A.

Proof: The proof that if F satisfics PO, SYM and C.LIN, theu F(S) €
argmax, g [r1 + 72) VS € £2 is the relevant portion of the proof of theorem
1 in Myerson (1981). If in addition F satisfies B.Addi the following argument
holds:

Let V € 2 and let h;i(V) = max {z;/2 € V},i=1,2. Suppose {A(V)} is a
strict subset of u(V'). (If u(V) = {Z(V)}‘ there is nothing more to be proved).
Case 1:

a(V) e R2 \RZ, (V) e R} \R%,.
In this case V = t',(fElpI'l!llCIlSiV(—l convex Imll of A, for some ¢ > (. By WPO
and SYM, F(V) = A(V).
Case 2:
a(V) € Ryy,b(V) e R,
Let
S = Convex comprehensive hall {(0,ha(V)), {x € V/ay < aa(V)}}.
T = Convex comprehensive hull {(hy(V),0),{z € V/ay < (V)}}.

Clearly V = Convex comprchensive lmll {S, T} -
Further, uw(S) = {A(S)} = {a(V)}, w(T) = {A(T)} = {&(V)}. Thus
F(S) = a(V), F(T) = b(V). By B.Addi, F(V) = A(V).
Case 3:
a(V) e RL\R2,,b(V)eR3,

In this case let T be as in Case 2 and let S = {x € V/za < aq(V)}
Once again V = Comprehensive convex hull {S, T} aud from here on the
argument is as in Case 2.

Case 4:
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In this case let T be as in Case 2 aud let, S = {r € V/22 < (V)}

Again V = Comprehensive convex lmll {S, T} and the resulting argmment
is as in Case 2.

Thus F(V) = A(V) in all cases. |

Remarks:

1. The theorem dune to Myerson (1981) which we refer to in onr proof is valid
only on a subdomain of £2 for which u(S) = {A(S)}. However. the same
proof works for us.

2. We know that A satisfies PO, SYM, HOM aud Addi. Thns A satisties
PO, SYM, HOM, and PS. Addi. Peters (1986G) contains a theorem to
the effect that the egalitarian solntion dne to Kalai (1977). is the ouly
solution to satisfy WPO, SYM, HOM aund PS. Addi. However, Lis domain
is a noncouventional one and is diferent from onrs. Ou our domain the
cgalitarian solution satisfiecs WPO, SYM, HOM aud PS. Addi as well.
Thus a uniqueness result using WPO, SYM, HOM and PS. Addi on 2
is clearly not available. It is interesting to note that onr domain $2 is
naturally implied by the interesting disenssion on Axiomatic Bargaining
contained in Moulin (1988). Moulin (1988) considers a domain which is a
strict subset of £2. However, all choice problems in £2 can he obtained
as the limit in the Hansdorff topology of a sequence of increasing choice
problems considered by Moulin (1983).

3. Since A does not satisfy NITA, thie interesting axiomatic characterization
on the subdomain of £2 defined by {S € £*/u(S) = {W(S)}} nsing PO,
SYM, TC and NITA which is there in Exercise 3.9 of Monlin (1988) fails
to generalize.

PROPOSITION 4.1 On £2 there exists no choice function which satisfies WPO,
SYM, TC and NIIA.

Proof: Leta = (%, %), b= f%, %) and § = comprehensive convex Ll of {a, b}.

Now S C A,

Suppose towards a contradiction that there exists a choice function F which
satisfies the above assumptions. Then by WPO, STC aud SYM, F(A;) = (5.3)
and by NIIA, F(S) = (%, %\J =

Now let ¢ = (%, 41) and T = comprehiensive convex hull of {a + ¢, b+ ¢}.

Then T' = S(c) as defined in the Translation Covariance axion.

Now T C Az and F(As) = (1,1) = a + ¢ by WPO and SYM. By NIIA,
FT)=01,1)=a+c

By TC, F(T) = F(S)+c=b+c= (13,3) # (1,1).

This cousideration establishes the desired nonexistence, |

We define the following choice function A* @ £2 — R2 which satisfies both
NITA and SYM:
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Given S € X2, let A*(S) = TNu(S) if T Nu(S) # . = WS) if #; >
xaV(ay, 20) € u(S), = a(S) if 23 < 22¥(xy,29) € u(S)
It is casy to sce that A* : £2 — Ri satisties Pareto Optimality.

5. The non-symmetric Nash choice functions

The following assmunption will he used i this seetion:
1. Independence of Irrelevant Expausions (IEE):
VS € %2 there exists a vector p € R2 with gy + ps = 1 such that
(a) p.a = p.F(S) is the equation of a supporting line of § at F(S), (b)
VT € £2 with § € T and p.x < p.F(S)¥x € T, we have F(T) = F(S).
We are interested in a family of choice fiunctions defined thus: Given 1V =
(W1, Wa) € RE with Wy + Wy = 1, let FY(S) = argmax,, . esry a5 ° if
W > 0, = (h1(S),92(S)) if W) = 1, Wa = 0, = (g1(5).ha(S)) if W = 0,
Wy = 1VS € £2 Here (hy(S),g2(S)) and (g1(S5), ha(S)) belong to the Parcto
optimal set of S whenever S € £2. The family {FV /W > 0} is called the
family of nonsymmetric Nash choice finctions. The family {F'/W > 0} is
called the family of choice functions determined by a weighted hierarchy.

EXAMPLE 5.1 W = (1,0)
Thus FV(S) = (h1(S), 92(S)) VS € £2. But this F'V' does not satisfy Inde-
pendence of Irrelevant Evpansions. Take S = {.r = (71.20) € R2 /o + a3 < 1}
Clearly F'V(S) = (1,0). At (1,0), the unique supporting hyperplane in the
definition of IIE is given by p = (1,0). Now take T = {(ay,72) € R7/r) <1,
a9 <1}. Now T and S salisfy the conditions in IIE, with p = (1.0). But
FY(T) = (1,1) # FY(S).

This example excludes the weighted hicrarchy (1,0) as well as the weighted
hicrarchy (0,1) from the list of the possible candidates which could define a
solution satisfying T115.

Hence the only possibilities are weighted hierarchics of the form W 0, i.e.,
a nou-symmetric Nash chioice function.

Our next objective is to invoke the assmuption of weak independence of
irrelevant expansions defined in Peters (1986h) and establish a vesult similar to
his.

1. Weak Independence of Trrelevant Expansions (WIEE):

VS € X2 there exists a vector p € R2 with py + p2 = 1 such that:
a) p.x = p.l7(S) is the equation of a supporting line of S at F(S);
b) VT € 2 with S ¢ T and p.a < p.F(S)Va € T, we have F(S) < F(T).

Notice that ITE implies WIIE. Hence the nou-syunnetrie Nash choice funce-
tions satisfy WIIE as well.

For the purpose of this section, the following convention is adopted: Let
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{p € R% \ {0}/p satisfics the conditions of WIIE for S}. For Lennnas 5.1, 5.2
and 5.3 below we assume that F satisfies PO, STC and WIIE. Let comv staud
for comprehensive convex hnll.

LEMMA 5.1 If (0,1) € ;J[F S) for some S € X* with S # Comv{h(S)} then

F(T) = (q(T), ho(T)VT € 2\ {aly/a > 0}.
Proof: Suppose there exists T € £2\ {aA/a > 0} such that F(T) #
(91(T), hao(T)). '
Clearly

(a) (0,1) ¢ p(F, )
(b) T # Comv{h(T)}.

Now, (0,1) € p(F,S), implics by PO that F(S) = (¢1(S), h2(S)). Let V =
Comv{u,v}, where us = ha(S), 11 = h(S), 1wy > g1(S), v2 < ha(S), ua > v,
w < vy, w3 0,030,

Such a V exists since § # Comv{h(S)}. By PO aud WIIE, F(V) = u
(g1(V),ha(V)). By STC, F(V) = u = (q:(V),ho(V))VV € £? with V
Comv{u, v}, u > 0, v > 0, uy > vy, uy < ;.

Now, T € £2\ {aA;/a > 0}, (1,0) ¢ p(F.T) implics that there exists V
as above (i.e. V = Comv{wu,v}) such that 7' V and F(T) < v if (1,0) €
p(F,T) nequ,v with F(T) Parcto Optimal in V if (1,0) € p(F,T')

By WIIE, F(V) > F(T). Thus F(V') # u.

This contradiction establishes the lemma. |

LEMMA 5.2 If (0,1) € p(F,S) for some S € £* with S # Comv{h(S))} then
F(T) = (q1(T), ha(T))VT € 2.

Proof: Given Lemma 1 above aud by appealing to STC, it is cnough to show
that F'(Ap) = (0,1).

Let T={x €A /o, <3} T e X%\ {ad;/a > 0}.

By Lemma 1, F(T) = (0,1).

By WIIE (since T € Ay, with the conditions of WILE being trivially satistied
for T and Ay at (0,1)), F(4A;) = (0,1). |

LEMMA 5.3 If (1,0) € p(F.S) for some S € £* with S # Comv{h(S)} then
F(T) = (h(T), g2(T)VT € 2.

Proof: Similar to above (i.c. Lemmas 1 and 2).

LEMMA 5.4 Suppose (1,0), (0,1) & p(I", V) whenever V € £2, V # Comuv{h(v)}
If F satisfies PO, STC and WIIE, then F is a non-symmetric Nash bargaining
choice function.

Proof: Let F{A) = w > 0 since (1.0), (0.1) & p(F,A;). Tlns F(ad,) =
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Now let S € £28 # Comv{h(S)}. Then Vp € p(F,S), p > 0.

Let T = {(z1,22) € R /p17y + para < prF1(S) + pala(S)}.

Clearly F(T) = FV(T) and F(T) = F(S) the latter by PO and WIIE. Thus
F(S) = FYW(T). Since FY(T) = F"Y(S), we have the desired result. |
Note: By STC, if F(A;) = FW(A) for some W > 0, then F(ad,) =
FY (aA))Va € RZ_ and for the same W. Since F(4,) is always equal to
some FW (A;) with W > 0, F (ad;) is always cqual to F"V (aA))Va € R?
for some fixed W > 0, Wy + Ws = 1.

As a consequence of the above lenmnas we have the following theorem.

THEOREM 5.1 Let F be a choice function on $° which satisfies PO, STC and
WIIE. Then F = FW for some W = (W1, W) > 0 with Wy + W, = 1.

Conversely, any choice function F"' with W > 0, W) + Ws = 1 satisfices PO,
STC and WIIE.

In view of Theorem 5.1 and the relevant observation in Section 5 we have
the following corollary.

COROLLARY 5.1 Let F be a choice function which satisfies PO, STC and 11E.
Then F is a non-symmelric Nash choice function.  Conversely, cvery non-
symanetric Nash choice function satisfies PO, STC and 11E.
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Appendix A

In this appendix and in view of Remark (2) (after Theorcm 4.1), we prove an
axiomatic characterization of the egalitarian choice function nsing the superad-
ditivity axiom. We invoke the following two assumptions as well:

Strong Individual Rationality (SIR)
F(S)>»0 vSex?

Continuity (CONT)

If {S*} be a sequence in £? converging to S € £? in the Hausdorff topology,
then limg oo F(S*) = F(S).

We now prove the following theorein:

THEOREM 1 The only choice function on ¥* to satisfy SIi, WPO, SYM, NIIA,
S.Addi and CONT 1is the egalitarian choice function E defined as follows:



. . . . . . }
Some properties of solutions for two-dimensional choice problems reconsidered hati}

To prove this theorem we nse the following lennna:

LEMMA 1 Under the hypothesis of the theorem, F(T) > E(TWT € X2 of the
Jorm T = {x € R [x < a} for some a > (.

Proof of Lemma: If o = (ay,as) with ay = aa, then F(T) = E(T') by WPO
and SYM.

Hence suppose W.Lo.g. a; > as.

Thus E(T) = (az,02)

Let b(e) = (1 — €)ag for 0 < ¢ < . T(e) = {x € R3 /o < (b(e), b))}

Ule) = {x — (bl€),b(e)) [ > (ble),b(e)) x € T}.

Then T'=T(e) + U(e)V0 < € < 1.

therefore F(T) > F(T(e)) = (ble), b(¢)) V0 < e < 1.

Taking limits as ¢ — 0, we get F(T) > E(T). [ |
Proof of Theorem:

That E satisfies the above propertics is clear. Thus let ns assime [ satisfies
the above properties and towards a confradiction assume that there exists S €
%2 such that F(S) # E(S).

To begin with assmne E(S) € P(S). The proof is completed hy appealing
to CONT.

Let T'= Comprehensive convex lnll {£(9)}

By NIIA, F(T) = F(S).

By Lemma above F(T) > E(T).

Clearly F(T) # E(T) for then F(S) = E(S).

Without loss of generality asswine Fy (1) > E(T).

Since E(T) € W(T), F»(T) = Es(T).

Let. 7" = Comprehensive convex hudl {E(T)}. F(T") = E(T") = E(T)

Let U={x - E(T)eR3/x € S}. U € 2, since B(S) € P(S). T"+U C S
and F(S)=F(T)YeU+T'

By NIIA, F(T"+ U) = F(S) = F(T)

But F(T'+U) > F(T') + F(U) by S Addi, i.e. F(T) > E(T)+ F(U)

By SIR, F(U) > 0 therefore F(T) > E(T)

Contradicting Fy(T) = Eo(T). ]

In the above proof we invoke the Nash's Tndependence of Trrelevant Alter-
natives Assuption, which sets the cgalitarian choice function apart bhoth from
the choice function of Perles and Maschler (1981) aund the choice funetion that
we define in this paper.

Further since, SIR + HOM + NIIA — WPO, the following corollary is
iimmediate:

COROLLARY 1 The only choice function on £° to satisfy SIR. HOM, NIIA.,
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Appendix B

The purpose of this appendix is to establish a replication invariance property
for the additive choice function. Replication invariance resnlts for the relative
cgalitarian and Nash choice functions are available in references contained in
the same paper. In order to establish the replication invariance property we
need the following framework.

Let n € N and R’} denote the nou-negative orthant of n-dimensional Eu-
clidean space. A choice problem in Rl (often called an n-dimensional choice
problem) is a non-empty set S in R} satisfving the following propertics:
i)oes
ii) S is compact, convex and comprehensive (e, 0 < <ye S — a2 € 9)

i) Iz € S with 2 > 0

Let ¥ denote the class of all n-dimensional choice problews. We shall be
interested in a subclass of £ in what follows.

Given S € £", let

u(S) = {-‘?-‘ €S/Y m>) yVyeS, y= {:ffs)l':l}

i=1 i=1

We shall be interested in the following subelass of £ denoted B" 0 S € B™ if
and only if the compact convex set 1(S) has a finite munber of extreme points.
Let e(S) denote the set of extreme poiuts of u(S), whenever S € B" and let
le(S)| denote its cardinality. The additive choice function A @ B" — R is
defined as follows:

- 1
A5y = T)[ Z x, whenever S € B".
|C( T€e(S)
Let S € X2 be given, as well as natural muubers i, 1 Let L, = {1,2,...,m}

and Jy = {m +1,...,m+1}. For a pair (1,7) € L, x Jp, let
Sij = {x € RP /3(2),2%) € S with =; = 2,25 = 2, m, = 0if k #4,5} .
The Thomsou (1, 1) replication of S is defined as
S™! = Conv {S;;/(i,§) € Im x Ji} .

Clearly S™' € B™*. Indeed, if 2% denotes an clement of S; j, then the ex-
treme points of u(S) are {a'¥(S),b1(S), (i, j) € I, x Ji} where a;'(S) = a1(S),

ail(S) = aa(8S), ail () = 0if k # i, 5; b (S) = b(S), 17 (S) = ba(S), B () =0

if k#4,5. Thus 4 (S™) = 534 [Z“_}-}EL””‘n’-”(S) + P naercs VS

THEOREM 2 [In the above framework, -m;fl., (.‘?”"") =A,(S) Vi€ I, and f__l, {5"”'!) =
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Proof:
Let (¢,d) = A(S}
Thus (¢, d) = 25a(S) + “]"_'_;.’;(5}
Now
o m,l 1 ki o .
: A [ S k "
A (S™) = 5— z (S)+ Y 0(S)| ifkel
i€Ji ied
1 .
=5 Zaﬂ (S)+ > bES)| ifke
i€l

thercfore Ay (S™') = m [lay(S) + 16y (S)] if k€ 1,

1 -
=5 [mas(S) +mba(S)] if k€ .,
therefore Ay (Sm‘!) = 2% [a1(S) + by(S)] if k € L,

= i [22(S) + 02(S)] if k € .y
2m

Thus,
mAg (S™) = A(S)Vk € I,
A (S™') = As(S)Vk € .
|
E,nt. us show that, 3,7 Ak (8™4) 2 T ner g B V= (80)ier 0 €
S)i}. :
Let (¢,d) = 2[0 S‘)+h(S ] € u(S). _
Thus ¢+d > x) + 257 (2], 25) € S. Thus if 2" denotes a vector in S™7, then
¢ +d>1”+1'7
Now, let y € S"” Then, there exists j; > 0.(i,7) € Ly x Jp such that
y< Z(r«,:)&fm sk frij et 1 for some 27, (i, ) € I, x J;, andl E{u}ef... w1 = L.
therefore y;, < Z;ie 7 g;.k_,-nr:}’ if keI,
W S Tier, Mirzl if k € )
therefore ZLGI U""'Zke.h e < Z&Ef E?E g, 1T +ZL(—_I: Zr‘EL.. pipiF
= E(r D)€L xJy Hii T !+ Lo GiiVelax d, i3T5 4
2 (i5)€lwx 2y s [ T ""_?aj] Setd
d
=aerum ¥ Lopa 1
= |
= Zkef,..u..ﬁ Ap (Sm ) X

This establishes the bonafides of the extension of A from %2 to 3" as intro-






